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A robust model free controller for a class of SISO
nonaffine nonlinear systems:
Application to an electropneumatic actuator

AHSENE BOUBAKIR, SALIM LABIOD and FARES BOUDJEMA

This paper presents a robust model free controller (RMFC) for a class of uncertain
continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control sys-
tems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control
objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best
as possible this dynamic inversion controller. The proposed robust model free controller is an
equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s
theorem are used to analyze the stability of the overall closed-loop system. The performance
of the developped controller are verified experimentally in the position control of a pneumatic
actuator system.

Key words: dynamic inversion control, model free controller, nonaffine nonlinear systems,
singular perturbation theory

1. Introduction

The design of model free control for nonlinear dynamic systems is becoming
an increasingly important area of research in the automatic control field. Two
main reasons can be cited for this interest: The first is the difficulty of imple-
menting the most techniques stemming from model-based control theory and the
second is the limitations of classical PID controllers especially for high-order
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processes and unstable systems. The real-time application of the model-based
control schemes involves a good understanding of system dynamics and their
operational environment. However, it is difficult to establish a good dynamic
model of the conntrolled system and the knowledge of the different disturbances
that influence its behavior is usually a difficult task. We can qualify as model
free control any kind of control method which does not require the knowledge
of the model of the controlled system for its implementation, but just general
informations on the system are required, among other things class and order of
the system, its inputs and its outputs.

Because of its importance in the industrial control system, the model-free con-
trol techniques have been studied in several research works in recent years and
many control schemes have been proposed. Michel Fliess and his collaborators
have introduced a new model free control scheme [1,2] (so-called intelligent PID
or i-PID) based on a local nonphysical model and the use of an online numerical
differentiator. This method rests on an instantaneous identification, such that the
mathematical model describing the dynamics of the system in a large operating
range is replaced by a local model, valid on a very short time and updated step by
step. The i-PID controllers have been successfully applied to various processes,
such as shape memory alloys actuator [3], experimental greenhouses [4], glycemia
of type-1 diabetes [5], quadrotor UAV [6], Servo Systems [7], autonomous vehi-
cles [8] acute inflammation [9]. In the literature, model free control approaches
are developed based on fuzzy logic such as in [7, 10] and other approaches are
developed based on neural networks [11, 12]. In [13], the authors present two
model-free sliding mode control schemes with an experimental validation in the
position control of a twin rotor aerodynamic system. A model free control method
is proposed in [14], this control law combines ideas from event-triggered control,
optimal control and Q-learning theories. In [15], the authors suggest a model-
free steepest-descent iterative learning controller with an experimental validation
on real inverted elastic cantilever beam. A model-free optimal control scheme
is proposed in [16] for a class of systems with multiple delays in state, control
and output vectors based on adaptive dynamic programming which combines a
similar Q-learning method with a value iteration algorithm. In [17], a model-free
adaptive fractional order PID control is presented for a stable linear time-varying
systems based on the numerical optimization of a frequency-domain criterion.
Other model-free control schemes can be found in [18-21].

In this research work, a robust model free control strategy is developed for a
class of uncertain continuous SISO minimum-phase nonaffine-in-control systems
based on the singular perturbation theory and Tikhonov’s theorem [22-25]. The
idea of this approach is based on the estimation of an ideal dynamic inversion
control by choosing a suitable estimator with fast dynamics. Firstly, the implicit
function theory [25] will be used to prove the existence of such an ideal dynamic
inversion controller. Then, we design a fast approximator to estimate as best as
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possible this ideal dynamic inversion controller. Finally, we will show that the
designed fast approximator admits a robust model free controller realization.
Within this scheme, the singular perturbation theory and Tikhonov’s theorem are
used to study the stability of the closed-loop system, the tracking performances
and to show that when the dynamic of control law is chosen to be sufficiently
fast, the control signal approximates with effectiveness the ideal dynamic inver-
sion controller. The ability and the performances of the proposed robust model
free control are examined experimentally in the position control of a pneumatic
actuator system.

The main advantages of the proposed model free control scheme and the
contributions of the current work are listed as follows:

1. The control law is designed based directly on a general class of SISO non-
affine nonlinear systems with internal dynamics, under certain acceptable
assumptions. The proposed RMFC does not rely on a physical model of the
controlled system, assuming only the knowledge of the order and relative
degree. The stability of the overall closed-loop system is studied using the
perturbation theory and Tikhonov’s theorem.

