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Abstract. This paper proposes a practical tuning of closed loops with model based predictive control. The data assumed to be known from 
the process is the result of the bump test commonly applied in industry and known in engineering as step response data. A simplified context 
is assumed such that no prior know-how is required from the plant operator. The relevance of this assumption is very realistic in the context 
of first time users, both for industrial operators and as educational competence of first hand student training. A first order plus dead time is 
approximated and the controller parameters immediately follow by heuristic rules. Analysis has been performed in simulation on representative 
dynamics with guidelines for the various types of processes. Three single-input-single-output experimental setups have been used with no expert 
users available in different locations – both educational and industrial – these setups are representative for practical cases: a variable time delay 
dominant system, a non-minimum phase system and an open loop unstable system. Furthermore, in a multivariable control context, a train of 
separation columns has been tested for control in simulation, followed by experimental tests on a laboratory system with similar dynamics, i.e. 
a sextuple coupled water tank system. The results indicate the proposed methodology is suitable for hands-on tuning of predictive control loops 
with some limitations on performance and multivariable process control.

Key words: step response, first order plus dead time, predictive control, hands-on tuning, model based control, model uncertainty, robustness, 
control education, plant operator.
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[23, 24], etc. However, several textbook MPC works include 
some information on automatic tuning techniques [25, 26] and 
few works describe online tuning principles [27‒29]. A recog-
nized problem by control performance monitoring systems is 
the poor controller settings [11], often the result of inadequate 
operator training. The industry uses most of commercial packets 
and own development strategies to counteract these negative 
effects by surrogate solutions, but there is a clear need for better 
tools for non-expert users.

Relay based and combinations thereof has been employed for 
automatic tuning of MPC parameters [30]. A generalized min-
imum variance control and Smith Predictor based tuning indi-
cated in [30, 31] the potential of extending autotuning concepts 
from PID to MPC. Later on, step response data based autotuning 
of PID has been revisited with intrinsic robustness guarantee and 
measurement noise attenuation [31‒34]. The idea of using sensi-
tivity functions to design controller parameters in an automated 
way revealed that relay based point identification may be sub-
optimal, improved by adding delays in the loop [35, 36]. From 
a practical point of view, it is appealing to allow the user to spec-
ify time-domain envelopes, which can be translated to frequen-
cy-domain specifications for sensitivity functions [37]. A recur-
sive identification scheme for automatic re-tuning of MPC for 
SISO systems has been proposed in [38] and an extension to 
the classical first-order-plus-dead-time (FOPDT) to a fractional-
order-plus-dead-time (FO2PDT) model identification has been 
proposed in [39]. It was suggested that input perturbation in 
the form of sinusoidal signals with adequate amplitude may be 
preferred to bump tests when operating the process.

1.	 Introduction

Latest surveys from academia-industry platforms strongly agree 
that most commonly present proportional-integral-derivative 
(PID) control is closely followed by the model based predic-
tive control (MPC) in terms of practical relevance [1‒3]. Ever 
increasing demands on performance and specificity in product 
manufacturing yield great stress on improvements at plant-wide 
scale while accepting significant model uncertainty in the closed 
loop [4]. However, despite the interactions posed by the multi-
modal organization of nowadays plant structure, most control 
problems are viewed as decentralized control problems [5]. PID 
owns its success to the straightforward relation between param-
eters and closed loop performance, while often being unex-
ploited to its full power when tuned optimally and fully (i.e. all 
three parameters) [6‒9]. Automatic tuning of these controllers 
are traditional in industry and monitoring loops are commonly 
available for re-tuning whenever necessary [10‒12]. Despite 
earlier efforts, automatic tuning of MPC has experienced little 
development over the last decades, while excelling in providing 
optimal solutions to complex systems based on good model 
predictors [13‒21]. The tools commonly employed for relating 
process dynamics to controller parameters are based on aca-
demic insight, e.g. genetic algorithms [22], extremum-seeking 
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Accurate model development accounts for 70% of the 
development costs when tuning control loops [2, 11]. To speed 
up the task completion, one could firstly tune MPC hands-on 
process operation using the method proposed in this paper, pos-
sibly followed by further improvement of the process model. 
The industry uses bump tests to gather step response data for 
tuning of SISO loops [40], which suggests that if one would 
make an effort to ease the inflow of MPC used in industry 
loops, one should use this ubiquitously available data. Hence, 
we propose to make use solely of this information when tun-
ing the MPC parameters and to extract from it the necessary 
information. When designing control loops, one must take into 
account that expertise in (optimal) tuning of controller param-
eters may be limited as plant operators work essentially with 
straightforward concepts as settling time, overshoot, sampling 
period. Some performance indicators may include gain margin 
as a robustness measure.

Often students rely on off-the-shelf tools to tune controllers 
due to lack of expertise and/or poor training. Such an example is 
the commonly used blocks of PID (automatic) tuning and MPC 
(automatic) tuning in Simulink, within the Matlab platform used 
for educational purposes. Control education is however much 
more than using blindly such tools, and a first hand help is 
always welcomed by inexperienced users. For this, an excellent 
textbook on MPC is [25]. However, students who do not take 
a course in MPC may wish to learn to tune an MPC controller 
with heuristic rules. The educational axis of this paper is thus 
to emphasize the possibility to teach MPC in a non-control ori-
ented discipline in higher education studies.

