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AN ADAPTIVE KALMAN FILTER FOR ONLINE MONITORING OF MINE WIND SPEED

ADAPTACYJNY FILTR KALMANA DO CIĄGŁEGO MONITOROWANIA PRĘDKOŚCI 
PRZEPŁYWU POWIETRZA KOPALNIANEGO

The underground complicated testing environment and the fan operation instability cause large random 
errors and outliers of the wind speed signals. The outliers and large random errors result in distortion of 
mine wind speed monitoring, which possesses safety hazards in mine ventilation system. Application of 
Kalman filter in velocity monitoring can improve the accuracy of velocity measurement and eliminate 
the outliers. Adaptive Kalman Filter was built by automatically adjusting process noise covariance and 
measurement noise covariance depending on the differences between measured and expected speed signals. 
We analyzed the fluctuation of airflow flow using data of wind speed flow and distribution characteristics 
of the tunnel obtained by the Laser Doppler Velocimetry system (LDV) studies. A state-space model was 
built based on the tunnel airflow fluctuations and wind speed signal distribution. The ad aptive Kalman 
Filter was calculated according to the actual measurement data and the Expectation Maximization (EM) 
algorithm. The adaptive Kalman filter was used to shield fluid pulsation while preserving system-induced 
fluctuations. Using the Kalman filter to treat offline wind speed signal acquired by LDV, the reliability of 
Kalman filter wind speed state model and the characteristics of adaptive Kalman Filter were investigated. 
Result s showed that the adaptive Kalman filter effectively eliminated the outliers and reduced the root-
mean-squares error (RMSE), and the adaptive Kalman filter had better performance than the traditional 
Kalman filter in eliminating outliers and reducing RMSE. Field  experiments in online wind speed moni-
toring were conducted using the optimized adaptive Kalman Filter. Results showed that adaptive Kalman 
filter treatment could monitor the wind speed with smaller RMSE compared with LVD monitor. The st udy 
data demonstrated that the adaptive Kalman filter is reliable and suitable for online signal processing of 
mine wind speed monitor. 
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Złożoność środowiska w którym prowadzone są pomiary prędkości powietrza w warunkach ko-
palni podziemnych i niestabilność pracy wentylatorów kopalnianych mogą  generować znaczne błędy 
losowe w rejestrowanych przebiegach sygnałów prędkości przepływu oraz powodować pojawianie się 
wartości oddalonych. Rejestrowane wartości oddalone oraz znaczne błędy losowe powodują wypacze-
nie przebiegów sygnałów rejestrowanych przez system monitorowania prędkości przepływu powietrza 
kopalnianego, stwarzając poważne  zagrożenie dla bezpieczeństwa pracy i właściwego funkcjonowania 
systemu wentylacji. Zastosowanie filtru Kalmana w systemie monitorowania prędkości przepływu po-
wietrza kopalnianego poprawia dokładność pomiarów i eliminuje występowanie wartości oddalonych. 
Adaptacyjny filtr Kalmana opracowano w oparciu o regulację kowariancji sygnału szumu procesowego 
i szumu pomiarowego w zależności od różnicy pomiędzy zmierzonymi a oczekiwanymi wartościami 
sygnału prędkości przepływu powietrza. Przeanalizowano wahania prędkości przepływu powietrza na 
podstawie charakterystyk prędkości przepływu i jej rozkładu otrzymanych z badań prowadzonych przy 
wykorzystaniu laserowych systemów Dopplerowskich do rejestrowania prędkości LDV (Laser Doppler 
Velocimetry). Zbudowano model przestrzeni stanu uwzględniający fluktuacje prędkości przepływu po-
wietrza w tunelu oraz rozkład zarejestrowanych sygnałów prędkości przepływu powietrza kopalnianego. 
Obliczenia adaptacyjnego filtru Kalmana prowadzono w oparciu o bieżące dane pomiarowe, z wykorzysta-
niem algorytmu maksymalizacji wartości oczekiwanej (EM). Filtr adaptacyjny użyty został do wyrównania 
pulsacji przepływu powietrza, przy zachowaniu wszelkich zarejestrowanych fluktuacji wywołanych pracą 
układu. Filtr Kalmana wykorzystany został do obróbki sygnałów prędkości przepływu powietrza uzy-
skanych z systemu pomiaru prędkości LDV. Zbadano pewność i niezawodność modelu przestrzeni stanu 
prędkości przepływu powietrza uzyskanego z wykorzystaniem filtru i przeanalizowano charakterystyki 
adaptacyjnego filtra Kalmana. Wyniki wskazały, że zastosowanie filtru skutecznie eliminuje wartości 
oddalone i  prowadzi do zmniejszenia wartości błędu średniokwadratowego. Wykazano także, że filtra 
adaptacyjny Kalmana ma wyższą skuteczność od tradycyjnych filtrów Kalmana w zakresie eliminacji 
wartości oddalonych i redukcji błędu średniokwadratowego. Prowadzono ciągły monitoring prędkości 
przepływu powietrza kopalnianego w warunkach polowych z wykorzystaniem zoptymalizowanego adapta-
cyjnego filtru Kalmana. Zarejestrowane wyniki wskazują, że zastosowanie filtra adaptacyjnego do obróbki 
sygnału prędkości przepływu prowadzi do uzyskania niższych wartości błędu średniokwadratowego 
niż w systemach monitoringu LVD. Zebrane w trakcie badań wyniki wykazały pewność i skuteczność 
działania filtra adaptacyjnego przy jego zastosowaniu do ciągłego monitorowania prędkości przepływu 
powietrza w kopalniach.

