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Cluster consensus of general fractional-order
nonlinear multi agent systems via adaptive

sliding mode controller

ZAHRA YAGHOUBI and HEIDAR ALI TALEBI

In this paper cluster consensus is investigated for general fractional-order multi agent
systems with nonlinear dynamics via adaptive sliding mode controller. First, cluster consensus
for fractional-order nonlinear multi agent systems with general form is investigated. Then, cluster
consensus for the fractional-order nonlinear multi agent systems with first-order and general
form dynamics is investigated by using adaptive sliding mode controller. Sufficient conditions
for achieving cluster consensus for general fractional-order nonlinear multi agent systems are
proved based on algebraic graph theory, Lyapunov stability theorem and Mittag-Leffler function.
Finally, simulation examples are presented for first-order and general form multi agent systems,
i.e. a single-link flexible joint manipulator which demonstrates the efficiency of the proposed
adaptive controller.

Key words: nonlinear multi agent systems, cluster consensus, fractional-order systems,
adaptive sliding mode controller

1. Introduction

There are many applications of multi agent systems such as formation [3],
swarming, flocking and synchronization in physical and chemical systems. Hence,
multi agent systems attract more attention recently. Consensus is a cooperation
control mission for multi agent systems in a sense that all the states/outputs
converge to the same value [21]. There are two categories for consensus problem,
consensus without leader [18] and consensus tracking with leader in which all
agents follow the leader [20].

Cluster consensus is different from complete consensus which means that
agents are divided into a few clusters and these clusters may change in different
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situations and environments [22]. All the agents in the same cluster converge to
a same attitude which is different from other clusters [29].

Most of the literatures about consensus have studied about multi agent systems
with integer-order dynamic. Consensus problem for multi agent systems is studied
in [15] for first-order dynamics, in [11] for second-order dynamics, and in [5] for
higher-order dynamics. Many behaviors of agents can be better described with
fractional-order dynamics in complex environments, such as traveling aircraft
in rainy and dusty environment [2, 9]. The fractional-order dynamics include
the integer-order dynamics; however, there are a few studies about control of
fractional-order multi agent systems [24]. In [2], the fractional-order linear multi
agent systems are investigated to be controlled under the directed graph and the
convergence speed to achieve consensus.

Consensus with leader and without leader is studied for fractional-order non-
linear multi agent systems under directed topologies in [6]. The consensus for
fractional-order multi agent systems with nonlinear dynamics which satisfy Lip-
schitz condition, is studied in [7] with an unknown leader. In [28], the observer
base consensus for fractional-order multi agent systems with the fractional-order
smaller than two along with second-order leader is investigated. Therefore, clus-
ter consensus for fractional-order multi agent systems with high-order nonlinear
dynamics are a new study which is investigated in this paper.

The smallest non-zero eigenvalue of the Laplacian matrix is a feature which
should be known to achieve consensus [13, 16]. Consensus via adaptive controller
can overcome to this limitation [14]. Consensus for second-order nonlinear multi
agent systems which satisfy the Lipschitz condition, for both with and without
leader via adaptive controller under undirected topologies is studied in [27].
In [26], consensus for nonlinear multi agent systems in strict-feedback form
with uncertainty is studied via adaptive controller. The distributed consensus is
investigated in [17] for second-order multi agent systems which satisfy Lipschitz
condition under directed topologies.

The main contribution of this paper is divided in twofold:

• The cluster consensus of fractional-order nonlinear system is presented for
the first time. Note that the underlying dynamics are in general nonlinear
form.

• The controller for multi agent system is designed by using adaptive sliding
mode principles and the efficiency of which are compared with that of
non-adaptive case.