This paper focuses on the automatic tuning methodology for 
MPC based on simple step response models and hands-on tun-
ing rules. The second section introduces the context of process 
data extraction, followed by the section on controller tuning 
rules. In the fourth section, a set of typical processes is used 
for the SISO loop tuning analysis, followed by experimental 
tests on some of these available in our laboratory. Analysis on 
MIMO loop hands-on tuning has been briefly investigated, with 
both simulation and experimental test examples. Limitations 
for the tuning of MIMO loops are enumerated, followed by 
a conclusion section.

2.	 Data-Driven Model Approximation

The information required apriori from the process operator is 
twofold: i) the sampling time of the loop and ii) bump test 
results (i.e. step response data) [39, 41‒44]. The data may be 
available as a vector input u and output y sampled at a sampling 
period Ts. The sampled step response coefficients are then used 
to graphically fit a FOPDT model structure:

	 P ̂ (s) =  K
τs + 1

e–sL� (1)

with K the gain, τ the time constant and L a possible delay (at 
least one sample). For this FOPDT model, various method-

ologies for automatic tuning of feedback controllers (mostly  
PID-type controllers) are readily available [6, 10, 12, 32, 35, 45].

Another use for the directly available step response 
input-output data vectors is to scale it to a unit response and 
use it in the MPC controller in the step response coefficients 
matrix (details in [25, 26, 46, 47]). For linear systems, this step 
response matrix is defined offline and prediction is based on 
the superposition principle. For nonlinear systems, this step 
response matrix is updated at every sampling time, as the pro-
cess depends on the operating point and superposition principle 
is no longer valid. In the extreme case that simple feasibility of 
MPC is envisaged, a step response approximation in the form of 
(1) suffices to obtain the step response coefficients necessary in 
the MPC scheme for prediction of future outputs. The lack of 
persistent excitation leading to limitations in model accuracy 
can be compensated by realignment of model output to process 
output in the MPC scheme. The remainder of this paper uses 
this minimal process information in the MPC algorithm, with 
an input-output data formulation.

3.	 MPC Control

3.1. Input-Output MPC Formulation for SISO Systems. 
The MPC principles are mature and broadly available [14‒18]. 
Among all algorithms for MPC realization, an input-output for-
mulation may hold greater relevance when plug-and-play objec-
tives are aimed. Process data comes in the form of input-output 
vectors and if one could directly use the information to tune 
an MPC strategy it may facilitate its usage in more process 
industry applications. Such input-output formulation for MPC 
is that of the extended prediction self-adaptive control (EPSAC) 
algorithm, developed in the early 80s [48, 49]. A comprehensive 
tutorial has been published in [47], whereas only an essential 
summary will be given hereafter.

Assume the process output is given by:

	 y(t) = x(t) + u(t)� (2)

in which relation past model output and past process inputs 
are used:

	x(t) = f [x(t ¡ 1), x(t ¡ 2), …, u(t ¡ 1), u(t ¡ 2), …]� (3)

and a term n(t) containing disturbances, noise and model mis-
match. Notice that these functions may take any model struc-
ture: transfer function, state space, linear, nonlinear, neural 
networks, etc. This model is also known as the parallel model, 
whereas a realigned model would use past measured process 
outputs [47]. Both schemes for model updates will be used in 
this study.

The term in n(t) denotes the disturbance and modelling 
errors effects, modelled by coloured noise:

	 n(t) = 
C(q–1)

D(q–1)
e(t)� (4)
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with e(t) white noise signal and the simplest prediction is to 
have an integrator to ensure zero steady state error. Other dis-
turbance filters are possible, but this is out of the scope of this 
study, for details see [50]. The predicted future response in 
linear MPC is the cumulative result of a base and an optimal 
response:

	 y(t + kjt) = ybase(t + kjt) + yopt(t + kjt)� (5)

where t is the discrete-time index (will be omitted in the remain-
der of the paper for simplicity of notation) and k is the sample 
index for the prediction horizon to be estimated. The notation 
(t + kjt) denotes here the future values, postulated at time t.

The base response can be calculated with the process and 
noise model for a generic control scenario ubase (e.g. constant 
value), and for linear systems, the choice for this vector values 
is not important as superposition principle applies. In case of 
nonlinear system MPC, without the linearization of the process 
model, it is recommended to define them as being the previ-
ously applied input value to the process: u(t ¡ 1).

The second component, yopt, is the effect of optimizing the 
future control actions defined as δu(t + kjt) = u(t + kjt) ¡  
¡ ubase(t + kjt), with u(t + kjt) the optimal control input. The 
controller has Nu degrees of freedom, defined by the control 
horizon. The postulated optimal output can be calculated using 
the step g and impulse h response coefficients matrix G:

yopt(t + 1jt)
yopt(t + 2jt)

…
…

yopt(t + N2jt)

 = 

= 

	h1	 0	 …	 0
	h2	 h1	 …	 0
	…	 …	 …	 …
	…	 …	 …	 …
	hN2

	 hN2 ¡ 1	 …	 gN2 ¡ Nu + 1

 = 

δu(tjt)
δu(t + 1jt)

…
…

δu(t + Nu ¡ 1jt)

.