2. The developped model free controller is an equivalent realization of the
designed fast approximator of an unknown dynamic inversion controller
that can achieve control objectives.

3. The proposed model free controller is an efficient and simple solution
for practitioners seeking a general method to control minimum phase,
nonaffine-in-control systems and it is really easy to implement.

The rest of the paper is organized as follows: The problem statement is
introduced in section 2. The design of the proposed RMFC and the stability
analysis of the overall closed-loop system are given in section 3. Section 4
discusses the real-time application of the presented control scheme and shows
the experimental results that demonstrate its performance. Finally, we present the
conclusion of this work in section 5.

2. Problem statement

The considered class of systems to be studied in this paper is an n-th order
SISO nonaffine-in-control system represented in the following normal form

X1 =X, X2=X3, ..., Xp-1=Xp,
xr = f(x9 Z9 u)$ (1)
2 =0(x,z,u),

y = X1,
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where x(0) = x¢ and z(0) = z for all (x,z,u) € Dy X D, X D, with D, C R",
D, c R""and D, c R are domains containing their respective origins. The over-
all state vector of the system (1) is [x7, z7]" where x = [y, y . .,y("l)]T eR’
and y is the system output, u is the control input, r is the relative degree of the
system,and f : D, XD, XD, - R,Q: D, XD, x D, — R"" are continuously
differentiable functions of their arguments.

The input-output form of (1) can be rewritten as the following

Y = f(x,zu), x(0) = xo,
z2=0(x,z,u), z2(0) = z¢.

The problem is to design a controller law u(¢) such that the output y(#) follows
a desired trajectory y,(f) while all signals in the closed-loop system remain
bounded. Throughout this paper we make the following assumptions regarding
the system (1) and the desired trajectory.

2)

Assumption 1 For the system (1), the function f,(x,z,u) = 0f/0u is nonzero
and bounded as 0 < 69 < |0f/du| < 61 for all (x,z,u) € Dy X D, X D, with d¢
and 61 are some positive constants. This implies that only knowledge required of
the system is the sign of the control effectiveness, sgn (0 f/du) € {—1,+1}.

Assumption 2 The desired trajectory y,(t), is a known bounded function as-
sumed to be r-times differentiable with bounded known derivatives.

Let us define the tracking error as e(t) = y;(t) — y(t), the desired state

T
vector by x4 = [yd, yél), .. .,yg_l)] € R’, the error vector as ¢ = x — x4 =
T
[el, eil), e eir_])] € R’ and the filtered tracking error o as follows
d r—1
o(t) = (E + /l) e1(), A1>0. 3)

Using (3), o(t) = O represents a linear differential equation whose solution
implies that the tracking error e;(f) converges to zero with a time constant
(r—1)/A. In addition, the derivatives of e (¢) up to the r — 1 order also converges
to zero [26]. Thus, the control objective becomes the design of a controller to keep
o (1) at zero, therefore, the original stabilizing problem of the (r)-dimensional
vector e, is reduced to that of keeping the scalar o (¢) at zero. Moreover, bounds
on o (¢) can be directly translated into bounds on the tracking error. Specifically,
if we have |o(1)| < ® where @ is a positive constant, we can conclude that [26]:

|e§i) (t)| <220+ D@ i = 0,...,r—1. These bounds can be reduced by increasing
the design parameter A.
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The time derivative of the filtered error (3) can be rewritten as

o=y + ol ™V 4+ Bré - fxz), )
| =D
thp =—" 0V  Jrii=1. . r—1.
with i = -t ! 4

From (2) and (4), we obtain the following dynamics

{f'f = yf[)(t) + ﬁr-1e§r'” +-+ Brey - f(x,z,u), o(0) = oy, 5)

z=0(x,z,u), z(0) = z0.
Let us denote fo(t,e,z,u) = y\' (1) + fro1el ™" + -+ Bré1 = f (e + xp, z,0),
then (5) can be rewritten as

(6)

o = fe(t e, z,u), o (0) = 09,
t=0(e+x,zu), z(0)=2z.
Based on implicit theorem [25,27], since d f/du # 0, there exists an ideal
dynamic inversion control u* for (6) which can be found by solving the following
equation with respect to u

fu(t, e, z,u) = —Kor — Ko tanh (81) . 7
0

where K > 0 and Ky > 0, gg is a small positive constant and tanh(-) is the

hyperbolic tangent function, which is a globally Lipschitz function. Consequently,

with the ideal dynamic inversion control «* and in light of (7), the dynamics (6)
becomes

& = —Ko - Ko tanh (5) o(0) = o,

£0 8)

z=0(e+x,,z,u"), z(0) = zp.

