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The binary algorithm of cascade connection of nonlinear digital filters
described in functional series

M. SIWCZYNSKI and S. ZABA
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Abstract. The article presents an example of the use of functional series for the analysis of nonlinear systems for discrete time signals. The
homogeneous operator is defined and it is decomposed into three component operators: the multiplying operator, the convolution operator and
the alignment operator. An important case from a practical point of view is considered — a cascade connection of two polynomial systems. A new,
binary algorithm for determining the sequence of complex kernels of cascade from two sequences of kernels of component systems is presented.
Due to its simplicity, it can be used during iterative processes in the analysis of nonlinear systems (e.g. feedback systems)..
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1. Introduction

The Volterra and Fredholm functional series are a universal tool
for identification and analysis of nonlinear systems [1—17]. In the
iterative algorithms, a basic thing is the process of determining
the operator of cascade of the systems described by the homo-
geneous operators. This is a tedious and time consuming pro-
cedure, which is why this paper proposes a new, fast algorithm
consisting in generating all binary words with a given number
of bits. Then these words are sorted by the number of “ones”
(“1”) contained. On this basis, using the procedure presented in
this study, it is possible to determine the sequence of kernels of
cascade from two sequences of kernels of component systems.

2. Time-discrete functional series and their
multidimensional complex representations

A functional series could be defined as a universal description
of the nonlinear system transition function and is a generaliza-
tion of the convolution operator:

= Py (1

The homogeneous operator, as in the transition function of
the digital filter, is called the operator:

ZZ Zh N—=Ny,N—=Ny, ..., n—1, XXy o xnp (2)

ny o ny

pr

where the summation is extended to the full axes of integers. Its
further generalization is the polynomial operator P", defined as:
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and finally the analytical operator. The basis for the functioning

of the analytical operator is the homogeneous operator com-

posed of three operators:

e the multiplying operator (the operation symbol —

The multiplying operation is the transform of the sequence
of one variable {x,} into the sequence of p-variables accord-
ing to the rule:

L X, =x2 “)

ny,...,n

{x,} = x,x ,

ny o X

e the convolution operator (the operation symbol — *)

(h*x®), ... —Z Zhnl - N €

e the alignment operator (the operation symbol — )

(hx?), = (h=x?), . (6)

This is illustrated by the block diagram shown in Fig. 1.
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Fig. 1. Block diagram of three component operators of the homoge-
neous operator
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Introducing to the considerations operations of the multidi-
mensional Z-transform of the signal:

n
& X, %)

)%(zl, ...,zp) :Z ...sz‘
n n,

and the inverse transformation:

X = 1 J. J‘ Z7’11 Zinﬁ .
Nyyeel, 7 1 Zp
P (27[]) |21|:1 ‘Zp‘71 (8)
)?(zl, oo zp)dlnz1 dlnzp

the individual components of the homogeneous operator can be
introduced into the Z-domain.

The multiplying operation (A — the Fourier transform sym-
bol)

() (2 ...
- {Zz;"x

’Zp):

IR WA
n n,
|| Zbn)| = 560 56

)

ny

Therefore, the multiplying operator commutates with the Fou-
rier operator (-)":

()" = (®)°

The convolution operation it is performed according to the
Borel’s theorem:

h#x®)" (zl,...

(10)

—

k‘)

(m)

(2
(2 ) ( 1) 5(3)-

The most difficulties are apparently simple the alignment
operation. It should be done first for two variables:

&“)

Vo, = I I 2,"2,"9 (2, 2,)dInz,dnz, (12)

2
Q) i

whence it follows that

Jo I )

[ai]=1|zl=1

Ynn = zl, zz)dlnz dlnz,. (13)

(2ﬂJ
Substituting a new variable:
212, =2

and then after the logarithmic operation
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Inz, +Inz,=1Inz

is obtained

Yun J [ 9z 22, ")dInz, [dinz. (14
z|=1 |z)=1
Hence, it follows that
1 A _
07035 i
. (15)
“w _[lﬁ(zzzl,zz)dlnzz.

Obtained in this way the alignment operator in Z-domain (®)
will be denoted with a direct symbol in the following form:

(»)® I Pz, 22, aflnz1

‘71:

(16)

For the signals of several variables, by induction way, the fol-
lowing formula can be obtained:

A 1 -
) ’ (@)= (27j)? ()" .[ j Y& 224 g
'] |z, =1 |zl=1]z/=1 (17)
235, s o2z, )dInzg, . dlng, .

Thus, the entire homogeneous operator in Z-domain is rep-
resented by the cascade connection of the three blocks shown
in Fig. 2.

