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Stability of discrete-time fractional linear systems
with delays

ANDRZEJ RUSZEWSKI

The stability analysis for discrete-time fractional linear systems with delays is presented.
The state-space model with a time shift in the difference is considered. Necessary and sufficient
conditions for practical stability and for asymptotic stability have been established. The systems
with only one matrix occurring in the state equation at a delayed moment have been also
considered. In this case analytical conditions for asymptotic stability have been given. Moreover
parametric descriptions of the boundary of practical stability and asymptotic stability regions
have been presented.
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1. Introduction

Integral and differential operators of noninteger order (fractional calculus)
are used in many fields of science and engineering such as control systems, me-
chanics, chemistry, biology, electrical engineering and signal processing. Physical
phenomena are often modelled by noninteger order differential or difference equa-
tions. Many books and articles present the state of the art of fractional modelling
and applications, e.g. [1, 6, 8, 10, 11, 15, 16, 20, 23].

One of the most important issues in the theory of dynamical systems is the
stability of dynamical model. The state-space model is very common. The model
with a time shift in the difference is the most well-known in the case of discrete-
time systems. The stability problem of such a model with Griinwald-Letnikov-
type fractional-order difference has already been considered. The asymptotic
stability conditions and the stability domains have been presented in [4, 5, 14,

Copyright © 2019. The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 3.0 https://creativecommons.org/licenses/by-nc-
nd/3.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the
use is non-commercial, and no modifications or adaptations are made

A. Ruszewski is with Bialystok University of Technology, Faculty of Electrical Engineering,
Wiejska 45D, 15-351 Bialystok, Poland. E-mail: a.ruszewski @pb.edu.pl

This work was supported by National Science Centre in Poland under work No. 2017/27/B/ST7/02443.

Received 14.03.2019. Revised 2.09.2019.



www.czasopisma.pan.pl P N www.journals.pan.pl
S
<

550 A. RUSZEWSKI

21, 22]. Moreover the so-called practical stability for a given length of practical
implementation has been also analysed, e.g. [3, 7]. The stability testing of this
model with state delays is less advanced. The necessary conditions for asymptotic
stability have been given for scalar case in [2, 17-19] for the case with pure delay,
one delay, two delays and multiple delays, respectively. The practical stability
has been also considered in [2, 17-19]. The practical stability problem for the
discrete-time fractional model of one dimensional heat transfer process has been
presented in [13].

The discrete-time fractional order state-space model without a time shift in
the difference has been introduced in [9]. The stability analysis of this model
with delays and Griinwald-Letnikov-type fractional-order difference has been
considered in [12], where the sufficient condition for asymptotic stability of this
system with delays has been established. The problem of the practical stability
has not been studied in [12].

In this paper the stability of fractional-order discrete-time system with delays
(model with a time shift in the difference) will be investigated. New necessary
and sufficient conditions for the asymptotic stability and the practical stability
will be proposed.

2. Problem formulation

There are several definitions of fractional-order differential operator. The most
popular are given by Riemann and Liouville, Caputo, and Griinwald and Letnikov.
In this paper the Griinwald-Letnikov fractional order backward difference is used.

Definition 1 /8, 15] The Griinwald-Letnikov fractional-order backward differ-
ence with fractional order a € R and step h > 0 is given as

k
A%x(kh) = h™® Z(;(—l)i (‘f) x((k=idh), k=01,..., (1)
where
. 1 Jor i =0,
. = — -7 2
(l) {a(a 1)..i.‘(oz i+1) for =1 ()

Dynamical systems can be modeled by the state-space representation. There
are state-space models with and without a time shift in the difference for nonin-
teger order. In this paper the model with a time shift is used. This model is more
popular.
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Let us consider the fractional discrete-time linear system with multiple delays
described by the homogeneous state equation

q
Ax((k + 1)h) = Agx(kh) + Z Ay x((k —r)h), k=0,1,..., (3
r=1
with the initial condition x(-r) € R" (r = 0,1,...,¢q), where g is positive
number, x(k) € R" is the state vector, « is the fractional order @ € (0, 1),
A, € R™" (r =0,1,...,q) are matrices.

If A%x(kh) appears instead of Ax((k + 1)h) on the left side of equation (3),
then we get the state-space model without a time shift in the difference considered
in [12].