Słowa kluczowe: prędkości przepływu powietrza kopalnianego, laserowy system Dopplerowski do reje-
stracji prędkości (LDV-Laser Doppler Velocimetry), filtra Kalmana, maksymalizacja 
wartości oczekiwanej, układ ciągłego monitorowania

1. Introduction

One of the basic conditions for mine safety production is a reliable mine ventilation system, 
especially in coal mine production. Accurate ventilation parameters must be tested to ensure ef-
fective ventilation. The air volume is one of the most important parameters for mine ventilation 
(Hartman et al., 2012). At present, mine air volume is calculated by testing the average wind 
speed at the tunnel test point section and the test point cross-sectional area. Therefore, the mine 
air volume is actually the average wind speed of the roadway test point section, or the average 
wind speed is obtained by measuring the average dynamic pressure value of the tunnel section 
through the piezometer. In order to obtain an accurate average wind speed in the tunnel section, 
some scholars conducted related testing and simulation study on the average value of single-point 
test of tunnel by using laser Doppler velocimeter and CFD simulation theory (Li et al., 2018; 
Song et al., 2016; Xu et al., 2010). The results showed that there was a positive correlation rela-
tionship between the wind sp eed at certain points in the roadway section and the average wind 
speed in the roadway section under certain conditions. The above study analyzed the relationship 
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between turbulent pulsation characteristics and cross-section wind speed and average wind speed. 
However, the accuracy of the average wind speed is determined by the precision and accuracy 
of the single point test data.

Therefore, it is necessary to get precise and accurate wind speed for accurate estimation of 
section air volume in the mine. Sensors are usually used for mine data collection. The results 
obtained by wind speed sensor monitoring often have large random errors and fluctuations, 
and outliers (Liu et al., 2016). Filtering is the common method for sensor signal processing 
(Cheng et al., 2009; Huang et al., 2015). There is random white noise in the mine wind speed 
monitoring, which is consistent with the use conditions of the Kalman filter (Andrews, 2001; 
Brown & Hwang, 1992). Kalman filters are used widely in various fields (Candiani et al., 2013; 
Louka et al., 2008; Şimşek et al., 2017; Zhang, 2018). Kalman filter can treat the disordered and 
fluctuating data collected by the roadway wind speed sensors to get valid mine wind speed data 
for analysis and therefore improve the accuracy of wind spe ed monitor by effectively shielding 
invalid measurement values.

We analyzed the fluctuation of airflow flow using data of wind speed flow and distribution 
characteristics of the tunnel obtained by the LDV studies. A state-space model was built based 
on the tunnel airflow fluctuations and wind speed signal distribution. The adaptive Kalman 
Filter was calculated according to the actual measurement data and the EM algorithm. Using 
the Kalman filter to treat offline wind speed signal acquired by LDV, the reliability of Kalman 
filter wind speed state model and the characteristics of adaptive Kalman Filter were investigated. 
Field experiments in online wind speed monitoring were conducted using the optimized adap-
tive Kalman Filter, the applicability of the adaptive Kalman filter in onlin e monitoring of mine 
wind speed were verified.