From the first equation in (8), it results that o () — 0 as ¢t — oo and, therefore,
all elements of the error vector e converge to zero as t — oo.

It is worth to point out that the implicit function theory only guarantees the
existence of an ideal dynamic inversion controller for the system (1). Moreover,
since the control input # does not appear linearly in (1) and the function f(x, z, u)
is unknown, the equation (7) cannot be solved explicitly for u. In fact, even if the
non-affine non-linear function f(x, z, u) is known exactly, it is not easy to find a
solution of (7). In the next section, we design a fast approximator to estimate as
best as possible the exact dynamic inversion controller solution of (7). Then, we
show that this fast approximator admits a robust model free controller realization.
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3. Robust Model Free Controller design

Based both on the approximate dynamic inversion control scheme and singular
perturbation theory, we will design a stable and robust model free controller for
the general class of nonaffine-in-control systems (1). In this scheme, the singular
perturbation theory and Tikhonov’s theorem will be used to show that when the
controller dynamic is chosen to be sufficiently fast, the control signal approximates
effectively the ideal dynamic inversion controller.

3.1. Fast Approximation of the Dynamic Inversion Control

The exact dynamic inversion solution of (7) will be approximated via the fast
dynamics given by

e =—a| fe(t,e,z,u) + Ko + Kptanh (z)), ©)
€0

0
where € is a positive controller design parameter and @ = sgn (8_f) Note that
u

the parameter € must be chosen sufficiently small to achieve closed-loop stability
and obtain the best approximation for the exact dynamic inversion solution of (7).

o
We denote F(t,0, z,u) = f.(t,e, z,u) + Ko + Kytanh (—), then we obtain the

£0
system X, as follows

(T:F(l‘,O‘,Z,u)—KO'—Kotanh(g), o(0) = o0y,

£0

Ze z=0(e+x,,z,u)), z(0) = zo, (10)
en=—-aF(t,o,zu), u(0) =ug.

The stability analysis of the overall dynamics (10), or the perturbed system
Y., using the singular perturbation theory and Tikhonov’s theorem will be the
topic of the next subsection.

3.2. Stability analysis of the overall closed-loop system

As we have explained previously, to achieve a good approximation of the
ideal dynamic inversion control, the positive controller design parameter € must
be chosen small enough, which makes the dynamics of the controller fast with
respect to the dynamics of o~ and z. The coexistence of fast and slow dynamics
in the overall dynamics (10) allows us to use the Tikhonov’s theorem to analyze
the tracking performance and stability in closed loop system. The Tikhonov’s
theorem was introduced in 1952 on systems of differential equations containing
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small parameters in the derivative and represents the main theorem of the singular
perturbation theory [25].

Consider the fast dynamics in (10), that of the controller: ei = —a F (t, o, z, u),
set € = 0 and solve the resulting algebraic equation

F(t,o,z,u) =0 (1)

with respect to u. Letu = h(t, o, z) be an isolated root of (11). In accordance with
the singular perturbations theory, the reduced system X is obtained by setting
€ = 0and u = h(t, 0, 7) in the first two equations of the system 2, in (10), which
leads to

o
ry=—-Ko — Kytanh | — |, 0) = oy,
So o o o tan (80) o(0) = o0y (12)
:=0(e+x,zh(to0,2), z2(0)=z.
t
Now, let us proceed to the change of variables © = u — h(t,0,z) and 7 = —.
£

The resulting system in the @} coordinates is called the boundary layer system X,
such that
dd
%y 47 = —eF (60,20 + h(t,0,2), 9(0) =ug—h(0.00,20).  (13)
.
Before proceeding, the following assumption on the system Z¢ in (10) is made
in order to establish stability.

Assumption 3 Consider the system Z¢ and let u = h(t, o, z) be an isolated root of
(11). Forall|t,o, z,u — h(t, 0, 2), €] € [0,0)X D, x D, X[0, €g] with D, C R"
and D, C R™ are domains containing their respective origins, we suppose that
the following conditions are met:

A. Onany compact subset of D . X D,, the functions f, Q and their first partial
derivatives with respect to (x, z,u) are continuous and bounded, the two

functions h(t,o, z) and a—(x, z,u) have bounded first partial derivatives
u

of of 0 0

with respect to their arguments, and —f, —f, —Q, —Q as functions of
ox 0z 0x 0z

(x(t), z, h(t, 0, 7)) are Lipschitz in o and z uniformly in t.