Using fractional difference (1), equation (3) can be written in the following
form

q
x((k+1)h) = (h*Ap + Ia) x(kh) + h* Z Ax((k—=r)h)
r=1
“4)

ci(@)x((k =i)h),
1

k
+

1

where
ci(@) = (=1 (l.fl) (5)

and I € R™" is the identity matrix.
The sequence of coeflicients (5) can be calculated by the following recursive

formula [3]
i+1-a .
Ci+1(a) :Ci(a).—’ 1= 1’27"'7 (6)
i+2

where ¢ (a) = 0.5a(1 — a).

Note that coeflicients (5) are positive for @ € (0, 1) and quickly decrease for
increasing i. Therefore, in equation (4) we can limit upper bound of summation by
the natural number L, which is called the length of the practical implementation
[7]. Thus, equation (4) can be written in the form

q
x((k+1)h) = (h*Ap + Ia) x(kh) + h* Z Ax((k—=r)h)
r=1
(7)

ci(@)x((k=1i)h).
1

L
+

1

Equation (7) is called the practical realization of fractional system (3).
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The definition of practical stability for fractional discrete-time systems has
been introduced in [7]. With respect to equations (3) and (7) we have the following
definition.

Definition 2 The fractional system (3) is called practically stable for given length
L of practical implementation if system (7) is asymptotically stable.

If system (7) is asymptotically stable for L — oo then fractional system (3) is
called asymptotically stable.

Theorem 1 The fractional system (3) with given length L of practical implemen-
tation is practically stable if and only if all roots of characteristic equation

q
det {Iz = (h"Ag+1a) = h" Y Az Z Ici(a)z } = (8)

r=1
are strictly inside the unit circle.

Proof. Taking the Z-transform to both side of (4) for initial conditions x(0) # 0
and x(-r) =0forr =1,...,q, yields

2X(2)=2x(0) = (h"Ag + Ia) X (2) +h° ZArz_’X(z)wLch(a)z X2, 9
r=1 i=1

where X (z) = Z{x(kh)}. Solving equation (9) for X (z) we obtain

-1
X(z) = (Iz — (h*Ap + Ia) — h® Z Az Z Ici(a)z ) zx(0), (10)

r=1

which leads to the characteristic equation (8). O

The main aim of this paper is to give new necessary and sufficient conditions
for practical stability and for asymptotic stability of fractional system (3) with
Griinwald-Letnikov fractional difference (1).

3. Solution of the problem

3.1. Asymptotic stability

Firstly, we will analyse system (7) with L — oo to formulate asymptotic
stability conditions of system (3).
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Theorem 2 The fractional system (3) is asymptotically stable if and only if all
roots of characteristic equation

q
det{z(l—z—l)a —h"ZA,z"} =0 (11)

r=0
are strictly inside the unit circle.

Proof. Taking into account the following formula [4]

oo

Z @z =z—a—-(z-1)%%'" (12)

i=1

in (8) for L — oo we obtain (11). O

The asymptotic stability of system (3) in the scalar case has been considered
in the papers [2, 17-19] for the case with pure delay, one delay, two delays and
multiple delays, respectively. The necessary conditions for asymptotic stability
have been given. The condition in Theorem 2 is the general condition (necessary
and sufficient). However, the stability analysis using Theorem 2 will be presented
on the example of a scalar system with two delays.

Example 1 Let us consider system (3) in the scalar case fora = 0.5,g =2, h =1
and Ay = ag, A| = a1, A>» = a, described by the equation

A x(k +1) = agx(k) + a1x(k = 1) + axx(k = 2), (13)

with initial conditions x(0) = 1 and x(-2) = x(-1) = 0.

In the example, the influence of the parameters values on the stability will
be presented. Example values for three cases of system: asymptotically stable,
limit of stability and unstable, are shown in Table 1. The roots of equation (11)
are obtained by using Mathcad software. The solution of system (4) for values in
Table 1 are also calculated. Plots with example values are shown in Figs. 1-3. This
confirms that system (3) is asymptotically stable when all roots of characteristic
equation (11) are strictly inside the unit circle, i.e. the condition |z| < 1 holds.

