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Abstract: With the increasing number of electric vehicles (EVs), the disordered charging
of a large number of EVs will have a large influence on the power grid. The problems of
charging and discharging optimization management for EVs are studied in this paper. The
distribution of characteristic quantities of charging behaviour such as the starting time and
charging duration are analysed. The results show that charging distribution is in line with
a logarithmic normal distribution. An EV charging behaviour model is established, and
error calibration is carried out. The result shows that the error is within its permitted scope.
The daily EV charge load is obtained by using the Latin hypercube Monte Carlo statistical
method. Genetic particle swarm optimization (PSO) is proposed to optimize the proportion
of AC 1, AC 2 and DC charging equipment, and the optimal solution can not only meet the
needs of users but also reduce equipment investment and the EV peak valley difference, so
the effectiveness of the method is verified.
Key words: EVs, gap optimization, Latin hypercube sampling, Monte Carlo simulation

1. Introduction

EV charging stations not only provide an important energy guarantee for large-scale EV
promotion but also improve power system operation and dispatch flexibility. For power systems,
charging stations can be regarded as a kind of charging load. Due to the strong randomness of
EV charging, it is an urgent problem to establish a probabilistic load model for EV charging
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stations that correctly and effectively reflects the randomness [1]. The large-scale popularization
of EV must rely on the power grid, and EV charging behaviour has strong disorder and high
simultaneity, so large-scale EV charging behaviour has greater impact on safe economic power
grid operation. At present, EV charging behaviour research has made some achievements. Gao
Ciwei et al. [2] review EV charging effects on charge facilities planning and construction of
the transmission network, distribution network, power grid and grid harmonic. Ma Jinxiang et
al. [3] collected the status, charging and discharging demand information for EVs and carried
out the scheduling plan according to the system scheduling objective, successfully optimizing
the charging and discharging scheduling for EVs. Zhang Weige et al. [4] predicted the daily
load curve of electric buses by fuzzy clustering and a back propagation (BP) neural network. Li
Yafang et al. [5] compared the charging behaviour of taxis with private cars and established a
piecewise probability model for estimating the daily charging load of taxis, but he failed to do an
accurate test of the model. Yuan Zhengping et al. [6] analysed the behavioural characteristics and
charging methods of private cars, buses and taxis. Based on the development scale of Shanghai
electric vehicles in 2015, the Monte Carlo method was used to predict the load of Shanghai
electric vehicles in 2020. Wu Kuihua et al. [7] used the least squares method and obtained the
bus charging load curve. Zhang Di et al. [8] used genetic intelligent optimization algorithms
to rationally arrange the charging start time for battery packs and reduce the charging amount,
realizing economic operation of substations, but the genetic algorithm itself could not make good
use of feedback information, and the convergence speed was slow.

By calculating the skewness and kurtosis coefficients of EV behaviour characteristics, this
paper draws Q-Q scatter plots and verifies that the charging start time and duration conform to the
same skew-normal distribution; the resulting error is small, so the fitting curve is highly reliable.
The daily load curve of EV charging power is established by the Latin hypercube-Monte Carlo
statistical method, and the convergence speed is improved. By introducing a mutation operator,
the PSO evolutionary formula is reconstructed. The mutation of genetic modified PSO has self-
learning ability. The random mutation is improved to increase the individual adaptive ability
mutation, and the search efficiency increases obviously. By reasonably arranging the proportion
of AC class 1 and 2 and DC charging equipment, the disorderly EV charging behaviour is
optimized to achieve the goal of load shifting and safe power grid operation.

2. Analysis of EV charging characteristics

EV charging start time and duration are random. EV charging behaviour can be analysed
by using probability statistical models. In many charging behaviours, charging start time and
duration are more important research directions. The original EV charging start time, duration
and power data are described in detail in the literature [9].

2.1. Normal distribution test

The calculation of the skewness and the kurtosis coefficients [10] can measure the data
distribution shape, and the skewness coefficient is calculated as shown in Equation (1).
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P =

n
n∑
i

(xi − x̄)2

(n − 1)(n − 2)s3 ,
(1)

where n is the number of samples, xi is the value of the i sample, x̄ is the sample mean, and s is
the sample standard deviation. The value of P is usually between −3 and 3 and is used to measure
data symmetry. When the result is 0, the data set is symmetrical; when the result is negative, the
left side is scattered; and when the result is positive, the right side is scattered.

The kurtosis coefficient is calculated as shown in Equation (2).