B. The origin is an exponentially stable equilibrium of the system
Z = Q (xr(t)a Z, h(t9 O’ Z)) .

The map (0,z) — Q (x(t), z, h(t,0, 2)) is continuously differentiable and
Lipschitz in (o, z) uniformly in t.
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0
C (t,o,z,v) — '8_f (x(1),z,v + h(t, o, z))‘ is bounded below by some posi-
u
tive nomber for all (t, o, z) € [0, 00) X D ..

At this stage, it is helpful to point out the equivalence between the vari-
ous variables and functions evoked in Tikhonov’s theorem [25, Theorem 11.2,
pp- 439-440] and those of the system X, in (10). This identification of variables
and functions simplifies the application of Tikhonov’s theorem for the system X,
and check the satisfaction of its three assumptions for this system. First of all,
we identify x, z, y, and A(¢, x) in Theorem 11.2 [25], denoted here by xj, zs,
vs, and Ay (t, x;) repectively for distinction, with quantities of the system X, by

T
X5 ~ [O'T, ZT] , 25 ~ U, s ~ ¢ and hy (t, x5) ~ h(t, o, 7). We identify also the

functions f and g of Theorem 11.2 in [25], denoted here by f; and g, with those
of the system X, as the following
T
fSN[F(I,U,Z,u)—KO'—K()tanh(z), Q(E"‘Xr,z,]’l(t,O',Z)) , 14
P0) ( )
gs ~—aF(t,o,z,u).

The following remark will help us to analyze and discuss the stability of the
system X.:

Remark 1 For the functions introduced in (14), it is clear that to obtain f, and
gs continuous and bounded for any compact subset of D, X D, requires that f,

0, x4 and yg) be continuous and bounded for any compact subset of Dyx; X D,
Moreover, the condition on the continuity and boundedness of the first partial
derivatives of fs and gs with respect to (x, zs, €) is fulfilled when the first partial
derivatives f and Q with respect to (x, z,u) be continuous and bounded. The
condition that the first partial derivative of g5 with respect to t, corresponds in
the system (10) to the first partial derivative of —aF (t, o, z, u) with respect to t,

(r+1)

p to be continuous and bounded. Similarly, to have

885 (t9 xS9 Zsa 0)
0Zs

bounded requires the boundedness of the first partial derivatives of

requires that —f and y
0x

the first partial derivatives of with respect to its arguments be

0f(x,z,u)

ou
with respect to its arguments and the boundedness of y;r). The requirement on the
first partial derivatives of hy (t, x;) with respect to its arguments to be bounded
is satisfied if h(t, o, z) fulfills the same condition.

Remark 2 The first part of Assumption 3, i.e. Assumption 3.A, summarizes in
fact the conventional regularity assumptions on the system dynamics. More pre-
cisely, this assumption is required to guarantee the existence and uniqueness of
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solutions of differential equations involved in the control design. Assumption 3.B
is introduced to guarantee that the controlled system (1) is minimum phase and,
then, the dynamic inversion problem is well defined. Assumption 3.C represents
the controllability assumption for the system (1), the control effectiveness of this
later is assumed to be bounded away from zero.

Now, we can give the following theorem about the stability and performance
of the system X, in (10):

Theorem 1 Consider the system X in (10), the reduced system X given by (12)
and the boundary layer system X, introduced in (13), and let u = h(t, o, z) be
an isolated root of (11). We suppose that Assumptions 1-3 are satisfied for all
[t,0,z,u — h(t,0,2),g] € [0,00)X D . XD, X[0, €0l for some domains D, C R"
and D, C R™ containing their respective origins. Moreover, let Q, be a compact
subset of R,, where R, C D, denotes the region of attraction of the autonomous

system

dv

- = _QF (0’ g, 20,V + h (0’ go, ZO)) .

dr
Then, for each compact subset Q,, C D, ., there exists a positive constant €
and a T > 0 such that for all t > 0, (00, 20) € Q;, uo — h (0,00, 20) € Q,
and 0 < € < €y, the system X has a unique solution o (t, €), z(t, €), u(t,€) on

[0, 00) and

o(t,e) —o(t) = o(e),
z(t, €) — 7y () = o(e),
u(t,e) — h(t,o,z,(t)) = o(e)

hold uniformly fort € [0, 00), where & (t) and z, denote the solution of the reduced
system Xo. Furthermore, there exists T < oo such that the output tracking error
converges to a small neighborhood of the origin.