Next, we will consider system (3) involving only one matrix A, occurring in
the state equation at a delayed moment, i.e. A, = Oforr # gand A, = A, # 0
for r = g. Then, equation (3) has the form

A*((k+Dh) = Ay((k—q@)h),  k=01,..., qg=12.... (14)

Note that if we put ¢ = 0 in (14) we obtain the system without delay.
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Table 1: Stability analysis for system (13).
Syt Coeflicient values Root Modulus
stem oots
4 Ao=ag | A1 =a; |A =ay of roots
05 _02 _04 z = —0.6807 . |z] = 0.6807
7z =0.3154+0.6625 | |z| = 0.7337
. z =-0.6352 |z] = 0.6352
toticall -0.5 -0.3 -0.4
asyn;fa&:a Y 2 =0.294540.7027 | |z| = 0.7619
05 02 038 z = —-0.8862 |z] = 0.8862
' ' ' z=0.4267+/0.8197 | |z| = 0.9241
z=-1 lz| =1
-1.21425| -0.2 -04
7z =0.1248+0.5988 | |z| =0.6117
o z=-0.3784 |z] = 0.3784
limit -0.5 |-0.97305| -0.4
1m1. . 7 =0.1738+;0.9848 | |z] =1
of stability 09657 2= 0.9657
z =-0. z| = 0.
-0.5 -0.2 |-1.0118
7 =0.469+;0.8832 | |z] =1
z=-1.19 |z] = 1.19
-1.5 -0.2 -0.4
7z =0.07863+;0.5567 | |z| = 0.5622
z=-0.2631 |z] = 0.2631
-0.5 -1.5 -04
unstable z=0.1194+;1.2 |z] = 1.206
05 _02 _11 z= —0.9954. |z] = 0.9954
7z =0.4846+;0.9072 | |z] = 1.029
1
0.6
04
=
=
20 20 20 50
k

Figure 1: Solution of system (4) fora = 0.5, ¢ =2, h =1, Ag = ap = —0.5,
A =a; =-0.2, A, = ap = —0.4 (asymptotically stable case).
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Figure 2: Solution of system (4) fora = 0.5,g =2,h =1, Ag = ap = —1.21425,
Ay =a; =-0.2, Ay = ap = —0.4 (limit of stability case).

5000

4000

3000

2000

1000+

x(k)

0 ~

-1000

-2000 -

-3000

-4000
0
k

Figure 3: Solution of system (4) fora =0.5,¢g =2, h =1, Ag = ay = —1.5,
Ay =a; =-0.2, Ay = a = —0.4 (unstable case).

Theorem 3 The fractional system (14) is asymptotically stable if and only if all
roots of characteristic equation

det{%(!—z_l)azq—f\q} -0 (15)

are strictly inside the unit circle.
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Proof. The proof directly follows from Theorem 2 for the assumption A, = 0 for
r#qgand A, = A, # Oforr = gq. O

Theorem 4 The fractional system (14) is asymptotically stable if and only if

arg A; €

a%,br—ag] Al <Iwil, i=L2...n (16)

where arg A; and |A;| are the main argument and modulus, respectively, of the
i-th eigenvalue A; of the matrix A, and

2. 2argd; —an|\” F 2 € [0.7]
= |sin —=——— or arg A; € [0, 7],
n " 202q+2 - a) &
M= 00 daa +4gr|\“ (n
_ 2arg A; —am +4qn
— A; € ,2T).
(h ‘sm 20q+2-a) ) for arg (m, 2m)

Proof. We will present that if conditions (16) and (17) hold then all roots of the
equation (15) are inside the unit circle. If z € C and @ € (0, 1) than we have

7% = |Z|ae](zgp+]2l7r’ (18)

where |z| is modulus, ¢ = arg z € [0, 2] is the principal argument and [ € Z.
Let z N
_ -1
w—ﬁ(l—z ) z4. (19)
In the polar form for unit circle we have |z| = 1 and z = ¢/%. Then, for (1 —z71)?
we obtain

arg (1 - Z_l)a = a/arctanljncl—os(p = @ arctan (tan (g - %)) = afﬂ ; L
and
o a « QO o

|1 - Z_1| = (\/(1 —cos ¢)? + sin® cp) = (\/2(1 — cos go)) = (2 sini ) )

Hence ,
w = |w|e/ 8", (20)
2 ¢ -

where |w| = (ﬁ sin%) andargw = p+a (’0+q<p+217r.

Note that since 0 < ¢ < 27 and

argw:(q+1—%)<p+a%+2l7r (21)
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we have . N . .
—<|g+1-=)p+a=-<2 +1)-a=. 22
X <(g+1-5)¢+al <2mg+ 1=l 22)
Then, for the principal argument of w we have
T n
—<ar <2r—a—. 23
a > W T—a > (23)
Since for all eigenvalues 4;,i = 1, ..., n, the principal argument of A; should be

equal to the principal argument of w; then we obtain the first condition of (16).
From (21) we have
¢ 2argw—an—4ilx

27 2Q2q+2-a) )

Since ¢ < 2m, we obtain argw < 2(q + D) + (1 — a)z. Then, for argw < 2 it
should be / = —q. Therefore, from (24) if argw € [0, 7] we obtain