The above discussion motivates that cluster consensus for fractional-order
nonlinear multi agent systems can be investigated by using adaptive sliding mode
controller. The Lyapunov stability theorem for fractional-order systems is used to
prove the Mittag-Leffler stability and the convergence of consensus.
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The rest of the paper is organized as follows. In Section 2, graph theory
is discussed. A brief explanation of fractional calculus is given in Section 3. In
Section 4, problem formulation for fractional-order nonlinear multi agent systems
is discussed. In Section 5, simulation examples are given. Finally, the conclusion
is presented in Section 6.

2. Graph theory

A fixed graph of multi agent systems can describe the information exchange
between n agents which is shown by G = (V E A), where V = {ν1, ν2, . . . , νn} is

the node set and E =
{
(ν j, νi) : ν j, νi ∈ V, ν j , νi

}
∈ V ×V is the edge set of the

graph. Ni =

{
ν j ∈ V : (ν j, νi) ∈ E

}
is the neighbors set of the i-th agent which

the i-th agent receives information from the j-th agent. The directed graph has a
directed spanning tree when there is at least a directed path from one node to all
other nodes. Fig. 1 shows the directed graph for multi agent system.

Figure 1: A directed graph

A and L are two matrices to describe the information exchange, where A =

[ai j] ∈ Rn×n is a matrix with ai j > 0 if
(

ν j, νi

)

∈ E, otherwise ai j = 0 and

L is a positive semi-definite matrix which is defined as L = D − A where

D = diag

{

n
∑

j=1
ai j

}

∈ Rn×n. Lemma 1 defines some properties of the Kronecker

product which is used for higher dimensional spaces.

Lemma 1 There are some properties of the Kronecker product⊗ which is defined
as follows [4]:

1. (ξA) ⊗ B = A ⊗ (ξB),

2. (A + B) ⊗ C = A ⊗ C + B ⊗ C,

3. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

4. (A ⊗ B)T
= AT ⊗ BT ,

where A, B,C and D are matrices with appropriate dimensions and ξ ∈ R.
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3. Fractional-order calculus

Definition 1 Caputo fractional derivative used in this paper is defined be-
low [19]:

c
0D

α
t x(t) =

1

Γ(m − α)

t
∫

0

(t − τ)m−α−1 x (m) (τ)dτ, (1)

where m − 1 < α < m, m ∈ N+ and Γ(.) is the gamma function.

The notation xα (t) is used instead of c
0D

α
t x(t) for simplicity.

Definition 2 The Mittag-Leffler function is used to solve fractional-order systems
like the exponential function for integer-order systems. The two-parameter Mittag-
Leffler function with α, β > 0 is defined as:

Eα,β (z) =

∞
∑

k=0

zk

Γ(kα + β)
. (2)

This function for β = 1 turns to the one-parameter Mittag-Leffler function.

For investigating the stability of fractional-order nonlinear multi agent sys-
tems, the following Lemmas is are defined [1, 10, 30].

Lemma 2 For any time t ­ t0, the following inequality is defined:

1

2
c
t0
Dα

t x2(t) ¬ x(t)c
t0
Dα

t x(t), α ∈ (0, 1), (3)

where x(t) ∈ R is a continuous and derivable function.

Lemma 3 The following inequality is defined:

c
t0
Dα

t

(

xT (t)Px(t)
)

¬ 2xT (t)Pc
t0
Dα

t x(t), α ∈ (0, 1), (4)

where x(t) ∈ Rn is continuous and derivable and P ∈ Rn×n is a positive definite
symmetric matrix.

The systems are proved to be asymptotically stable by using the Lyapunov
direct method. The Lyapunov direct method for fractional order systems is derived
from the Lyapunov direct method for integer-order systems and it leads to the
Mittag-Leffler stability [12].
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Lemma 4 Mittag-Leffler stability for fractional-order system in t0 = 0 at the
equilibrium point x = 0 is proved if the Lyapunov function V (t, x(t)) exists with
the following condition:

α1‖x‖c ¬ V (t, x(t)) ¬ α2‖x‖cd,

c
0D

α
t V (t, x(t)) ¬ −α3‖x‖cd,

(5)

where V (t, x(t)) : [0,+∞) × D → R, D ∈ Rn is a domain, that contains the
origin; t ∈ R+, α ∈ (0, 1], α1, α2, c and d which are positive constants.