2. Adaptive Kalman filter

2.1. State space model

The flow of wind in the underground tunnel i s very complicated. Random changes in the 
state of the structure and unknown factors such as the operation of the mine cars lead to unstable 
airflow conditions, which would make large wind speed random errors and random fluctuations 
at the location of the wind speed monitoring sensors. It is difficult to identify whether alterations 
are turbulent pulsations or disturbances caused by system movement. The state space model 
is important for improving the performance of the Kalman filter. Kalman filter can filter the 
monitored data by shielding the fluctuations caused by turbulent pulsations so that the output of 
each monitoring moment is close to the true situations. Assuming that T is sampling interval, the 
Kalman filter model assumes the true state at time t is evolved from the state at (t-1) according 
to (Kalman, 1960): 

 xt = At xt–1 + Bt ut–1 + ωt–1 (1)

where At is a state transition model from the state of the previous moment xt–1 to the state of 
the moment xt; Bt is the control-input model, which is applied to the control vector ut ; ωt is the 
process noise which is assumed that the mean normal value of zero and the multivariate normal 
distribution  of the covariance Qt :ωt ~ (0,Qt).
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At time t a measurement zt of the true state xt is made according to

 zt = Ht xt + φt (2)

where Ht is the observation model which maps the true state space into the observed space; φt is 
the observation noise which is assumed to be zero mean Gaussian white noise with covariance 
Rt :φt ~ N(0, Rt).

The previous time estimate will be denoted as x̂t
–, where the “hat” denotes estimate, and the 

“super minus” is a reminder that this is the best estimate prior to assimilating the measurement 
at time of t. The Kalman filtering base equations are given by:
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where p̂t
– is the priori estimate error covariance; Kt is the Kalman gain.

In this state space model, At = I, Bt = 0, Ht = I, Qt = Q, Rt = R, where Q and R are constants. 
And the base equations are changed to:
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where zt[t] = vt is the measured instantaneous wind speed at the test point at time t, the unit is 
m/s. x̂t[t] = v̂t is the test point to estimate the instantaneous wind speed at time t, that is, the 
instantaneous point wind speed after Kalman filter processing, the unit is m/s.

2.2. Adaptive parameter adjustment

Process noise covariance Q and measurement noise covariance R are important for Kalman 
filter performance improvement (Brown & Hwang, 1992). Inappropriate R and Q make poor 
performance of the Kalman filter in eliminating o utliers and reducing rand om errors (Musoff 
& Zarchan, 2009). In practical applications, the R and Q are difficult to be determined. Only by 
constantly adjusting R and Q can the Kalman filter achieve the best performance.

EM algorithm is a method for finding maximum likelihood estimation parameters from 
incomplete data sets (Dempster et al., 1977). This method is widely used to deal with incomplete 
data such as defects, truncation, and noise (Do & Batzoglou, 2008). According to the deviation 
between the observed and estimated values, Kalman’s orthogonality and wind speed estimation 
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error, using the EM algorithm to achieve process noise covariance and measurement noise co-
variance adaptive adjustment can improve Kalman’s filtering performance.

The purpose of the Kalman-EM algorithm is to find a set of parameters θ = (Q, R,μ0,Σ0) 
that maximize the probability P(z0:T–1;θ ) of Kalman performance. Where μ0,Σ0 are the initial 
mean and variance, respectively.

Using μt |0 :t –1 to represent E(xt | z0:T–1), and Σt |0 :t  to represent Var(xt | z0:T–1), Where E(ζ ) 
is the mathematical expectation of ζ and Var(ζ ) is the variance of ζ. Then the Kalman filter 
recursively forwards to obtain:
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where μ1|0 = μ0, Σ1|0 = Σ0. To get max
θ
 P(z0:T–1;θ ), need to perform backward recursion:
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This gives the expressions of Q and R: 

 

*
0: 1 10: 1 10: 1 10: 1

2
*

10: 1 0: 1 10: 1 0: 1
0

1
1

T
t tt T t T t T t T

T T

t T t T t T t T
t

Q Q J J

Q
T

 (7)