Substituting the above relation in (5) the key equation for 
unconstrained EPSAC is obtained:

	 Y = Y–  + G ¢ U� (6)

which in the special case of Nu = 1 reduces to a scalar. In the 
remainder of the paper, only cases for Nu = 1 will be discussed. 
In the EPSAC formulation, linearization of the process model 
is not necessary, and thus can be applied directly to nonlinear 
process models. In this case, the G-matrix coefficient values are 
updated at every sampling time by applying a small amplitude 
step to the process. To converge to optimal solution by mini-
mizing the values of δu(t + kjt), iterations within the sampling 
period are then applied. A schematic flowchart is given in the 
rectangular enclosed area denoted EPSAC in Fig. 1 which is 

the iterated part of the algorithm when nonlinear EPSAC is 
applied. The EPSAC method has been extensively applied in 
a manifold of applications, both simulation and real-life pro-
cesses. This scheme is also used to separate the delays from 
the prediction model output to ease the implementation and 
matrix manipulation of the algorithm, as explained hereafter is 
a separate subsection.

There are two versions of the EPSAC algorithm, or in fact, 
of any MPC algorithm. First, there is the classical scheme based 
on model predictions used to compute the future process out-
put as a result of various control scenarios. This is called the 
parallel scheme, as it assumes all differences between model 
prediction and measured process output as disturbances and 
tackles them using the noise model. As such, the predictor runs 
in parallel with the process, hence the name of parallel scheme, 
and it is often used in practice. Secondly, we have the series/
parallel scheme, in which the model predictions are directly 
updated with the measured process outputs. This is a more 
robust scheme to dynamical changes in the plant, and suitable 
for difficult processes and unstable open loop processes. The 
updating of the predictions is called then realignment, as the 
model output realigns with the measures process output.

The cost function used in this work is based solely on the 
performance, i.e. minimizing the errors between the setpoint 
and process output. Naturally, other cost functions may be used, 
e.g. where also the control effort is penalized. However, the 
weight tuning of the error vs control effort in the cost function 
is yet another tuning parameter of the MPC algorithm. Simi-
larly, the weight on the reference trajectory is another tuning 
parameter. These additional degrees of freedom in the user spec-
ifications may increase the complexity of the tuning procedure 
and may be confusing fo the first time users of MPC control. 
For this reason, we do not tackle these tuning parameters in 
this work. Even so, additional tuning of these extra parameters 
will only improve the results, either in terms of performance 
(i.e. minimize errors), or in terms of energy consumption (i.e. 
minimize the control effort).

3.2. Minimal Hands-on Tuning Rule. Heuristic rules for 
explicit min-max formulation of MPC to a scaled laboratory 
process have been successfully applied in [51]. In the current 
work, heuristic rules for model approximation and controller 
tuning are also envisaged. Given the available sampling period 
value, Ts, the prediction horizon Np can be chosen between 
10 Ts and 30 Ts interval [52, 53]. This rule gives sufficient per-
formance for nominal processes. Large values of Np will likely 
provide more stable, conservative performance of the closed 
loop. The control horizon Nu is only one sample, as larger value 
increase the (on-line) computational effort without justifica-
tion in significant performance improvements. Some specific 
dynamics may have improved closed loop performance for 
higher values fo the control horizon, but this is discussed later 
on. As aforementioned, two implementations for the prediction 
updates are possible: parallel and series-parallel (realignment) 
scheme. We discuss here cases of process dynamics which 
require either one of the schemes. Disturbance rejection is not 
discussed in this work.
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Notice that due to the fact that a FOPDT is approximated 
from the real step response data, there will always be modelling 
errors, i.e. model mis-match. The degree of model mis-match 
is then considered as a model uncertainty. This is not induced 
artificially in the paper, but it is calculated as the difference 
between the area of the real process step response and the area 
of the FOPDT approximation. The approximation to a FOPDT 
model is made in this paper by non-expert users, hence a first 
hand approximation. Some dynamics allow a relatively straight-
forward FOPDT approximation and some others described in 
this paper not. This is why the model uncertainty vary among 
the given examples.

3.3. Implementation for Time Delay. The prediction becomes 
complex in terms of matrix manipulation for situations with 
(variable) time delay. Since we are using FOPDT, we always 
have time delay in the prediction model. For SISO systems with 
constant time delay values this is not a problem, as the matrix 
size remains constant throughout the calculations. However, 
if time delay value varies from sample to sample, the size of 
matrices is dynamic and thus implementation becomes com-
plex. Additionally, for multivariable systems with time delays, 
and assuming that the individual loops have different time delay 
values, the prediction is again complicated by manipulations of 
matrices with different sizes. Again, in this case, the implemen-
tation becomes difficult.

A simple solution to the matrix manipulation in presence of 
time delays is to assume a Smith-Predictor scheme [54] for the 
EPSAC algorithm, as applied in previous works [45, 55‒57]. 

The scheme is visible in Fig. 1. In this figure we do not estimate 
the delay, but we assume it known. if delay is known, then 
the MPC predictions can be done on the model without delay, 
and all matrices remain of constant size. This is a reasonable 
decision, taking into account that any changes in the controlled 
variable (i.e. in the output of the process) are only visible once 
the time delay has passed. Hence, the delay horizon is defined 
as Nd = 1 + delay.

In particular for the complete EPSAC formulation, but valid 
also for the generic MPC case, is illustrated in Fig. 1. At each 
sampling instant, the delay-free model output x(t) is calculated 
using the stored values [x(t1), …, u(t1), …]. At the same sam-
pling instant, the variable time delay is estimated/computed. 
If the delay value in samples Nd is known, x(t ¤ Nd ) can be 
selected out of the stored x-values, such that an intermediate 
variable z(t) = x(t ¤ Nd ).