Proof. For the purpose of proving the previous theorem, we follow a procedure
similar to the proofs of Theorem 2 in [28]. Therefore, we need to verify that the
three assumptions of Tikhonov’s theorem [25, Theorem 11.2, pp. 439—440] are
satisfied for the system X.. Firstly, in the light of remark 1 and taking into account
Assumptions 1, 2 and 3.A, it is clair that the first assumption of Tikhonov’s
theorem holds.

In the following, we will demonstrate that the second assumption of
Tikhonov’s theorem is fulfilled. Thus, we need to show that the origine of the
reduced system X in (12) is exponentially stable. To this end, we follow a proce-
dure similar to the proofs of Lemma 4.7 in [25, pp. 180] and Theorem 4 in [29].
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For the reduced system Xy, we have o = 0 is an exponentially stable equilibrium
point, and its solution o (¢) fulfills for all ¢ > ¢¢

lo (D] < ko |o (t0)| exp (=Aq (1 = 10)), (15)

with 79 > 0 is the initial time, k, and A, are some positive constants.
On the other hand, Assumption 3.B, i.e. the unforced system 7 =
QO (x,(1),z,h(1,0, z)) has 0 as en exponentially stable equilibrium point, implies
that the system
z=0(e+x,2h(t 0,2))

with o as input, is input-to-state exponentially stable, see the proof of Lemma 4.6
in [25, pp. 176], and its solution z(¢) satisfies for all ¢t > « > tg

Izl < kz llz()llexp (=4t = ) + sup c [lo (DI, (16)

K<<t

where k;, 4, and ¢, are some positive constants. Furthermore, using (15) and
(16), we obtain

forallt >ty >0

IXez (DIl < koz 1xg2 (t0) I Xp (= Aez (£ = 10)) , (17)

T 1
where x,, = [O'T, ZT] is the composite state, A,, = Emin{/lm A;} and

ko = (1 +¢;) ko + cihkok; + k% (see details in Appendix). So, we conclude
that x,, = (0,0) is an exponentially stable equilibrium point of the reduced
system X.

From a converse Lyaounov theorem, there exists a Lyapunov function
V:[0,0) X Dy, — [0, c0) that satisfies

2 2
crllxXecll” <V (5 x02) < c2llxoc|l”,

ov. oV =

where
K Ky tanh l
~ -Ko - —
F (t,xs;) = ’ &0 R’

0 (e+ xp,z,h(t,o,2))

which implies that the Lyapunov function condition mentioned in the second
assumption of Tikhonov’s theorem is fulfilled with W (r) = ¢ 712, Wa(r) =
1) ||r||2, and W3(r) = c3 ||r||2. Moreover, by choosing ¢ sufficiently small, the
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set {x(rZ € Dy | Wi (x4;) =1 llxol1? < c} can be made compact. Hence, from

the previous analysis, satisfaction of assumption 3.B implies satisfaction of the

second assumption of Tikhonov’s theorem [25, Theorem 11.2, pp. 439—440].
Now, we interest to prove satisfaction of the third assumption of Thikhonov’s

v
theorem, i.e. the origin of — = —aF (t,0,z,v + h(t,0,z7)) is exponentially

stable. We have u = h(t, o, z)Tis the solution of F(t,0,z,u) = 0, this implies
that v = 0 is an equilibrium point of the boundary layer system (13). Let us
denote g(t,v) = —aF (et,0(€71),z(eT),v + h (e1,0(€7), z(€7))), with o (eT)
and z(et) viewed as the exogenous time-varying signals, then the linear system

Voo v
corresponds to the boundary layer system o g(t,v) can be written as o

T T
A(7)V, such that

.
A(r) = f(m)

_ ‘8_]‘ (x(€7), z(€T),v + h (eT, o (€7), z(€T)))| .
0 ou

y=

From the preceding, and using Assumption 3.A, we conclude that, for all
(1,x,z) € [0,00) X D, X D, the origin is an exponentially stable equilibrium
point of the linear system, which translates directly, based on the theorem 4.13
in [25], to exponential stability of the origin of the boundary layer system (13).