 

1

0: 1 0: 1 0: 1
0

1 T T

t tt T t T t T
t

R z z
T

 (8)

The instantaneou s wind speed can be obtained by recursively calculating the basic equation 
(4) of the Kalman filter using the parameters calculated by equations (7) and (8).
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If the constraint condition of (9) is satisfied, the test value zt at time t is a normal value, 
otherwise zt is outlier, at this time, the estimated value is used as the true value at time t to update 
the process  noise covariance and the measurement noise covariance.
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2.3. Mine wind speed online monitoring signal processing

According to formulas (1) and (2), the online monitoring model for mine ventilation wind 
speed is defined as:

 
1 1t t t t

t t t
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Where v't is xt in equa tion (1), representing the wind speed processed by the Kalman filter, and 
vt is zt in equation (2), indicating the monitored wind speed. The unit of the wind speed is m/s. 

Defined vt as the set of  wind speeds monitored from 0 to t, and the operation steps of th  e 
adaptive Kalman filter in the online monitoring of mine ventilation wind speed are as follows.

Step 1: Set parameters. At = I, Ht = I .
Step 2: Initialization parameters. v'0 = v–t, Q0 = 1, R0 = 1E – 6.
Step 3: Adaptive parameter adjustment. Calculate process noise covariance Qt from time 0 

to time t according to  equation (7). And calculate the measurement noise covariance Rt 
from time 0 to time t according to equation (8).

Step 4: Kalman Fil  ter processing wind speed. The v't calculated by equation (4), that is, 
x̂t in equation (4). v̂t = v't [t], which describes the true immediate wind speed at time t.

Step 5: Discriminate the outliers according to equation (9). If vt contains an outlier, the 
monitored wind speed is replaced by the predicted value, i.e., vt = v̂t, and update the 
process noise covariance and the measurement noise covariance.

Step 6: Kalman Filter processing online wind speed. Input the monitoring wind speed vt' 
at time t', and add to the end of vt to form a new monitoring wind speed vector vt'’. Then 
execute Step3 ~ Step5 to obtain the predicted wind speed v't' at time t', and add to the end 
of v't to form a new predicted wind speed vector v't'. When the monitoring wind speed is 
inputted again, continue with Step6, otherwise wait for the new monitoring wind speed 
inputted.

3. Experiment

The mine wind speed monitoring is interfered by the complex and variable test environ-
ment, there are many unknown disturbance factors in the wind speed monitoring signal in actual 
production. The wind speed signal that monitored is difficult to determine the performance of 
the Kalman filter. Therefore, the experimental monitoring of   the wind speed signal is carried out 
using a laser Doppler velocimetry system with high measurement accuracy and less influence 
from external disturbance factors. The obtained offline signals were processed by a conventional 
Kalman filter and an adaptive Kalman filter for comparing the performance of the Kalman filter 
in reducing random errors and rejecting outliers. But in the production process, off-line wind 
speed signal processing is difficult to meet the needs of real-time monitoring of mine wind speed, 
real-time filtering of wind speed monitor signals is required. Therefore, the experimental mine 
was used for the field test to determine the feasibility and application performance of the adaptive 
Kalman filter in mine wind speed online monitoring.
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3.1. LDV experimental model

The mine wind speed LDV test experimental equipment and model are shown  in Figure 1. 

Fig. 1. Experimental model and equipment of LDV

A square experimental model was used. The model had a proportion of 1:20, a section 
inner diameter of 0.2 m and a length of 15 m. To trace the airflow, the smoke with an average 
particle diameter of fewer than 2 μm is used as the tracer particles. Speed measurement precision 
reaches 0.1%. During the experiment, the laser transmitter emitted 6 beams of laser and the laser 
was combined into 3 beams of laser through a probe, the colors were green, blue and purple, 
respectively, for testing fluid velocity in the X, Y, and Z directions, where X is the flow direction, 
Y is the extension direction, and Z is the vertical direction. The laser probes were fixed on the 
3D coordinate frame and the pitch of the probe was controlled by a computer, and movement 
accuracy was up to 0.001 mm.