4.	 Analysis on Representative SISO Process 
Dynamics – Simulation Examples

4.1. Processes Requiring Only Prediction Model Data. A set 
of process types has been analysed for automatic tuning of 
MPC prediction horizon, control horizon and approximation 
to FOPDT process model structure. These processes are suc-
cessfully controlled with the parallel implementation of MPC 
(i.e. only model updates for prediction), a control horizon of 
one sample and a minimal value of the prediction horizon of 
10 samples.

Fig. 1. Smith-Predictor like EPSAC-MPC formulation for processes with variable time delays (SISO) or processes with multiple time delays 
functions (MIMO)

Process model 
dynamics

Variable time 
delay

Cost 
function

Process

Process model 
dynamics

EPSAC
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Delay dominant process:

	 P3(s) =  15
(s + 10)(s + 5)

e– 1s� (11)

with FOPDT approximation:

	 P3
¤(s) =  3

(s + 5)
e– 1s� (12)

has been tested for Ts = 0.1 seconds, Nu = 1, Nd = 11, Np =
= Nd + 10 samples, with the step response and closed loop 
result given in Fig. 6. Analysis of prediction horizon effect on 
performance without model mis-match is given in Fig. 7.

High order dynamics process:

	 P4(s) =  1
(s + 1)6

� (13)

with FOPDT approximation:

	 P4
¤(s) =  1

(s + 1)
e– 4 s� (14)

has been tested for Ts = 0.5 seconds, Nu = 1, Nd = 9, Np =
= Nd + 10 samples, with the step response and closed loop 
result given in Fig. 8. Analysis of prediction horizon effect on 
performance without model mis-match is given in Fig. 9.

Fig. 2. Lag Process: step response approximation with 13% model uncertainty (a) and the corresponding closed loop performance (b)

Step Response

Time (seconds)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5

0.25

0.2

0.15

0.1

0.05

0

0.3

Pr
oc

es
s 

ou
tp

ut

0 1 2 3 4 5 6 7 8 9 10

0.8

0.6

0.4

0.2

0

–0.2

Time (s)

Co
nt

ro
l o

ut
pu

t

0 1 2 3 4 5 6 7 8 9 10

0.8

0.6

0.4

0.2

0

–0.2

Fig. 3. Lag Process: arrow indicates the effect of  Np on closed loop performance
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Lag dominant process:

	 P1(s) =  15
(s + 10)(s + 5)

� (7)

with FOPDT approximation:

	 P1
¤(s) =  1

(s + 5)
e– 0.1s� (8)

has been tested for Ts = 0.1 seconds, Nu = 1, Nd = 2, Np =  
= Nd + 10 samples, with the step response and closed loop 
result given in Fig. 2. Analysis of prediction horizon effect on 
performance without model mis-match is given in Fig. 3.

Balanced process:

	 P2(s) =  15
(s + 10)(s + 5)

e– 0.3s� (9)

with FOPDT approximation:

	 P2
¤(s) =  1.5

(s + 5)
e– 0.4 s� (10)

has been tested for Ts = 0.1 seconds, Nu = 1, Nd = 4, Np =
= Nd + 10 samples, with the step response and closed loop 
result given in Fig. 4. Analysis of prediction horizon effect on 
performance without model mis-match is given in Fig. 5.

a) b)
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Fig. 4. Balanced Process: step response approximation with 21% model uncertainty (a) and the corresponding closed loop performance (b)
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Fig. 5. Balanced Process: arrow indicates the effect of Np on closed loop performance
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Fig. 6. Delay Dominant Process: step response approximation with 13% model uncertainty (a) and the corresponding closed loop performance (b)
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Underdamped dynamics process:

	 P5(s) =  15
s2 + 10s + 290

� (15)

with FOPDT approximation:

	 P5
¤(s) =  0.6

(s + 10)
e– 0.01 s� (16)

has been tested for Ts = 0.01 seconds, Nu = 1, Nd = 2, Np =
= Nd + 20 samples, with the step response and closed loop 
result given in Fig. 10. Analysis of prediction horizon effect 
on performance without model mis-match is given in Fig. 11.

Integrating dynamics process:

	 P6(s) =  32
s3 + 20s2 + 64s

� (17)

Fig. 8. High Order Process: step response approximation with 8% model uncertainty (a) and the corresponding closed loop performance (b)

Fig. 10. Underdamped Process: step response approximation with 8% model uncertainty (a) and the corresponding closed loop performance (b)
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with FOPDT approximation:

	 P6
¤(s) =  1

s(s + 2)
e– 0.02 s� (18)

has been tested for Ts = 0.02 seconds, Nu = 1, Nd = 2, Np =
= Nd + 30 samples, with the step response and closed loop 
result given in Fig. 12. Analysis of prediction horizon effect 
on performance without model mis-match is given in Fig. 13.

4.2. Processes Requiring Realignment of Prediction Model 
to Output Data. The following is a series of systems which 
require the process output to be realigned to model output, 
due to significant model mis-match or unstable dynamics. The 
results are for control horizon of one sample, and a longer pre-
diction horizon than for the processes in previous subsection.

Poorly damped dynamics process:

	P7(s) =  160 000
2.4s4 + 16.65s3 + 4473s2 + 14 000s + 1 300 000

�(19)

with FOPDT approximation:

	 P7
¤(s) =  1

(s + 5)
e– 1s� (20)

has been tested for Ts = 0.01 seconds, Nu = 1, Nd = 101, Np =
= Nd + 30 samples, with the step response and closed  
loop result given in Fig. 14. Analysis of prediction horizon 
effect on performance without model mis-match is given in 
Fig. 15.