¢ 2argw-—an

r_z=e” =7 25
2 2Qqg+2-a) 25)
and if argw € (m, 27)
£:2argw—aﬂ+4qﬂ- 26)
2 22 +2-a)
2 a
Taking (25) and (26) into formula |w| = (E sing‘ for argw; = argd; we

obtain (17). Note that all roots of the equation (15) are inside the unit circle if
|Ai| < |w;| and conditions of (16) hold. Accordingly Theorem 3 we have that
system (14) is asymptotically stable and the proof is completed. O

Remark 1 Note that if we put g = 0 in (17) we obtain the asymptotic stability
condition for system (3) without delays similarly as presented in [22].

Remark 2 Theorem 4 for model (14) has a similar form as Proposition 8 in [12]
for the model without a time shift in the difference. It differs only in the form
of the formula of \w;|. In addition, the method of determining the characteristic
equation for the considered systems is different in this paper and [12].

Theorem 5 The fractional system (14) is asymptotically stable if and only if all
eigenvalues 1;(Ay) (i = 1,2, ..., n) are strictly inside the stability region

_ —a jjo(l+q) (1 _ —jw\a. 7((2_&/) ﬂ(2_0+4Q)
S = {h e/ YUV (1—e779)?, we[O, —2q+2—a/)] A (—2q+2—a/) , 2. (27)

Proof. The proof follows immediately from Theorem 4. O



www.czasopisma.pan.pl P@N www.journals.pan.pl
TN

~__/

558 A. RUSZEWSKI

The asymptotic stability regions of system (14) on the plane of eigenvalues
of A, for some values of fractional order a € (0, 1) and ¢ = 1, g = 10 are shown
in Fig. 4 and Fig. 5, respectively. Notice that for fixed delay g we obtain smaller
stability region for bigger values of fractional order . Fig. 6 shows the stability
regions of system (14) for @ = 0.5 and different values of delay g. We can see that

1

N S
0.6
0.4+
0.2+

or

Im A( Al)

—02F

-0.4r

-0.6

-0.8r

_1 i i i i n i i i
-1.2 -1 -0.8 -06 -04 -02 0 0.2 0.4 0.6
Re A( Al)

Figure 4: Stability boundaries of system (14) for # = 1, ¢ = 1 and
a = 0.1 (boundary 1), @ = 0.5 (boundary 2), @ = 0.9 (boundary 3).

Im A(A, )
o

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8
Re M A . 0)

Figure 5: Stability boundaries of system (14) for » = 1, ¢ = 10 and
a = 0.1 (boundary 1), @ = 0.5 (boundary 2), @ = 0.9 (boundary 3).
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for fixed a, bigger values of ¢ result in smaller stability regions. The influence
of step & on stability region is shown in Fig. 7. Smaller values of step % result in
bigger stability regions.

0.8

0B -

04r

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Re M Aq)

Figure 6: Stability boundaries of system (14) for # = 1, @ = 0.5 and
g = 1 (boundary 1), g = 5 (boundary 2), ¢ = 10 (boundary 3).

Im MAI)
o

-12 -10 -8 -6 -4 -2 0 2
Re M(A,)

Figure 7: Stability boundaries of system (14) for « = 0.5, ¢ = 1 and
h = 0.01 (boundary 1), 2 = 0.1 (boundary 2), h = 1 (boundary 3).

For the scalar system (14),i.e. A; = 4 < 0, we obtain the following asymptotic
stability condition.
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Lemma 1 The scalar system (14) with A < 0 is asymptotically stable if and
only if
2 2n—ar |\
A —sin ——— | . 28
| |<(hsm2(2q+2—a)) 2%)

Proof. For the scalar system with 4 < O we have arg A = . Substitutingarg A = 7
in (17) we obtain (28). O

Lemma 2 If all eigenvalues 1;(A,) are real and 1;(A,) < 0, then the fractional
system (14) is asymptotically stable if and only if

2 2n—an \”
A —sin —— | , i=12...,n 29
| |<(hsm2(2q+2—a)) I n (29)
Proof. The proof directly follows from Lemma 1. O

Example 2 Check asymptotic stability of fractional system (14) withg = 2, h = 1

and the matrix
-1.7 -0.62 1.52

Ay = 1.05 1.37 -3.16 . (30)
—-0.08 0.58 -1.26
The matrix A, has the following eigenvalues: 1; = —0.907, 4, = —-0.5511

and 13 = —0.1319. Note that the considered system has only real negative
eigenvalues. According to Lemma 2 this system is asymptotically stable for any

0 50 100 150
k

Figure 8: Solution of system (14) with matrix (30) for h = 1, g = 2,
a = 0.2 (asymptotically stable case).
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a € (0, 0.5117), because from (29) for @ < 0.5117 we have |4;| < 0.907. The
solution of system (14) with matrix (30),h = 1,g = 2fora = 0.2and @ = 0.5117
are shown in Figs. 8 and 9, respectively.