Finally, from the previous analysis, we conclude that all assumptions of
Tikhonov’s theorem are fulfilled, and so it follows that for each compact set
Q. ; given by

Qp.: C {Xo: € Do c| W2 (x02) = 2 150> < pe, 0 < p < 1}

with ¢ is selected above, there exists a positive constant €* such that for all
t >0, (00,20) € Qs> up — h(0,00,20) € Qy, and € € (0, €*), the system
(10) has a unique solution o (t, €), z(t, €), u(t, €) on [0, 00), such that o (¢, €) —
o(t) =o0(e), z(t,€) —z,(t) = o(€),u(t,e)—h (t,o, z,(t)) = o(€), hold uniformly
for t € [0, 00), where o (¢) is the solution of exponentially stable system o =

—Ko — Ky tanh g , 0(0) = 0. Clearly that for any € > 0, there exists T < oo
&0

such that the solution & (¢), the solution of the exponentially stable system ¢ =

—Ko - Kotanh [ |, 0-(0) = o, fulfils &(¢) < e for all > T. In addition, it
€0

follows that there exists a small bound ®(€) such that o (t,€) < ®(¢) fort > T .
Hence, the tracking errors converge to residual sets as:|e(’) (t)| < 2020+ Dd(e),
i=0,...,r — 1. This completes the proof. O
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3.3. Equivalent Robust Model Free Controller

Corollary 1 For every approximate dynamic inversion controller (7), there exists
a model free controller realization in the following form

u = —% o (t) + f (KO'(T) + Ko tanh (%T))) dr+0(0)|+uo,  (18)
0

0

where ug = u(0).

Proof. Substituting the equation (7) into (9), we obtain

€l = —a (o'-+Ko-+K0tanh(£)). (19)
€0
Integrating both sides of (19) and dividing by € >, we get (18). O

Remark 3 The proposed model free controller (18) may exhibit a peaking phe-
nomenon, in which the control input peaks to an extremely large value during
the transient stage. This undesirable problem can be eliminated by saturating the
control input u outside a compact region of interest in order to create a buffer
that protects the system from peaking [25, 30, 31].

4. Experimental validation of the proposed controller

4.1. Electropneumatic actuator description

The robust model free controller presented in this paper was examined through
real-time experimental study on position control for a pneumatic system [32,33].
This latter is composed of two antagonist actuators controlled by two servodis-
tributors, as displayed in Fig. 1. The actuator considered by the control is named
main actuator, it contains two chambers denoted P (as “positive” — the left hand
side chamber) and N (as “negative” — the right hand side chamber). The second
actuator is named perturbation actuator, it is mechanically connected to the main
actuator and used to produce an external force acting as an unknown perturba-
tion. For the main actuator, two three-way servodistributors modulate the air mass
flow rates g, entering in the chambers P and N. The pneumatic jack horizontally
moves a load carriage of mass M.

The complete model of this electropneumatic experimental set-up (as detailed
in [32,33]) is derived based on three physical laws [33]: the mass flow rate under
a restriction, the pressure behavior in a chamber with variable volume and the
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Figure 1: Description scheme of the electropneumatic system (top) and photo of
the used pneumatic experimental set-up located at LS2N (bottom).

fundamental mechanical equation. The resulting dynamic model of the main
actuator reads as a nonaffine nonlinear system [32,33]

y=v,

P = (S (P = pa) by = Fax),

. kr()T S
Pr=v.0) (qm( DPp) — roTpPV)’

. kroT S

Py = VN(y) (Qm (—M,pN) + rO_TPNV),

(20)

where Vp(y) = Vo + S X y and Vy(y) = Vp — S X y with Vj is the half-cylinder
volume, S denotes the piston surface, y and v being the position and velocity of the
actuator (the piston), p, (reps. p, ) denote the pressure in P (resp. N) chamber, u
the input voltage defined as |u| < 10V, k is the polytropic constant, T’ the chamber
temperature, r is the perfect gas constant, b, is the viscous friction coefficient,
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and F. represents the external force generated by the “perturbation” actuator.
In the mathematical model (20), the two first equations represent the pressure
dynamics in the chambers whereas the motion of the actuator is governed by the
two last equations.

To establish the state representation of (20), let us denote x = [x, X2, ]! =

[v, v, 5]” and z = [z1, 2] = 12 pN]T. From (20), the dynamic model of the
controlled actuator reads as the following nonaffine nonlinear system

X1 =X, X2 =x3,

X3 = f(x, z,u),

Z. = Q(‘x’ Z’ u)?

y =X,

1)

where the nonlinears functions f'(x, z, #) and Q(x, z, u) in (21) are given as follows

Fr o) = SkroT (qm(u,m)_qm(—u, Zz)) kS ( a v )x
CUT M\ Vet W) )M Ve W) T (o
1 .
- M (bvx2 + Fext) ’
[ kroT S kroT S r
O(x,z,u) = [W(Qm(u,m)—ro—Tlez), W(Qm(—u, Zz)+rO—TZzX2)] . (23)

Consequently, the input-output representation of (21) reads as

{y(3) = f(x, z,u),

24
z2=0(x,z,u) @4

which is in the general input-output form given by (2) with the relative degree
r = 3 in this case.