Fig. 11. Underdamped Process: arrow indicates the effect of Np on closed loop performance
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Fig. 12. Integrating Process: step response approximation with 6% model uncertainty (a) and the corresponding closed loop performance (b)
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Non-minimum phase dynamics process:

	 P8(s) = 
–15(s ¡ 2)

(s + 1)(s + 10)
� (21)

with FOPDT approximation:

	 P8
¤(s) =  3

(s + 1)
e– 0.5s� (22)

has been tested for Ts = 0.1 seconds, Nu = 1, Nd = 6, Np =
= Nd + 30 samples, with the step response and closed loop 
result given in Fig. 16. Analysis of prediction horizon effect 
on performance without model mis-match is given in Fig. 17.

Unstable in open loop dynamics process:

	 P9(s) =  1
(s + 10)(s ¡ 10)

� (23)

Fig. 14. Poorly Damped Process: step response approximation with 7% model uncertainty (a) and the corresponding closed loop performance (b)
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Fig. 9. Lag Process: arrow indicates the effect of  Np on closed loop performance
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Fig. 16. Non-minimum Phase Process: step response approximation with 2% model uncertainty (a) and the corresponding closed loop performance (b)
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with FOPDT approximation:

	 P9
¤(s) =  1

(s + 10)
e– 0.001s� (24)

has been tested for Ts = 0.001 seconds, Nu = 1, Nd = 2, Np =
= Nd + 30 samples, with the step response and closed loop 
result given in Fig. 18. Analysis of prediction horizon effect 
on performance without model mis-match is given in Fig. 19.

4.3. Analysis Outline. The study on the effect of prediction 
horizon on the closed loop dynamics in absence of modelling 
errors allows a clear analysis for the selected processes.

In general, the prediction horizon is chosen according to the 
settling time of the closed loop system. If the settling time ts of 
the closed loop system goes to ts when Np increases, then Np 
can be chosen as a ratio between the settling time and the sam-
pling period Ts. A drawback in practice is that due to noise and 
disturbances, it may be difficult to determine the exact value of 

the settling time, but an interval for the process output within 
5‒10% around the averaged final value is acceptable. Assuming 
the closed loop system settles faster than the open-loop, then 
the rule works fine in most of the cases. For poorly damped 
systems or unstable processes, the prediction horizon should be 
linked to the rise time tr instead. As a rule of thumb, the relation 
Np = 3tr/Ts may be applied. It has been shown that these rules 
are quite effective in manifold SISO and MIMO cases [46].

The choice of a good sampling period remains of crucial 
importance and often a challenge. In our simulation cases, the 
sampling time has been chosen 10‒20 times smaller than the 
settling time of the step response and the prediction horizon 
between 10‒30 samples. In this case, as observed from the 
analysis in absence of model uncertainty, the sensitivity of the 
closed loop to changes in the prediction horizon is small and 
the problem of tuning this parameter no longer poses problems.

Exception are some specific processes. Processes with com-
plex conjugated poles dynamics exhibit periodic drops in the 
gain margin for increasing values of prediction horizon [46]. 
This is in case of poorly damped processes (15) and (19), or 

Fig. 17. Non-minimum Phase Process: arrow indicates the effect of Np on closed loop performance
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Fig. 18. Unstable Process: step response (a) and the corresponding closed loop performance (b)
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processes showing non-minimum phase and complex poles 
dynamics. In these cases the prediction horizon must take higher 
values, and, for very low damping values, the process model 
must be updated with real output data for realignment. Pro-
cesses with time delay in general are tunable with these rules, 
but if they are coupled with non-minimum phase dynamics, 
the closed loop is very sensitive to model mis-match. In this 
case, the realignment scheme must be used. Unstable open loop 
dynamics have periodic increase and decrease in gain margin 
robustness as prediction horizon increases, and essentially 
require realignment; loop sensitivity may be improved if con-
trol horizon is larger than one.

The basic algorithm for hands-on tuning of MPC control 
loops based on step response data can be summarized as follows:
●	 obtain the step response of the process and decide on a suit-

able sampling period,
●	 approximate a FOPDT model,
●	 verify dynamics of the real process and evaluate if you need 

realignment or not,
●	 based on previous step use a prediction horizon between 

10‒30 samples,
●	 for realignment case use larger prediction horizon than 30 

samples.
An additional set of conclusions can be extracted to aid the 

operator tune the MPC easily.
●	 even in case of parallel scheme, if important modelling 

errors are present, the prediction horizon must be enlarged,
●	 if the process with enlarged prediction horizon and signifi-

cant modelling errors does not give satisfactory performance 
in closed loop, then model with realignment MPC scheme 
must be used,

●	 the time of dynamics which cannot be captured by FOPDT 
structure, e.g. non-minimum phase, poorly damped oscilla-
tions, must be approximated by delay,

●	 if the process has non-minimum phase dynamics which are 
rather small compared to the overall dynamics, then the MPC 
scheme without model realignment gives satisfactory results; 
if the non-minimum phase part in the dynamic response is 
significant, then realignment scheme must be used,

●	 open loop unstable systems must be approximated by a pre-
diction model in the form of limit stability (i.e. complex 
conjugated poles without real part), instead of FOPDT.
Notice all this analysis has been made for control horizon 

of one sample. As explained beforehand, this is the least costly 
implementation of predictive control and in absence of con-
straints it delivers a direct analytical solution. Beyond the scope 
of our paper, a complete and rather practical analysis of all avail-
able tuning parameters in predictive control is given in [25, 46].