8

_8 i i i i i
0 50 100 150 200 250 300

k

Figure 9: Solution of system (14) with matrix (30) for h = 1, g = 2,
a = 0.5117 (limit of stability case).

3.2. Practical stability

The practical stability of fractional system (3) is equivalent to asymptotic
stability of discrete-time system (7) with given length L of practical implemen-
tation and fractional order «. The fractional system (3) is practically stable if the
condition given in Theorem 1 holds.

For system (14) characteristic equation (8) has the form

L
det {(z —a)l - Z Ici(a)z 7 - h“qu_q} =0. (31
i=1
By multiplying both sides of equation (31) by 2~%z¢ we obtain
L .
det {h_“zq(z -a)[-h“ Z Ici(a)z9" — Aq} =0. (32)
i=1

Lemma 3 The fractional system (14) with given length L of practical implemen-
tation is practically stable if and only if all eigenvalues A;(Ay) (i = 1,2,...,n)
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are strictly inside the stability region

L
S = {h_“ejwq(ej‘“—a/) —h—az ci(a)e?®9 D ¢ e [0, w] A (wo, 27r]}, (33)
i=1

where w1 and wy depend on given values of fractional order «, length L and
number of delay q.

Proof. The proof follows from Theorem 5 and the substitution z = exp(jw),
w € [0, 2], i.e. boundary of the unit circle in the complex z-plane,in /=% z9(z—a)

L
-h™ ¢ Z ci(a)z47". O
i=1

Figs. 10 and 11 show the boundary of practical stability regions of system
(14)forh=1,a =0.5, L =100 and g = 1, g = 2, respectively. The boundaries
are plotted for w € [0, 2x] and stability regions are marked. For plotting the
boundaries of stability regions it is enough using w € [0, 1.3464] A (4.9368, 2]
for the plot in Fig. 10 and w € [0, 0.8568] A (5.4264, 2r] for the plot in Fig. 11.
These ranges depend on values of fractional order «, length L and delay q.

1.5

0.5F
_ " stable region
5 : =0
0=2
E T
—05F -

15 -1 -0.5 0 0.5 1 15
Re K(Al)

Figure 10: Practical stability boundaries of system (14) for A = 1,
L=100,a=0.5and g = 1.

Figs. 12—-14 show the boundary of practical stability regions of system (14)
for different values of @, L and q.
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stable region
=0

ok

ImA(A 2)

Re A( A2)

Figure 11: Practical stability boundaries of system (14) for A = 1,
L =100, =0.5and g =2.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Re M(A)

Figure 12: Practical stability boundaries of system (14) for h = 1,
a =05, g =1and L = 5 (boundary 1), L = 100 (boundary 2),
L =500 (boundary 3).
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ImA(A,)
o

-1.2 -1 -0.8 -06 -04 -02 0 0.2 0.4 0.6
Re M(A))

Figure 13: Practical stability boundaries of system (14) for 4 = 1,
L =100,g =1 and @ = 0.1 (boundary 1), @ = 0.5 (boundary 2),
a = 0.9 (boundary 3).

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
ReM(A)

Figure 14: Practical stability boundaries of system (14) for A = 1,
L =100, @ = 0.5 and ¢ = 1 (boundary 1), ¢ = 5 (boundary 2), g = 10
(boundary 3).
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4. Concluding remarks

The practical and asymptotic stabilities of the fractional order @ € (0, 1)
discrete-time linear systems with delays have been analysed. The state model
with a time shift in the difference and the Griinwald-Letnikov-type fractional-
order difference have been used.

Necessary and sufficient conditions for practical stability and for asymptotic
stability have been established (Theorem 1 and Theorem 2). The system with only
one matrix occurring in the state equation at a delayed moment has been also
considered. In this case the practical stability and asymptotic stability conditions
have been given. Moreover analytical conditions for asymptotic stability have been
established (Theorem 4). Parametric descriptions of the boundary of practical
stability and asymptotic stability regions have been also presented. The considered
system is practically (asymptotically) stable if all eigenvalues of the state matrix
lie in stability region in the complex plane.
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