F =

n(n − 1)
n∑
i

(xi − x̄)4

(n − 1)(n − 2)(n − 3)s3
3 × (n − 1)2

(n − 2)(n − 3)
, (2)

where F is used to measure data dispersion. Negative values indicate that data are more con-
centrated, the data sets on both sides are less, and the positive values are opposite. When both
the skewness and the kurtosis coefficients are 0, the data are subject to the standard normal
distribution.

The initial data are calculated using Equations (1) and (2), and the results are shown in Table 1.

Table 1. The results of skewness and kurtosis coefficients

Charge characteristic Skewness coefficient P Kurtosis coefficient F

Charging start time 2 −0.26

Charge time 2.7 −0.1

It can be seen from Table 1 that the result of charging start time and the charging duration
calculation all meet a skew-normal distribution.

The Q-Q scatter plot can be used to determine whether the two sets of data meet the same
skew-normal distribution. It can be seen from Fig. 1 that the two sets of charging start time and

Fig. 1. Q-Q scatter plot of EV charging characteristics
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duration data are in the vicinity of a straight line, and it can be judged that they satisfy the same
kind of normal distribution. The histogram of the charging start time is made using the raw data
of [9], as shown in Fig. 2.

Fig. 2. Histogram of charging start time

It can be seen from Fig. 2 that the distribution peak shifts to the left, and the long tail extends
to the right. Combined with the calculation of skewness and kurtosis coefficients, it is inferred that
the distribution is consistent with the log-skew-normal distribution. According to the obtained
skewness and kurtosis coefficients, the Jarque-Bera normal distribution test method is adopted,
and it is assumed to be a log-skew-normal distribution. The test results are shown in Table 2.

Table 2. The results of normal distribution test

Charge characteristic h P

Charging start time 0 0.32

Charge time 0 0.09

The output result h is defined as assuming statistical sample N satisfies some normal distri-
bution.

When the output h is 1, the original hypothesis is wrong; when the output h is 0, the original
hypothesis is correct. The returned test p-value refers to the negative null hypothesis when the
p-value is less than a given significance level (typically 0.05). It can be seen from Table 2 that
both the EV charging start time and the duration satisfy the log-skew-normal distribution.

2.2. Probability density histogram and fitting curve of charging characteristics
The probability density histogram and fitting curve for the charging start time and duration

are shown in Figs. 3 and 4.
It can be seen from Fig. 3 that the charging start time peak is concentrated from 7:00 to 10:00,

and the number of people charging after 10:00 is gradually reduced. It can be seen from Fig. 4
that during an EV charging the charging start time is kept at 0:00∼10:00. After charging more
than 10 hours, most electric vehicles will stop charging, and a few will continue charging for 40
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Fig. 3. Probability distribution of the EV charging start time

Fig. 4. Probability distribution of the EV charging duration

hours. This centralized charging behaviour will have a greater impact on the stable operation of
the power grid.

2.3. Fitted curve error analysis
Figs. 3 and 4 show the log-skew-normal distribution of EV charging characteristics. The

fitting results can be judged by three methods: mean square error (MSE), average absolute error
(MAD), and the maximum absolute error (Max AE), and the error analysis results are shown in
Table 3.

Table 3. The charging characteristic error analysis fitting curve

Charge characteristic MSE MAD Max AE

Charging start time 0.21% 3.32% 10.12%

Charge time 0.27% 3.8% 11.14%

The mean square error and the average absolute error of the two charging feature quantities are
close to 0, indicating that the fit is good; thus, it is feasible to use the log-skew-normal distribution.
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3. Estimation of EV daily load curve

3.1. EV daily load curve model
Monte Carlo is a method to solve computational problems by generating pseudo-random

numbers [11]. The ordinary Monte Carlo simulation method is random sampling, while the Latin
hypercube-Monte Carlo statistical method is a multi-dimensional stratified sampling method. The
standard error formulas of the two sampling methods are shown in Equations (3) and (4).

E1 =
1
√

N
σ2
y , (3)

E2 =
1

N3σ
2
y , (4)

where σy is the standard deviation, N is the number of data, and E1 and E2 are the standard
Monte Carlo simulation method and the Latin Hypercube-Monte Carlo statistical standard error,
respectively.

A comparative analysis of the standard error formulas of the two methods is shown in
Equation (5).

E2

E1
=

1
√

N5
. (5)

It can be seen from Equation (5) that Latin hypercube sampling significantly saves the sample
number N , to improve the Monte Carlo sampling method and give it better convergence.