5.	 Experimental Validation  
for SISO Process Control

In this section, three existing setups in our laboratory have been 
chosen for experimental validation of the proposed heuristic 
MPC tuning approach: i) a variable time delay process; ii) 
a non-minimum phase dynamic process and iii) an open loop 
unstable process.

5.1. Temperature Control. This is a process with variable time 
delay as the flow is the manipulated variable to control the out-
put temperature. The setup depicted in Fig. 20 has a water tank 

Fig. 20. Photos of the various components of the thermal regulatory process with variable time delay
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with constant heat source and a regulated level for a constant 
inlet flow of cold water. A pump applies changes to the warm 
tank water outflow to regulate the temperature at the output 
measured at the end of a pipeline. Due to the fact that the flow 
is manipulated to regulate outlet temperature, the time delay 
values are varying during operation.

The approximation of the step response of the process is 
given by

	 PT HERMAL(s) =  – 950
67s + 1

e– 15s� (25)

and the closed loop response of the MPC algorithm for Nu = 1, 
Nd = 4 and Np = Nd + 20, with a sampling period of Ts = 4 sec-
onds is given in Fig. 21.

5.2. Level Control. This example is a single unit of connected 
water basin system for level control and manipulated pump 
output from a reservoir. A photo and scheme of the full sextuple 
(three units) tank system is given in Fig. 22. The system exhib-
its non-minimum phase dynamics. The input to this system is 
denoted as the voltage Vp supplied to the volumetric pump 
motor, while the output is denoted as H 2 and represents the 

Fig. 21. Temperature Control: closed loop response. To is the outlet temperature to be controlled; Tt is the water temperature in the tank

Time (s)

Fig. 22. Photo of the setup with the components and equivalent scheme for one unit: Dt is the tank diameter; Do is the outlet diameter from 
tank; α is the percentage opening ratio valve for the water flow denoted by Q
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level in the lower tank. The process is connected to Matlab via 
Quanser interface and Simulink block scheme as in Fig. 23. The 
MPC algorithm is the one based solely on the prediction model 
information (i.e. no realignment).

The step response is given in Fig. 24, with the FOPDT 
approximation as:

	 PNMP(s) =  4.25
50s + 1

e– 15s� (26)

The closed loop response for Nu = 1, Nd = 16 and Np = Nd + 50 
and sampling time of Ts = 1 second is given in Fig. 24.

5.3. Position Control. The process is a ball and plate system, 
consisting of a 6 degree of freedom platform for position con-
trol. The system in Fig. 25 has been used to test the hands-on 
tuning of EPSAC-MPC. Other types of control have been suc-
cessfully tested on this nonlinear open loop unstable system 
[58‒60]. The dynamics of the ball and plate platform vary sig-

Fig. 23. The Simulink scheme with communication interface to Quark for the Quanser platform for real time deployment of the control system

Fig. 24. Level Control: step response with FOPDT approximation (a) and the closed loop response (b)
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nificantly as a function of the ball characteristics, as discussed 
in [61]. Here, we use one ball and an approximated FOPDT 
model from the impulse response test, as the true system con-
tains an integrator and a close to origin pole:

	 PBP(s) =  –15
15s + 1

e– s .� (27)

Realignment scheme and prediction horizon of 30 samples for 
a sampling time of 0.1 seconds has been implemented with the 
results depicted in Fig. 26.

6.	 Exploring MIMO Process Control

6.1. MPC Formulation for MIMO Processes. The MIMO 
formulation for EPSAC-MPC follows the SISO formulation. 
The basic equation for MIMO EPSAC for a 2£2 process is 
given by:

	
y1(t) = x1(t) + n1(t)
y2(t) = x2(t) + n2(t)

� (28)

where

x1(t) = f1[x1(t ¡ 1), x1(t ¡ 2), …, u1(t ¡ 1), u1(t ¡ 2), …]

x2(t) = f2[x2(t ¡ 1), x2(t ¡ 2), …, u2(t ¡ 1), u2(t ¡ 2), …]
�(29)

The term in n(t) denote the disturbance and modelling errors 
effects, modelled by coloured noise:

	

n1(t) = 
C1(q–1)

D1(q–1)
e1(t)

n2(t) = 
C2(q–1)

D2(q–1)
e2(t)

� (30)

with e(t) white noise signals. The algorithm presented in detail 
in [47] introduces the concepts of base response and optimizing 
response:

	
y1(t + kjt) = y1base(t + kjt) + y1opt(t + kjt)

y2(t + kjt) = y2base(t + kjt) + y2opt(t + kjt)
� (31)

Fig. 25. Photo of the ball and plate setup with the corresponding camera-based feedback interface for testing

Fig. 26. Closed loop performance of the ball position for a step train test
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In general, the prediction horizons Np could be different for the 
two outputs, whereas the control horizons Nu could be different 
for the two inputs. In this study we assume control horizon to 
one sample and same prediction horizon in all loops.