3.2. LDV experimental

The LDV experiment is a non-contact measurement method with a more accurate test re-
sult that reflects the true state of the fluid (Kato et al., 1996). The test point is placed at a point 
where a fully developed flow state is reached (Liu et al., 2016), and 10 times the cross-section 
of the air inlet,. The arrangement of the measuring points and the cross-section are shown in 
Figure 2. The experimental sampling time is 10s. The fan was turned on when all the equipment 
was ready, and testing started 10 minutes after the fan was on. The experiment was carried out 
under ideal conditions in which the wind flow was stable, and the environment was free from 
external interference.

3.3. Field experiment

In order to verify the practicality and acc uracy of Kalman filter in online monitoring of mine 
wind speed, field experiments were conducted in the experimental mine of Liaoning Technology 
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University. Figure 3 shows the experimental plan. Experimental mine was a 3×2.5 rectangular 
section with a unit of m. The measuring points were placed 60 m away from the damper 2 and 
the corner of the roadway, 0.5 m away from the roof of the roadway and 1.5 m away from the 
wall of the tunnel. The wind speed sensor model was used KDF9403, and its test range was 
0.4-20 m/s. The fan ran for more than 10 minutes before collecting data at the measuring point. 
At this time, the damper 1 was closed, and in order to ensure the stability of the fan as much 
as possible, the wind window of the damper 1 is opened, as shown in Fig. 4(a). The damper 
2 was fully opened state, as shown in Fig. 4(b). After the measuring points collected the data 
for 15 minutes, the damper 1 was fully opened, remaining in the same state as the damper 2, 
while data collection continued. Data collection continued and the test was terminated after 
15 minutes.

Fig. 3. The experiment of mine floor plan

Fig. 2. Test model and its cross section
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(a) (b)
Fig. 4. Field experiment of mine air door

4. Results

4.1. Offline filter process results

After the Kalman filter offline processing, the average values of wind speed were almost 
equal to those obtained the LDV test, but the RMSEs were hugely reduced (Table 1).

TABLE 1

Results of test and Kalman filter signal processing

Values
1-4 s 4-6 s 0-10 s

RMSE (m/s) mean (m/s) RMSE (m/s) mean (m/s) RMSE (m/s) mean (m/s)
LDV 0.286 3.307 0.381 3.297 0.299 3.308

Traditional 0.076 3.310 0.165 3.299 0.108 3.308
Adaptive 0.004 3.303 0.018 3.309 0.012 3.307

The RMSE was obtained using  the mean of wind speed as a reference in the sampling 
time T. The average value of the wind speed test results in 10 s was 3.308 m/s, and the RMSE 
was 0.299 m/s. There was no outlier in the 1 to 4 s (Fig. 5), RMSE was 0.286 m/s. There was an 
outlier in the 4 to 6 s test (Fig. 6), RMSE was 0.381 m/s. After traditional Kalman filter process-
ing, the average value within 10 s was 3.308 m/s and the RMSE was 0.108 m/s. the RMSE in 
1-4 s was 0.079 m/s, while in 4-6 s was 0.165 m/s. After adaptive Kalman filter processing, the 
average value within 10s was 3.307 m/s and the RMSE was 0.012 m/s. the RMSE in 1-4 s was 
0.004 m/s, while in 4-6 s was 0.018 m/s.

Following the traditional Kalman filter process, the wind speed signal tended to be stable, 
but it was difficult to eliminate the abnormal point in the wind speed signal. After the adaptive 
Kalman filter processing, the wind speed signal fluctuated around the average value, and the 
fluctuation range was 3.28 m/s-3.34 m/s, indicating relatively stable (Fig. 5-7).
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Fig. 5. Experiment results without outliers in 1 s-4 s and the consequences of filtering

Fig. 6. Experiment results with outliers in 4 s-6 s and  the consequences of filtering

Fig. 7. Wind speed signal and the consequences of filtering in 10s
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4.2. Field experiment results

The field experiment results showed that even if the system was not adjusted or moved, the 
signal monitored by the sensor fluctuated largely, and the fluctuation range was 2.4-3.19 m/s 
(Fig. 8).