Remark 4 The mass flow rates g, (u, p,) and g (—u, p,, ) play a key role in the
dynamics of the controlled actuator. The knowledge of these quantities is not an
easy task, in fact, their experimental identification is the main challenge of the
dynamic model (21) and often needs to be done again when the servodistributors
are changed. In literature, as a solution for the control design, the mass flow rates
is experimentally identified by an affine model as follows [32, 34]: qm (u, p,) =
¢p + Ypu and gy (—u,py) = on — Ynu with ¢j > 0 and yj > 0, j € (P,N),
fifth-order polynomials with respect to p;. It is important to point out that, within
this control scheme, the experimental identification of these unknown quantities
is not needed both in control design and implementation phases.
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Remark 5 Since the mass flow rates g, (u,p,) and g (—u,p, ) are unknown
quantities, it is not possible to check that the Assumption 1 is fulfilled for the
system (21). For this reason, we just assume that f,(x,z,u) is strictly pos-
itive and bounded without proving it. Nevertheless, it is worthwhile to no-
tice that using the experimental identification, it results that f,(x,z,u) =
SkroT ( Yp N YN

M \Vp(y) Vn(y)
this choice.

) > 0 and bounded, then the Assumption 1 holds with

4.2. Experimental results and comparative study

To validate the robust model free controller introduced in the previous section,
experimental tests were conducted on the experimental set-up located at LS2N’s
laboratory (Nantes, France), equipped with a dSpace DS1104 controller board
on which the designed robust model free control law is implemented. For this
experimental study, the control objective is to drive the piston position y to
follow a desired reference y;(f) = 50sin(0.27¢) mm, in spite of the presence
of perturbation forces. The implemented contol law was selected in the form of

d 2
(18) and the filtered tracking error o as o (t) = (— + /1) e1(t) where e;(t) =

dt
ya(t) = y(@).

The designed robust model free controller is implemented with sampling
time set to 7y = 0.001 s and the design parameters are chosen as follows: 4 = 2,
€=0.01,K =0.5, Ky =1, & = 0.1 and ug = 0. The robustness of the proposed
controller was tested by applying an external force produced by the perturbation
actuator and it is illustrated in Fig. 2.

Robust Model Free Position Controller

i
! Dspace 1104

Controller

—=—

Perturbation actuator

Pneumatic Actuator System

Figure 2: Proposed observer-based linear adaptive controller applied
to the pneumatic actuator system.
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The experiment results are shown in Figs 3—8. The plots of the piston position
y and the reference trajectory y, are reported in Fig. 3 and the resulting error
curve e = yg — y is displayed in Fig. 5. It appears from these figures that the
piston position tracks the reference trajectories satisfactorily. In addition, Fig. 4
indicates that the control input u applied to the main actuator is bounded in spite
of the effects of the external force and the measurement noise, which confirms
the good tracking performance and the robustness of the controller. The pressures
p, and p,, in the two chambers are bounded during the control process, as it is
illustrated in Fig. 7 and 8.

601 v |1
===Ya

a0

201

: (mm)
w: (V)

y and yq

0 5 10 15 rl-h“:?“(so(,) 25 30 35 40 0 5 10 15 ']‘i]"iﬂ(h‘(\(:) 25 30 35 40
Figure 3: Actual position y (solid line) and  Figure 4: Control input u(V) versus time
its reference y,4(¢) (dotted line) (mm) ver-  (sec).
sus time (sec).

800

e=ya—y: (mm)
Fou () : (N)

|

0 5 10 15 20 25 30 35 40 - 0 5 10 15 20 25 30 35 40
Time (sec) Time (sec)

Figure 5: Tracking position error (mm) ver-  Figure 6: Perturbation force Fex (V) versus

sus time (sec). time (sec).