Extension from SISO case, the key equation for MIMO 
EPSAC is:

	
Y1 = Y– 1 + G11 ¢ U1 + G12 ¢ U2

Y2 = Y– 2 + G21 ¢ U1 + G22 ¢ U2 .
� (33)

Two implementations are possible for MIMO systems, 
described in detail elsewhere [62, 63]. Essentially, one opti-
mization finds the best strategy for each loop, while using the 
information from the other loops from its own benefit. By con-
trast, the other strategy finds the best solution for all loops. 
Consider the cost function is given by:

	

+ 
k=Nd

Np

∑ [r1(t + kjt) ¡ y1(t + kjt)]2 +

+ 
k=Nd

Np

∑ [r2(t + kjt) ¡ y2(t + kjt)]2
� (34)

with rj denoting reference signals for all j controlled out-
puts and subject to u1(t + k jt) = u1(t + Nu ¡ 1jt) and to 
u2(t + kjt) = u2(t + Nu ¡ 1jt) for k ¸ Nu. Which is also valid 
for the case when the number of inputs differs from the number 
of outputs. In (34), the predicted control errors summed over 
all process outputs are minimized. In practice, this implies that 
some variables may deliberately allow more errors to help other 
variables reach the setpoint in order to minimize the global cost. 
In EPSAC-MPC formulation, this is known under the name of 
solidary control.

Relation (34) can be re-written as:

	 J(U) = UTHU + 2fTU + c� (35)

it follows that:

	

H = GT
1G1 + GT

2G2

f = –[GT
1(R1 ¡ Y–1) + GT

2(R2 ¡ Y–2)]

c = (R1 ¡ Y–1)
T(R1 ¡ Y–1) + (R1 ¡ Y–1)

T(R1 ¡ Y–1)

� (36)

with G1 = [G11 G12] and G2 = [G21 G22]. In the situation 
there are no constraints active, the exact solution is given by 
U¤ = –H–1f, as:

	
U¤ = –[GT

1G1 + G2TG2]
–1[GT

1(R1 ¡ Y–1) +

U¤ + GT
2(R2 ¡ Y–2)].

� (37)

6.2. Simulation Analysis on a Train of Cryogenic 13C Sep-
aration Columns. For distillation columns, the chemical pro-
cess industry has a direct matrix control type of MPC [64], 
but other versions of MPC have been implemented [65] and 
MPC-EPSAC as well [66]. Figure 27 depicts the distillation 
columns described in detail in [67]. For a column to operate, 
the key elements are represented: i) the condenser (C1) at the 
top of the column cooled with liquid nitrogen and ii) the elec-
trical boiler at the bottom of the column and vacuum jacket for 
thermal isolation. Carbon monoxide (CO) is fed as a gas at an 
intermediary point in the column. Flow transducers (FT) and 
flow controllers (FC)/pumps are installed on the feed, waste 
and product flows. A dedicated level transducer (LT) for liquid 
CO and a level controller (LC) are present at the bottom of the 
column. Pressure transducers (PT) are installed at the top and 
bottom of the column. The train of distillation columns operates 

or in matrix format:

y1opt(t + 1jt)
y1opt(t + 2jt)

…
…

y1opt(t + N2jt)

 =  

	h1
11	 0	 0	 …	 0

	h2
11	 h1

11	 0	 …	 0
	… 	 …	 …	 …	 …
	… 	 …	 …	 …	 …
	h11

Np	 h11
Np ¡ 1	 h11

Np ¡ 2	 …	 g11
Np ¡ Nu + 1

δu1(t jt)
δu1(t + 1jt)

…
…

δu1(t + Nu ¡ 1jt)

 +

 +  

	h1
12	 0	 0	 …	 0

	h2
12	 h1

12	 0	 …	 0
	… 	 …	 …	 …	 …
	… 	 …	 …	 …	 …
	h12

Np	 h12
Np ¡ 1	 h12

Np ¡ 2	 …	 g12
Np ¡ Nu + 1

δu2(t jt)
δu2(t + 1jt)

…
…

δu2(t + Nu ¡ 1jt)

.

� (32)
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as follows. The first column is fed with carbon monoxide at 
an intermediary point approximately one third from the top of 
the column. The enriched 13C gas from the bottom of the first 
column is taken as the feed to the top of the second column, 
and further sent to the third column in the same manner. The 
waste flow from the third column is recirculated to the bottom 
of the second column, with a similar recirculation loop from the 

second to the first column. The waste from the first column is 
stored into a reservoir.

The complex nonlinear model of a single column has been 
previously linearized around its equilibrium point and scaled 
in a [–100%, +100%] range [55, 67]. The following models 
are used for simulating the real process in its operating point. 
First column model:

pt1

hCO1

pb1

(s) =  

	 – 0.1111
s2 + 1.094s + 0.08423

e–10s	 0.1152
s2 + 1.211s + 0.2021

e–32s	 0

	 – 0.001731
s2 + 0.1343s + 0.001961

e–10s	 0.003846
s2 + 0.1547s + 0.004357

e–8s	 – 0.104
s + 0.1176

	 – 0.009918
s2 + 1.056s + 0.07036

e–18s	 0.006288
s2 + 1.085s + 0.09851

e–35s	 8.457
s + 0.9851

W1

F1

Pel1

(s)� (38)

Second column model:

pt2

hCO2

pb2

(s) =  

	 – 0.1111
s2 + 1.111s + 0.1011

e–8s	 0.1152
s2 + 1.311s + 0.3033

e–30s	 0

	 – 0.001731
s2 + 0.13s + 0.0022

e–8.5s	 0.003846
s2 + 0.15s + 0.0044

e–7s	 – 0.104
s + 0.12

	 – 0.009918
s2 + 1.06s + 0.0784

e–16s	 0.006288
s2 + 1.105s + 0.1225

e–30s	 8.457
s + 0.98

W2

F2

Pel2

(s)� (39)

