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The LQG homing problem for a Wiener process
with random infinitesimal parameters

MARIO LEFEBVRE and ABDERRAZAK MOUTASSIM

The problem of optimally controlling a Wiener process until it leaves an interval (a, b)
for the first time is considered in the case when the infinitesimal parameters of the process are
random. When a = —oo, the exact optimal control is derived by solving the appropriate system of
differential equations, whereas a very precise approximate solution in the form of a polynomial
is obtained in the two-barrier case.
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1. Introduction

Let {X(¢),t > 0} be a controlled Wiener process defined by the stochastic
differential equation

dX(t) = pdt + bou[ X (2)]dt + cdW(2), (1)

where u € R, o > 0 and by > 0 are constants, and {W(¢),t > 0} is a standard
Brownian motion.

We assume that X (0) = x € [a, b], and we define the first-passage time
T(x)=inf{r >0:X() =aorb]| X(0)=x}. 2)
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The problem of finding the control u* that minimizes the expected value of the
cost function
T(x)

1
J(x) := f {quuz[X(t)] + /1} dt + K[X(T(x))], (3)
0

where go and A are positive constants and K is a general termination cost function,
is a particular case of what Whittle [4] has called LOQG homing problems. As will
be seen, it is possible here to determine the value of u* by considering the
uncontrolled process obtained by setting u[ X (#)] = 0 in Eq. (1).

The above cost function could be generalized by using a cost criterion that
takes the risk sensitivity of the optimizer into account; see Kuhn [1] or Whittle [5].

Solving explictly an LQG homing problem is usually difficult, especially in
more than one dimension. Makasu [3] was able to obtain an explicit solution to
a two-dimensional problem.

In this paper, we are interested in finding the optimal control in the case
when the infinitesimal parameters u and o are random, and vary according to
a continuous-time Markov chain. This problem has applications in finance, in
particular, where there are regime switches.

In a previous work (Lefebvre and Moutassim [2]), the authors considered the
case when o is constant, and u switches between +1 and —1. They were able
to obtain relatively good approximate solutions. However, they could not find an
exact solution to any particular problem.

It turns out that we can indeed find an exact optimal control in the case when
a = —oo, that is, in the one-barrier case. In the two-barrier case, and with u
constant, we will see that a solution in the form of a polynomial is very good,
when compared with a precise numerical solution, at least for the particular
problem considered.

In the next section, we will use dynamic programming to find the system
of differential equations that must be solved to determine the value function,
which depends on the state of the Markov chain and from which the optimal
control is deduced at once. Then, the one-barrier case will be solved in Section 3.
A particular two-barrier problem will be treated in Section 4, and we will end
with a few remarks in Section 5.

2. Dynamic programming

Let {Y(¢),t > 0} be a continuous-time Markov chain with state space E =
{1,2}. When the process enters state i, it remains there for a random time T;
having an exponential distribution with parameter v;. Then, it will move to the
other state.
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The controlled process {X(¢),t > 0} defined in (1) is replaced by the two-
dimensional process {(X(t), Y (¢)),t > 0}, in which X (¢) satisfies

dX (1) = py dr + boulX (1), Y (£)1dt + oy) dW (). “4)

We are now looking for the control that minimizes the expected value of the
cost function

T (x,0)
J(x,i0) = f {%qoyiuz[X(t), i]+ /l,} dt + K;[ X (T (x,1))], (5)
0

where gp; > 0 and
T(x,i) = inf{t >0:X(t)=aorb|X(0)=x¢€[ablYO) = i}, 6)
for i = 1, 2. Furthermore, we assume that the final cost is constant:
K[ X(T(x,i))]=k;ieR, fori=12.

To determine the value of the optimal control, we will make use of dynamic
programming. We define the value function
F(x,i) = inf E[J(x,1)], (7)
ulX (1),), 0<r<T (x,i)
for i = 1,2. We can show (see Lefebvre and Moutassim [2]) that the function
F(x,1) satisfies the dynamic programming equation

1
0= inf) {E qo,iuz(x, D)+ A + [ + bou(x,i)]F'(x,1)

u(x,i

+%03F"(x,i) +v; [F(x,j)—F(x,i)]}, (8)

in which j # i.