The probability density functions of the charging start time and the duration are shown in
Equations (6) and (7).

f1(x) =
1

yσs1
√

2π
e

(
− (ln(x)−µs1)2

2σ2
s1

)
, (6)

f2(y) =
1

yσs2
√

2π
e

(
− (ln(y)−µs2)2

2σ2
s2

)
, (7)

where µs1 is the mean of the charging start time in the distribution, σs1 is the standard deviation
of the charging start time in the distribution; µs2 is the mean of the charging duration in the
distribution; and σs2 is the standard deviation of the charging duration in the distribution.

After obtaining the probability and statistical model of the EV charging characteristics, the
daily load curve is estimated by the Latin Hypercube-Monte Carlo statistical method.

3.2. Example of the charging daily load curve
After establishing the probability density function of the charging start time and duration,

according to Monte Carlo, the number of charging EVs at each moment and the power used by
each EV at that moment are estimated. The daily charging load curve of 10 000 EVs is calculated
through the Latin hypercube sampling method, and the results are shown in Fig. 5.

It can be seen from Fig. 5 that the charging power gradually increases from 0 to 8 o’clock,
reaching a maximum at 9 o’clock, and it starts to gradually decrease after 9 o’clock. Fig. 5 shows
that the daily load curve trend is basically consistent with the charging start time probability



Vol. 68 (2019) Research on the EV charging load estimation and mode optimization methods 837

Fig. 5. Daily load curve for 10 000 electric vehicles

density curve trend, but due to the charging duration, the probability density curve of the daily
load curve relative to the charging start time has a certain hysteresis. Therefore, the power grid
needs to achieve a reduction in load peak-to-valley difference, and a guiding strategy can be
adopted from charging start time and duration.

4. Optimizing charging mode based on a genetic particle swarm
optimization algorithm

4.1. Establishment of objective functions
Three charging devices with different power levels are shown in Table 4. By optimizing

the amount of charging equipment purchased, one can meet the charging demand of large-
scale electric vehicles and also simultaneously reduce capital investment in charging station
construction as well as the disorderly EV charging load peak-valley difference and load shifting.
First, a multi-objective optimization model for charging stations is established, and the decision
variables are AC 1(x1), AC 2(x2) and DC(x3). The objective function is the total equipment
investment and the EV disorderly charging load peak-valley difference. The constraint is that the
expected user charging capacity is satisfied within the connecting time.

Table 4. EV charging power level

AC 1 AC 2 DC

Power (kW) 1.4∼1.9 7.7∼25.6 40∼100

Cost per unit (yuan) 3 000 15 000 50 000

Let Y1 (x1, x2, x3) be the total investment function of the equipment, which is composed
of the product of the proportion and cost of each piece of equipment in the charging station.
Y2 (x1, x2, x3) is the peak-valley difference function of the disorderly EV charging load, composed
of the sum of the proportion of each device in the charging station and the maximum power product
of each charging device, minus the sum of the proportion of each device in the charging station and
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the minimum power product of each charging device. Here, the objective function is established:

Y1 (x1, x2, x3) = 3 000x1 + 15 000x2 + 5 0000x3 , (8)
Y2 (x1, x2, x3) = 1.9x1 + 25.6x2 + 100x3 − 1.4x1 − 7.7x2 − 40x3 . (9)

The charging station must meet user expectations of charging power within the connecting
time. To meet customer demand, the lower limit of the total charging power at the lowest charging
power for each charging station is set as the daily charging load, and the constraint function is
shown as follows:

1.4x1 + 7.7x2 + 40x3 ≥ 39.06. (10)

4.2. Realization of genetic particle swarm optimization algorithm
Charging equipment models for charging stations are complex with nonlinear multi-objective

functions. Their optimization methods can be solved by intelligent algorithms. A genetic particle
swarm optimization algorithm is proposed to solve a charging equipment optimization model
for charging stations. Genetic particle swarm optimization introduces the crossover operator
into particle swarm optimization (PSO). After crossover operation of two operators, two new
operators are obtained that improve the algorithm search performance and avoid falling into local
optima [12]. For the population, the algorithm uses the concept of multi-population and the
strategy of ranking selection in the genetic algorithm for reference. By comparing the optimal
solutions among different groups, the algorithm determines whether the global or local is the
optimal solution. While guaranteeing the optimality of the group, the algorithm prevents all
individuals from approaching extremes in evolution, which is conducive to expanding the search
space. On mutation of the operator, the mutation algorithm reconstructs the PSO evolution
formula, as shown in Equation (11):