Fig. 27. Schematic of a train of distillation columns
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These models have defined as manipulated variables: the 
waste flow, feed-flow and electrical power supply in each col-
umn. The controlled variables are: the top pressure, bottom 
pressure and liquid CO level in each column. Simplified models 
describe the interaction between the column:

	

hCO1(s) =  1
10s + 1

W2(s), hCO1(s) =  –1
10s + 1

F2(s)

hCO2(s) =  1
10s + 1

W3(s), hCO2(s) =  –1
7.5s + 1

F3(s)

hCO3(s) =  –1
6s + 1

P3(s)

� (41)

where P3 is the product flow from the third column.
This section presents the results of the EPSAC tests on 

the train of distillation columns afore mentioned. The sam-
pling period is 1 minute, and all related designs are reported in 
samples. The model for prediction contains only the relations 
between the manipulated inputs: feed flow in the first, second 
and third column respectively, and the controlled outputs: car-

bon isotope in first, second and third column. Information upon 
reflux from third to second column and from second to first 
column is also used for prediction.

The control scenario is as follows: follow the desired tra-
jectory in the output of the third column, while maintaining 
the other outputs around their operating point. All variables 
have been scaled between §100% and the operating point is 
denoted by 0. A physically safe interval of operation has been 
established:

	
–10% ∙ U1, U2, U3 ∙ 30%

–100% ∙ Y1, Y2, Y3 ∙ 100%
� (42)

and a rate limiter in the control effort of 10%.
A selfish constrained EPSAC approach has been tested with 

a hands-on tuning for prediction horizon of 10 samples and 
FOPDT approximated models for prediction. The results are 
given in Fig. 28.

6.3. Experimental Test on a Sextuple Water Tank System. In 
this section we describe the sextuple tank system from Quanser 

Third column model:

pt3

hCO3

pb3

(s) =  

	 – 0.1111
s2 + 1.131s + 0.1213

e–7s	 0.1152
s2 + 1.361s + 0.3538

e–24s	 0

	 – 0.001731
s2 + 0.145s + 0.003

e–6s	 0.003846
s2 + 0.17s + 0.006

e–5s	 – 0.104
s + 0.14

	 – 0.009918
s2 + 1.085s + 0.0985

e–13s	 0.006288
s2 + 1.12s + 0.133

e–27s	 8.457
s + 0.985

W3

F3

Pel3

(s)� (40)

Fig. 28. Simulation result for hands-on tuning with MIMO EPSAC on the train of separation columns
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depicted in Fig. 22 with a schematic diagram given in Fig. 29.  
The control objective is to regulate the level of the water in the 
lower tanks by manipulating the inlet flows to the three way 
valves. The plant has three manipulated inputs, i.e. the voltages 
of the three pumps Vp1(t), Vp2(t) and Vp3(t) (expressed in Volts) 
and three controlled outputs, i.e. the water levels of the three 
tanks below, L2(t), L4(t) and L6(t) the levels in tank2, tank4 and 

Fig. 29. Schematic diagram of the sextuple tank process

tank6 respectively (all expressed in cm). A detailed description 
of the process is given in [68].

Step response test has been performed and FOPDT model 
approximation extracted for prediction. A hands-on tuning of 
prediction horizon of 10 samples with sampling time 1 second 
has been used. The experimental results are given in Figs 30 
and 31.

Fig. 30. Experimental result of the sextuple tank level control with hands-on MIMO EPSAC MPC tuning. Data depicts levels in the controlled 
water tanks 2, 4 and 6, and their respective manipulated variable pump voltages
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7.	 Limitations of this Study

The above methodology can be directly applied also to non-
linear processes by calculating the step response coefficient 
matrix at every sampling time Ts, within each optimization step. 
The amplitude of the step to the process is in this case not uni-
tary, but relative to the actual expected control effort variations. 
In this way is ensured that the process is not disturbed from 
its nominal operation and the nonlinear dynamics are captured 
for prediction in the vicinity of current operation point. This 
approach avoids local linearization of the process, as explained 
in [47]. In this study we did not analyse the applicability of the 
hands-on tuning rules for EPSAC-MPC to strongly nonlinear 
processes. The experimental results presented here both SISO 
and MIMO have moderate nonlinear dynamics.

Constraints are not included in this study. The experi-
mental tests have used control variables which do not demand 
accurate control. Tolerance intervals for output variables may 
be satisfied by tuning the prediction horizon, i.e. increasing it 
leads to slow and robust control performance. Input constraints 
are not explicitly imposed, but min-max tolerance intervals 
may be satisfied. Rate limiters and effects of resolution mis-
match will pose more significant limitations on the perfor-
mance, but we except this will not affect the hands-on tuning 
principles, as long as closed loop performance is stable and 
satisfactory.

Optimality in the sense of tuning the controller parameters 
is not included as it moves away from the hands-on tuning 

principles. The tuning is supposed to be in this context based 
on limited process information and in absence of an accurate 
prediction model.

8.	 Conclusions

A hands-on tuning method for predictive control based on min-
imal process data is presented. The following principles have 
been taken into account when proposing the EPSAC-MPC 
methodology with the tuning rules:
●	 applicable to large class of process types;
●	 does not require specialised control theory and insight train-

ing of process operators;
●	 easily implementable with short execution times.

The results obtained in both simulation and experimen-
tal validation suggest the method is applicable by non-expert 
users.
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