From the above equation, we deduce at once that the optimal control u*(x, 7)
is given by

u(x,i) = —EF’(x, i), fori=12. 9)
qo,i

Finally, substituting the expression for u* (x, i) into the dynamic programming
equation, we obtain the following system of non-linear second-order differential-
difference equations:

’ 1b(% ’ 2 1 2 o
O:/ll+/.11F(X,1)—§E[F(X,1)] +§O'1F (X,l) (10)

+v [F(x,2) — F(x,1)],
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’ 1 bg ’ 2 1 2 o
0=+ mF'(x,2)-5— [F/(x,2)] + 50, F"(x,2)
2 qo2 2
+ v [F(x,1) - F(x,2)]. (11)
The boundary conditions are
F(a,i) = F(b,i) =k;, fori=12. (12)

In the next section, we will find an exact solution to the above system in the
case when the interval [a, b] becomes (—oo, b]. Notice that we then have only one
boundary condition, namely F (b, i) = k;. Moreover, because A; is assumed to be
positive, we can write (if k; is finite) that

lim F(x,i) = oo. (13)

X—>—00

3. The one-barrier case

First, let us assume that Ay = A, = A >0, uy = up = u, 01 = 0 = o,
qo.1 = 402 = qo, vi = v2 = v and k1 = kp = 0. Then, we can write that

F(x,1) = F(x,2) := F(x), (14)

and we must solve the non-linear differential equation

’ 1b% ’ 2 1 2
0=A+uF (x)—i% [F'(x)] +§0' F”(x). (15)

In the one-barrier case, we have the boundary condition F(b) = 0, and we must
also have

lim F(x) = . (16)
X——00
Let )
qo 0
o= (17)
2
bO
and define
O(x) = e FW/e, (18)

We find that the function ®(x) satisfies the second-order linear differential equa-
tion

%azd)/’(x) + ud’(x) = 60(x), (19)
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where 1
0:==—, (20)
a
and is such that
Dd(b) = 1. (2D
Furthermore, we can write that
lim ®(x) =0. (22)
X——00

Remark 1 Equation (19) is the Kolmogorov backward equation satisfied by the
mathematical expectation
L(x) := e 10, (23)

where Ty(x) is the same as the random variable T (x) defined in (2), but for
the uncontrolled Wiener process {Xo(t),t > 0} with infinitesimal parameters u
and o>. Moreover, the conditions in (21) and (22) are the appropriate ones.
By uniqueness, we can assert that ®(x) = L(x). Therefore in this particular
problem, as mentioned in the Introduction, we are able to derive the optimal
control by computing a mathematical expectation for the uncontrolled process.
Notice that L(x) is the moment-generating function of the first-passage time Ty,
or the Laplace transform of its probability density function.

Proposition 1 In the one-barrier case considered above, the optimal control
u*(x) is given by the constant

{ B2 1/2
u'(x) =~ fu- W+212 (24)
0 q0

Proof. Using the fact that, when A4 > 0, the condition in (22) must be fulfilled,
we deduce from the general solution of Eq. (19) and the boundary condition
®(b) =1 that

1 1/2
D(x) = exp{—2 [ﬂ— (12 +2002)" ] (b—x)}, 25)
o
from which we easily obtain the optimal control. O

Remark 2 Notice that the optimal control does not depend on o. Hence, if only
the infinitesimal variance of the process is random in the optimal control problem,
and the various parameters (like A;) do not depend on i, we can conclude that

F(x,1) = F(x,2). (26)

This result can be generalized as follows.
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Proposition 2 Assume that A; > 0, fori = 1,2. Then, in the one-barrier case, we

have
F(x,i) =y(b—-x) + ki, 27)
fori = 1,2, where vy is the positive solution of the polynomial equation
1 1 1 A1 A4
—b(z){ + }y2+{ﬂ+&}y:—l+—2. (28)
2 vigo1 V2402 Vi 7 Vi 7
Furthermore, we must have
1 1 b?
ki —ky = —(—/11 +Hy + ——072)
Vi 2 qo,1
1 1 b
=—-— (—/12+,u27+——072)- (29)
v 2 qo2

Proof. These results are obtained by substituting the expressions for the functions
F(x,i) into the system (10), (11). Notice that the constant y must indeed be
positive, because the value function must be non-negative if k; > 0. O

From the above proposition, we can easily calculate the (constant) optimal
control u*(x,17) (see Eq. (9)):

iy =22 fori=1o. (30)

q0,i

Remark 3 In the case when 11 = 1, =1 >0, uy = up = 4, o1 = 03 = o,
qo.1 = 402 = qo, V1 = v2 = v and k| = ky = 0, one can check that we retrieve the
solution given in Proposition 1. Actually, in that case, we deduce from (29) that
we must have k1 — ky = 0.

In the next section, we will turn to the two-barrier case. We will present an
approximate solution that is very precise.