% X(z 2,
F0 muLteLyvG @) )
hz, 2p)%(z1) - £(zp)
»| CONVOLUTION
R . ®
» aLawMent |G 2)iE) . )] )

Fig. 2. Block diagram of the homogeneous operator in the Z-domain

3. Cascade of polynomial systems
Figure 3 shows an important practical case of the cascade con-

nection of two polynomial systems.

Bull. Pol. Ac.: Tech. 67(5) 2019
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which gives the sequence of kernels:

#(z) 7@ *(2) 7(2)

Fig. 3. The cascade connection of polynomial systems G, H and the
polynomial equivalent system K

The following data are given:
e the sequence of kernels of the system G in Z-domain

g1(11)a éz(zla Zz)» §3(Zl’ 22 Z3)s

e the sequence of kernels of the system H (also in Z-domain)

hy(zy), ilz(zl, ), 23(z1, 25:23)s o
The sequence of kernels of the equivalent system K is sought:
i‘l(zl)’ i‘z(zl’ 2), i‘z(zv 23, 23)5 -

The output of the cascade is determined by the following for-
mula:

(18)

The individual components are further developed as follows:
e The first component:

> [izl(zl, o 2) &2 o 2,) R(zy) - )Ac(z,.)}@(z)

r>1
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le(z) 21(2), hy (21 22) &:(21 25

i’l(zlﬂ 225 23) g}(zla 225 23),

e The second component:

[ilz(zp Zz)é’l(21)f;’1(Zz)fc(zl);c(zz)}®(z) N

+ [il2(zl’ Zz)gAl(Zl)fC(Zl) (gz(uls U,
— [ 221 25) él(Zl)gl(zz))%(zl)g(zz)}@(z) N

h
+ [(Az(uluz, zz)gz(ul, uz)gl(zz) )

: fc(ul))%(u2)£(z2))®”‘:”2:Z2(zl, 22)}(%(2) +
+[(i'2(51’”1” )&z 1)g2( 1) 81(25) -

(2, 2)] () + -

= [y 22) 81(21) 8(2) £ (21) £ ()] () +
(2120025 2zl,z2>gl< )55 (2) 2 ()] () +
[(hafers 2273) 81(20) 8220 23) £(20) £(2)3(e)] () +

which gives the sequence of kernels:

0, hy(z), 25) 1(21) &:1(22)
hQ(ZIZZ’ Z3)§2(Z1a ZZ) gl(ZS) -+ hz(Zl, Z223)§1(Zl)§2(22, Z3)5

(® — the zero function)

e The third component gives the sequence of kernels:

0, 0, fls(ZpZz, Z3)§1(11)§1(12)§1(23),

The whole sum gives individual kernels of the equivalent sys-

IAcz(zl,z2 =h, 212,)&(21, 20) + h 221, 22)81(21) &1(z2)
ky(z,20023) = 7y (2,2023) 83(215 22023) +
+ Iy (2,20 23) €521, 22) &1 (25) + (19)
+ Iy (20 2525) 81(2)) 85 (20 23) +
+ h 3@ 22:23) &1(21) £1(22) &1 (25)

This is a tedious and time consuming process, so before the
next expressions are written (k4(zl, 255235 z4), ks(21,29:235 245 ZS),
ké(zl,zz,z3,z4,zs,zé), ...), anew way of determining expres-
sions for individual kernels is proposed.
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4. The binary algorithm of cascade

The following binary algorithm for creating the combination of
z variables for the /4 function (the second one in the cascade)
applies:

Table 1
The order of the /4 function — 2

The number of commas

NBC 0 1

0 0

hy hy

Table 2
The order of the /4 function — 3

The number of commas
NBC 0 1 2
00 00
01 01
10 10
11 11
hy hy hy
Table 3
The order of the / function — 4
The number of commas
NBC 0 1 2 3
000 000
001 001
010 010
011 011
100 100
101 101
110 110
111 111
h, h, h, hy

In the NBC column, we write in natural binary code all com-
binations of m-bits, where m is 1 smaller than the order of the
h function. Such a set of zero-one words is divided into subsets
containing 0, 1, 2, .., “ones” (“1”) (to individual columns rep-
resenting the number of commas, we enter the combinations of
zero-one words whose number of ones is equal to the number of
the column). In the subsets of the above-mentioned words, “1”

966

means a comma between the z variables, and “0” —no comma
(the action of multiplication the z variables). Each subset (col-
umn) defines the appropriate combination of the variable of /
function, e.g.:
® the order — 3, the bit word 00 is in column 0 (does not con-
tain any 1), hence the entry for the /#; component:

00 — le(z?zgz3) - hy(z12,25)

® the order — 3, the bit word 11 is in column 2 (contains two 1),
hence the entry for the /; component:

~

11— hy(zlz125) = hy(z1.25.25)

® the order — 4, the bit word 010 is in column 1 (contains
one 1), hence the entry for the /4, component:

010 —» izz(z?zzlzgz4) - ilz(Zﬂz’ZsQ)

® the order — 4, the bit word 101 is in column 2 (contains
two 1), hence the entry for the /; component:

101 — hy(z'202)2,) = hy(z2025024)
Then, sets of the function g are appended according to the fol-
lowing examples (the subscript of the function g is the number
of z variables — z variables in the g function record are always

separated by a comma — of course, except for one variable):

® the order — 3

h, (212223) > h, (212223) 83(21, 25, 23)
T

the multiplication of 3 z variables,
will be g3

23(%12723) - 23(21722’13)31(21)91 (22) &1(z5)

1 z variable,
will be g,

1 z variable,
will be g,

1 z variable,
will be g,

® the order — 4

22(1112’1314) - 22(2112&324) gz(zl’ ZZ)§2(23, Z4)
—_—

N

the multiplication
of 2 z variables,
will be g,

the multiplication
of 2 z variables,
will be g,

~ ~

h3(11’21_3; Z4) - h3(11’1213’14)§1(21)§2(22513)§1(Z4)

the multiplication

of 2 z variables, will be g,

1 z variable,
will be g,

1 z variable,
will be g;

Bull. Pol. Ac.: Tech. 67(5) 2019
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Hence:

/%4(21’%’13’24) =
= h 1(01222324) 821200 23024) +
2125235 Z4) g3(z1,z2,z3)g1(z4) +
21225 Z314) (szz) g2(23,z4) +
+

o
o
2215 222324) &1(21) &3(20:23024)
g
(2
(3

b‘) N) N) kﬁ)

(Zl’zz)gl(z3) 1(Z4)

2 2232 ) l(zl)gz(zz,z3)g1(z4)

24290 23, 24) & (20)

k‘) xﬂ

Zq» zz,z3z) 1( 1) (zz)gz(z3,z4)+
}24(z1,z2,z3,z4)él(zl)él(zz)§1(13)§1(z4)

ks(21:25023020025) =

+
+
4
N
4
.
+

Example

A cascade connection of analytical systems will be used, among
others in a feedback system (Fig. 4), in whose circuit there is
a system described by an analytical operator with given kernels:

E1(Z1)s };2(11’22)’ ﬁ3(11322’Z3)>

v

+

H <&

Fig. 4. A feedback system

The feedback system is described by the operator equation:
y=x+Hy

This is essentially a non-linear integral type equation. Its solu-
tion will be sought in the form of:

y=Gx
where G is a searched analytical operator with unknown kernels:
81(2). 8(21:22) 832122025 -
Inserting the searched signal into the equation is obtained:
(G —1I)x=HGx

(I — the identity operator).

Bull. Pol. Ac.: Tech. 67(5) 2019

Hence, using the cascade formulas, by equating the kernels,
a system of equations is obtained:

g @) —1= l;l(z)gl(z)
(21, 22) = hy (2122) 8221, 22) + ﬁz(zls 2,)8:(21, 2)81(21)&1(22)
&3(21 2 1) = (212223) &2 220 23) +

+ hy(212, 23) 8221 22) &1 (23) +

+ hy(21, 2223) 81(21) 82(200 23) +

+h (Zl’ 22 23)g1(11)g1(zz)81(13)

from which successively the searched kernels are obtained:

g1\2)= —
Q)= "
he )3 ()8
§2(Z1= Zz) = 2(Z1 Zz)fl(zl)gl(ZZ)
1= hy(212,)
P ) B )2
g (Z s 295 2 ): Z(ZIZZ Z3)Ag2(21 ZZ)gl(Z3) N
3 &0 425 43
1- h1(212213)
ﬁ ** g g b
+ 221 2223) 81(21) &(22 23) N

1- hl(ZIZZZB)

}73(217 <2» Zs) gl(zl)gl (Zz)§1 (23)

+ =
1- hl(ZIZZZS)

5. Conclusions

The article concerns the description of nonlinear systems using
the Volterra and Fredholm functional series for discrete time
signals. After making multidimensional Fourier transforms, the
functional series is unambiguously described in the sequence
of functions of many complex variables. An important issue is
the problem of determining the sequence of complex kernels
of the system, which is a cascade connection of two nonlinear
systems, each of which is identified by its own sequence of com-
plex kernels. It is called the cascade problem. A new, unknown
way to determine the sequence of complex kernels of a cascade
from two sequences of kernels of component systems has been
developed. It is a simple and clear algorithm consisting in gen-
erating multi-bit sets, and then their appropriate sorting. Due to
its simplicity, it can be used in the analysis of nonlinear systems
during iterative processes, that appear when solving feedback
systems. This issue will be presented in a separate paper [18].
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