Fig. 8. Field monitoring and filtering results in 220 s-280 s

Fig. 9. Field monitoring and filtering results in 10 minutes including system changed

Before the dampers was closed, the average value of wind speed was 2.83 m/s, the RMSE 
was 0.141 m/s, and the average value of wind speed in the 600-900 s is 2.83 m/s, and the RMSE 
is 0.119 m/s. Following the adaptive Kalman filter, the mean of wind speed was 2.82 m/s, and 
the RMSE was 0.017 m/s in the first 5minutes. The average value was 2.83 m/s, and the RMSE 
was reduced to 0.009 m/s in the 600-900 s (Table 2). 

After the damper 2 was opened, the experiment was continued for 15 minutes. The re-
sults showed that the wind speed had a slow downward trend, and the trend of decline after 
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the adaptive Kalman filter treatment was more obvious (Fig. 9). After the damper was opened 
for about 2 minute, the wind speed remained at around 0.87 m/s, and the RMSE decreased 
by 0.07 m/s.

 5. Discussion

Studies on wind speed test by laser Doppler velocimetry system, the results showed that 
even in the relatively stable and ideal experimental conditions, the wind speed of the test points 
in the pipeline also had random fluctuations, and outliers. The reason for the outlier may be 
that the fan did not run completely stable, or the tracer particles were not observed at the time 
of data acquisition. The Kalman filter offline processing on the wind speed signal reduced the 
RMSE, but couldn’t completely remove the outlier of the signal. The adaptive Kalman filter 
could not only reduce the RMSE, but also eliminate the outliers of the wind speed signal. Re-
sults showed that the performance of the adaptive Kalman filter is better than the traditional 
Kalman filter (Fig. 6). 

The field experiment results showed that there was a random disturbance in the online 
monitoring wind speed of the measurement points in the tunnel. Even when the system had no 
changes, the monitored wind speed signals were not so smoothly stable as those obtained under 
LDV experimental conditions. The reasons for such observations might be voltage instability, 
which causes changes of the fan operating conditions, or the natural wind flow in the air inlet, 
which affected the wind speed. The adaptive Kalman filter treatment reduced the RMSE greatly. 
When the system is changing, the adaptive Kalman filter can quickly reflect the real change 
process, instead of treating the actual change value as the outlier (Fig. 9). Therefore, the adaptive 
Kalman filter can be applied for mine wind speed online monitoring signal processing.

Comparison of the RMSEs obtained in the wind speed monitoring and the filter processing 
revealed that the RMSE at the sampling time without outliers was smaller than that at the sampling 
time with outliers. When the number of outliers was constant, the longer the sampling time is, 
the more accurate the experiment results are, which is in line with the law of signal processing 
(Proakis, 2001). Results proved the reliability of test systems, models, and methods. In the case 
where the test system does not change, and no outliers occur, the mean value of the monitored 
speed during the sampling time is generally equal to the mean value of the filtered speed. Data 
showed that the monitoring methods commonly used in engineering have a certain reliability. 
However, the occurrence of abnormal points and the time and location of system changes are 
unknown, therefore, in actual applications, there may be some errors that cause the sensor to 
alarm under normal conditions, which results in the emergency rescue program, or the alarming 
system fails to respond to a real emergency condition, which results in safety issues. The wind 

TABLE 2

Real-time monitoring of experimental mine wind speed and results of Kalman filtering

Values
First 15 minutes 600-900 s

RMSE (m/s) mean (m/s) RMSE (m/s) mean (m/s)
Monitor 0.141 2.83 0.119 2.83

Adaptive fi lter 0.017 2.82 0.009 2.83
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speed signal filtered by the adaptive Kalman filter, when there is a wild value, in the case that the 
system does not change, the signal at each monitoring moment is close to the mean of signal at the 
sampling time. when the system changes, the filtered signal can give a corresponding response. As 
a result, adaptive Kalman filter can quickly reflect the real wind speed at each measuring point. 
The wind speed and other parameters at the measuring point can ensure the safety of production 
at each monitoring time and ensure the safe and effective production of the mine. The Kalman 
filter predicts the monitored values based on a small number of measurements (Andrews, 2001). 
Applying the Kalman filter to mine wind speed online monitoring signal processing can provide 
short-term wind speed online prediction in the event of an accident or failure of the ventilation 
system, ensure the wind speed monitored at every moment, and it can also provide some refer-
ence clues for the rescue work in the accident.