4. The two-barrier case
In the two-barrier case, the function F'(x,i) cannot be affine. Let
b2

=2 fori=12. (1)
2qo,

The system that we want to solve is
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1
0=+ F'(x, 1) = [F'(x,1)]* + SO ()

+ v [F(x,2) = F(x,1)], (32)

1
0=+ mF'(x,2) =2 [F'(x,2)]* + 5agF"(x, 2)
+ n [F(x,1) - F(x,2)]. (33)
We will try to find approximate solutions to the above system in the form of a

polynomial. We choose the values shown in the following table for the various
parameters in the system:

Parameter Value
Infinitesimal means up=pupy =0
Infinitesimal variances 012 =1and ag =4
Coefficient ¢? c?=1/2and 5 =2
Parameters v; and A; 1,fori =1,2
Final costs ki=k,=0
Interval [a, b] [—1,1]

The system (32), (33) reduces to

0=1 —% [F’(x,l)]2+ %F”(x, )+ F(x,2) = F(x, 1), (34)

0=1-2[F'(x, 2)]2 +2F"(x,2) + F(x,1) = F(x,2). (35)

We tried polynomials of degree 6 as approximations Fy,p(x, i) to the value
functions defined as follows:

Foppr(x,1) = ap + a1x + azx2 + a3x3 + asx* + a5x5 + a6x6, (36)

Fappr(%,2) = bo + b1x + bax? + byx® + byx* + bsx® + bex®. (37)
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Substituting these expressions into (34), (35), we obtain the following system of
non-linear equations for the constants (a;)o<i<6 and (b;)o<i<s:

az—ao+b0—%a%+l =0,
—ai +3a3+b1 —2ajay =0,
—a2+6a4+b2—2a§—3a1a3 =0,
—a3z+10as + bz —4ajas — 6 araz = 0,

—a4 + 15a¢ + by — gag —5ajas —8azas =0, (38)
—2bt+4by+ag—by+1=0,
—8b1by — b1 +12b3 + a; =0,

—12b1b3 —8b3 — by + 24 by + ar = 0,
—16b1b4—24b2b3 —b3 +40b5 + a3 = 0,
—20b1b5 —32byby — 18b§—b4+60b6+a4 =0.

We must add to the above system the following conditions that are deduced from
the boundary conditions F(—1,i) = F(1,i) =0, fori = 1,2:

ag+ay+ay+az+as+as+ag=0,
ao—a1+a2—a3+a4—a5+a6:0,
bo+ by + by + b3+ bsy + bs + bg =0,
bo—b1+b2—b3+b4—b5+b6:().

(39)

We can determine the coeflicients (a;)o<i<e and (b;)o<i<e by making use of a
MATLAB routine for non-linear systems. We find the following coefficients:

ao aq a) as ay as dg
0.613  0.000 -0.6767 0.000 0.095 -0.000 -0.0313

bo by by b3 by bs be
0.2897 0.000 -0.3308 -0.000 0.0509 0.000 -0.0097

Thus, the approximate solutions are given by
Fappr(x, 1) = 0.613 = 0.6767 x* + 0.095 x* — 0.0313 x° (40)

and
Fappr(x,2) = 0.2897 — 0.3308 x* + 0.0509 x* — 0.0097 x°. (41)

Notice that Fypp(x, 1) and Fappe(x, 2) are even functions.
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In Figure 1, we show these two approximate solutions, as well as solutions
obtained by using precise numerical methods. We see that our approximate solu-
tions are very close to the curves that correspond to precise numerical solutions.
These polynomial solutions are actually more precise than the ones computed in
Lefebvre and Moutassim [2] in the case when yu; = 1, up = -land oy = 0 = 1.
Although there is no guarantee that the polynomial solutions will always be re-
ally good, they lead to a suboptimal control that is very easy to compute and to
implement, which is important in practice.

07 T T T T T T T
Numerical solution for F(x,1)
Approximate solution for F(x,1)
Numerical solution for F(x,2)

0.6 Approximate solution for F(x,2)

0.5

0.4

0.3

0.2

0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 1: Approximate solutions and numerical solutions.

5. Concluding remarks

In this paper, we obtained exact and very precise approximate solutions to
LQG homing problems for a Wiener process having random infinitesimal param-
eters. This work complements the one presented in Lefebvre and Moutassim [2].

As mentioned in the Introduction, it is generally very difficult to solve ex-
plicitly LQG homing problems. Here, we were able to derive the exact solution
for a very important diffusion process, namely the Wiener process, in a more
complicated case.
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In theory, we could try to generalize the results presented in this paper by as-
suming that the state space of the Markov chain is the set {1, 2, . . ., k}. But having
two possible states is already an important improvement over the deterministic
case and is sufficient in many applications. For example, in financial mathematics,
there are random switches from a bull to a bear market (or vice versa).
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