To further evaluate the performances of the proposed controller, an experimen-
tal comparative study of the robust model free controller against two conventional
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Figure 7: Pressure in chamber P (bar) ver- Figure 8: Pressure in chamber N (bar) ver-

sus time (sec). sus time (sec).

controllers PID and PI has been conducted under the same conditions. We used
the two PI and PID controllers that give the best performances in terms of desired
trajectory tracking, their gains were obtained by trial and error method. We im-
plemented the PID controller with the parameters K, = 250, K; = 45, K; = 20
and the PI controller with K, = 250, K; = 50. The time evolution of the piston
position with the PI controller is illustrated in Fig. 9 and that of the PID controller
is shown in Fig. 10. The performances of the three implemented controllers are
analyzed and compared based on the characteristics of the resulting position
tracking error e in the time interval ¢ € [5 s, 35 s]. The average of the absolute
value of the position tracking error e over the duration of the test, the range of e
and its standard deviation are reported in Table 1. The obtained results in Table 1

Time (sec) Time (sec)

Figure 9: Comparative study with a Pl con- Figure 10: Comparative study with a PID
troller. controller.
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and the Figs 9 and 10 show the superiority of the developped RMFC controller
with respect to both controllers PID and PI, especially in terms of disturbance
rejection and robustness against the effect of the external force produced by the
disturbance actuator.

Table 1: Comparisons of the tracking error e1(t) = yq(¢) — y(¢) for the desired trajectory
Vq(t) = 505sin(0.27r¢) mm.

Control method Avg (abs(ey)) Range of e; StandarO(} (iewatlon
1
Robust model free controller | 2.60 x 107* | (=14, 17) x 107* 3.38 x 107
PI Controller 35x 107 | (117, 64) x 10~ 39x 1074
PID Controller 30x 107* | (=75, 74) x 1073 35%x 1074

The presented experiment results in this subsection demonstrate the effective-
ness and feasibility of the proposed robust model free controller.

5. Conclusion

A robust model free controller is proposed in this paper for a class of SISO
minimum-phase nonaffine-in-control systems. The presented controller is derived
from a fast approximator of an unknown dynamic inversion controller. Within this
scheme, the singular perturbation theory and Tikhonov’s theorem are used to
analyze the stability in the closed-loop system. The ability and the performances
of the presented robust model free controller have been experimentally examined
in the position control of a pneumatic actuator system. The introduced control
approach proposes an efficient and simple solution for practitioners seeking a
general method to control minimum phase, nonaffine-in-control systems.

Appendix

In this appendix, we explain how to obtain the inequality (17) which shows
that the origin of the reduced system X is exponentially stable. By substitution

t+t
= ( 0) into (16), the solution z(¢) can be written as

K

Izl < k-

Z (f ‘;lo)H exp (—M) + sup c:lo()]. (25)

2 1+,
ot
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t+t t+1t
To estimate ||z ( 3 0) in (25), we substitute k = ¢ and replace ¢ by % in
(16) to obtain
t+1o A, (t —1tg)
e (552 < ke iz cortrexs (‘ZT v oswp @l 26)
o< <L
From (15), we can deduce the following inequalities
sup ¢z |0 (Q)| < czkg o (20)l, (27)
toé(é%
Ao (t —tg)
sup ¢, |o (O] < ciko o (to)] exp (—UT) - (28)

1+
oLt

T
Now, let us define x,, = [O'T, ZT] as the composite state. Using (25), we can
write

lxoz (DI < lo (D] + [|z(@)]]
Z (t ZIO)HeXp(—M) + sup c;|o(Q)]. (29)

2 1+
oLt

< oD+ k;

Substitution of (15) and (28) into (29), and using the fact that exp (—|a|) <

exp (—%) for all a € R, we obtain

A (t —19)
lxoz (D] < (1 + CZ) ks o (9)| exp (_TO)
(30)
ko5
xp | ———m—=
z || > P >
using the inequality (26), we have
Ag (1 —19)
e Ol < (14 ¢) ko [0 (10)| exp(_fTTO)
Az (1=to) A, (t—tp)
+ k, eXp(_ z > 0 ) sup ¢; |lo(0)| + k, ”Z(tO)”eXp(_ZTO)
1<
and from (27) we find the following inequality
Ag (1 — 1)
o=@l < (1+ ¢2) ko llor (o)l exp (—UTO)
Aq (1 = 10) A (t — 1)
+ekokelo oo (—TO) + K21z (o)l exp (__z — )
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1
Choose A, = 5 min {A,, 1.}, and using the facts that | (¢9)| < ||xs; (f0)]| and
Iz (o)l < |lxo; (t0)]|, we obtain finally (17).
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