Compared the results of previous researchers’ experiments on mine wind speed using LDV, 
the mine wind speed test conforms to the uncertainty principle. The wind speed signal results 
conform to the normal distribution, and the signal pulsation has little correlation with the wind 
speed and sampling time. Their experiment results are consistent with the LDV examination 
results of this research. The wind speed values in previous study were the average wind speed in 
the sampling time (Liu et al., 2016), while the current study used the instantaneous wind speed, 
which was the wind speed value after Kalman filter treatment at the sampling moment. Accord-
ing to the test results, when the stability of the testing system is free from external interference, 
the average wind speed obtained by LDV during the sampling time is close to the instantane-
ous wind speed following Kalman filter treatment. However, when the system is changed, the 
average wind speed is not equivalent to the instantaneous wind speed. Researchers on vehicle 
speed monitoring have applied LDV speed measurement system to vehicle speed monitor. The 
adaptive Kalman filter was used to process the measurement results. Turntable experiments and 
field test revealed that the adaptive Kalman filter could eliminate the measured outliers, and the 
RMSE was reduced by 0.370 cm/s and 0.021 m/s, respectively (Fan et al., 2018). The difference 
between the current study and the vehicle speed monitor study is that the measurement of the 
vehicle running speed was adjusted adaptively for the acceleration variance and the measurement 
noise variance using the current state space model analysis. Our study was to solve the process 
noise variance and observation noise variance by using the EM algorithm to find the optimal 
parameters, thereby achieve the purposes of reducing the errors, eliminating the wild values and 
the condition of the Kalman filter convergence.

The current study has some shortcomings, parameter optimization of process noise variance 
and observation noise variance is a non-convex optimization process, and non-convex optimi-
zation of parameters using the EM algorithm can easily lead to local optimization. Therefore, 
the choice of proper initial values for process noise variance and observation noise variance is 
important in adaptive Kalman filters. Our research analyzed the performance of Kalman filtering. 
But the reasons for the occurrence of outliers and fluctuations of wind speed were not analyzed 
thoroughly. This study only investigated treatment of wind speed signals in mine ventilation. 
To achieve real-time dynamic monitoring and warning of the safety of the ventilation system, 
it should also monitor other important parameters of the mine ventilation system (Muduli et al., 
2018) and perform correlated filtering and noise reduction treatment.

In the actual production of the mine, circulating ventilation, unreliable ventilation facili-
ties, unsafe ventilation systems, air leakage, insufficient air supply and series ventilation all may 
cause mine disasters at any time (Ma & Dai, 2017). One of the important parameters for these 
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phenomena is the ventilation air volume of the mine. It is necessary to obtain the accurate wind 
speed value of the test point. The adaptive Kalman filter can filter the signals monitored online to 
obtain real-time values by eliminating outliers and reducing RMSE. In addition to the processing 
of wind speed signals, it is still necessary to study the feasibility of adaptive Kalman filter in 
processing signals of important ventilation parameters such as gas and wind pressure (Mishra et 
al., 2018). Under viable conditions, the scientific theory of mine ventilation safety shall be applied 
to conduct safety monitoring of mine ventilation system to achieve the purposes of reducing the 
probability of accidents and ensure the safe and effective production of mines.

6. Conclusion

The Kalman filter can eliminate outliers caused by versatile and unpredictable environments 
and monitoring instrument failures, and it can reduce the random errors of the wind speed signal. 
As a result, the accuracy of the instantaneous wind speed monitor can be improved. The adaptive 
Kalman Filter can be reached by adaptive adjustment of process noise variance and observation 
noise variance. The Kalman filter processing results of the offline signals obtained by the Dop-
pler velocimetry system show that the performance of the adaptive Kalman filter is better than 
that of the traditional Kalman filter. The online processing of the adaptive Kalman filter for the 
online wind speed signal monitoring in the experimental mine shows that the adaptive Kalman 
filter not only improves the accuracy of instantaneous wind speed monitoring but also predicts 
the short-term wind speed. The adaptive Kalman filter is feasible in the online monitoring signal 
processing of mine wind speed, which can improve the ability of the ventilation system to identify 
unsafe factors and states. Therefore, the adaptive Kalman filter is suitable for mine wind speed 
online monitoring signal processing.
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