Vmax _i, j (t) =

t∑
k=2

xmax _i, j (k) − xmax _i, j (k − 1)

t
. (11)

The formula of particle swarm optimization with mutation operator is updated to:


Vmax _i, j (t + 1) = Vmax _i, j + c1r1

[
pi, j − xi, j (t)

]
+ c2r2

[
pi, j − xi, j (t)

]
xi, j (t + 1) = xi, j (t) + Vmax _i, j (t + 1)

, (12)

where xmax _i, j is the particle position of historical optimal individuals; Vmax _i, j is the update
speed; vi, j and xi, j are the velocity and position of the first individual particle, j = 1, 2, 3, . . . , d;
d is the dimension; c1 and c2 are positive learning factors; r1 and r2 are the random numbers with
uniform distribution from 0 to 1; pi, j is the optimal solution positions of sub-populations; and
pg, j is the locations of global optimal solutions.

Equation (12) predicts the mutation prior to the one that enables mutation operation self-
learning and replaces random mutation with improving individual adaptive ability mutations.
The genetic particle swarm optimization overcomes the premature particle swarm optimization,
improves the ability of local searching and jumping out of local minimum, and has high efficiency
and fast convergence speed [13]. Genetic particle swarm optimization is shown in Fig. 6.
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Fig. 6. Genetic particle flow chart
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The total number of electric vehicles is 10 000, the maximum iteration is 50 generations, the
population size is 40, and each operator is an individual and corresponds to a certain solution of a
set of variables. Before using genetic particle swarm optimization to find the optimal solution, the
fitness functions minY1(x1, x2, x3) and minY2(x1, x2, x3) and the proportion of three kinds of
charging power devices x1, x2, and x3 are determined according to the requirements of meeting
user needs, reducing equipment investment and decreasing peak-valley difference of EV disorderly
charging load and, furthermore, to determine whether the fitness function meets the requirements.
Based on the genetic particle swarm optimization algorithm, the inertia weight, cross coefficient,
learning factor and other related parameters are set, and the optimal solution is obtained. The
X1 data of AC level 1 charging equipment are taken out, and the iteration situation is shown in
Fig. 7. The solution methods of AC Level 2 charging equipment X2 and DC level equipment
X3 are the same. Genetic particle swarm optimization is used to optimize charging. When the
optimal solution is obtained by genetic particle swarm optimization, the proportion of charging
equipment is shown in Fig. 8.

Fig. 7. Running results

Fig. 8. Iterative results

As seen from Fig. 8, the best charging station operating conditions are the AC 1 level
accounting for 24.27%, the AC 2 level accounting for 51.79%, DC accounting for 23.94% and
the AC 2 level equipment with the largest AC power accounting for the largest proportion, while
DC equipment with the largest power accounted for a relatively small proportion.
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5. Conclusions

With more and more government policies encouraging EV development, EVs are bound
to replace traditional internal combustion engine vehicles on a large scale. EVs are frequently
connected to the power grid to charge, and the pressure on the power grid will be further increased.

First, EV charging characteristics are analysed, and the Jarque-Bera normal distribution
test is used to verify that the charging behaviour conforms to a logarithmic deviated normal
distribution. By using probability and statistics, the probability density curves of charging start
time and duration are obtained, and the mean square error (MSE), mean absolute error (MAD)
and maximum absolute error (Max AE) are calculated. Compared with the fit probability density
curves, satisfactory results are obtained. The results show that the model has less error with the
actual values and high credibility. The daily load curve for large scale EV is estimated using Latin
hypercube Monte Carlo statistics.

By analysing the charging behaviour of EV users, objective functions are established with
the lowest charging cost, lowest charging station investment, lowest power grid operation peak-
valley difference, and optimal ratios for AC-1, AC-2 and DC charging equipment. The objective
functions are satisfied using a genetic particle swarm optimization algorithm. The results show
that AC and DC charging equipment should be built to meet the rapid charging needs of some
users. Users can be divided into fast charging and slow charging users according to connection
time. Users with long connection time can use low-power charging equipment to charge during
the peak period and then switch to high-power equipment to charge quickly after the peak period.
Small-scale power grid upgrading achieves load shifting and reduces the power grid operation
pressure while accommodating more EV charging.
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