Lemma 5 can be derived from Lemma 4.

Lemma 5 Mittag-Leffler stability for the fractional-order system in t0 = 0 at the
equilibrium point x = 0 is proved if the Lyapunov function V (t, x(t)) exists with
the following condition:

α1‖x‖c ¬ V (t, x(t)) ¬ α2‖x‖cd,

c
0D

α
t V (t, x(t)) ¬ −λV (t, x(t)),

(6)

where t ∈ R+, α ∈ (0, 1], α1, α2, λ, c and d are positive constants [25].

4. Problem formulation

In this part, cluster consensus problem is explained, where the graph of
agents is divided into two parts and each part reaches a different consistent
value. Consider a graph with n agents divided like l1 = {1, 2, . . . , N1}, l2 =

{N1 + 1, . . . , N1 + N2} where n = N1 + N2.
Cluster consensus problem is achieved if

lim
t→∞

(

xi − x j

)

= 0, ∀i, j ∈ l1 ,

lim
t→∞

(

xi − x j

)

= 0, ∀i, j ∈ l2 .

Some assumptions for analyzing the cluster consensus problem are expressed in
this section.

Assumption 1 The Lipschitz condition is defined as follow for function f (x, t).

| f (x2, t) − f (x1, t) | ¬ l |x2 − x1 | , ∀x1, x2 ∈ R, ∀t ­ 0,

where l is the Lipschitz constant.
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Assumption 2

(a) Each subnetwork or cluster has a directed spanning tree.

(b) The information exchange between two clusters should be balanced. In other

words, two clusters graph, satisfy the following conditions:
N1+N2
∑

j=N1+1
ai j = 0,

for all i ∈ l1,
N1
∑

j=1
ai j = 0, for all i ∈ l2.

4.1. Cluster consensus of fractional-order nonlinear multi agent systems

In this section, agents with general nonlinear model are studied. There are n
agents which the i-th agent, i = 1, 2, . . . , n is modeled as follows [23]:

xαi = Axi + C f (xi, t) + Bui (t), (7)

where xi ∈ Rp are the states of i-th agent for i = 1, 2, . . . , n with p dimensions,

f (xi, t) =
(

f1 (xi, t), f2 (xi, t), . . . , fp (xi, t)
)T

is a nonlinear vector-valued

function which satisfies Lipschitz condition, ui is the control input, A, B and C
are constant matrices.

Fig. 2 shows the block diagram of the cluster consensus algorithm. A cluster
consensus algorithm for system (7) is given as follows:

ui (t) = kθ
∑

j∈Ni

ai j

[
x j (t) − xi (t)

]
, i = 1, 2, . . . , n, (8)

where k > 0, θ ∈ R1×p is the feedback gain matrix.

Figure 2: Block diagram of cluster consensus algorithm

By substituting the controller (8) into the system (7), we can write:

xαi = Axi + C f (xi, t) + kBθ
∑

j∈Ni

ai j

[
x j (t) − xi (t)

]
, i = 1, 2, . . . , n, (9)
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where
X =

[

x1, x2, . . . , xN1, xN1+1, . . . , xN1+N2

]T and

F (X, t) =
[

f (x1, t) , . . . , f
(

xN1, t
)

, f
(

xN1+1, t
)

, . . . , f
(

xN1+N2, t
)]T ,

now system (9) can be written as:

Xα
= (In ⊗ A)X + (In ⊗ C)F (X, t) − k (H ⊗ Bθ)X, (10)

where H is the Laplacian matrix of G described for two clusters as follows:

H =

[
L1 Ω12

Ω21 L2

]
,

where Li , i = 1, 2 are the Laplacian matrix of the subnetworks and Ωi j , i, j = 1, 2
are the information exchange between the two subnetworks as:

Ω12 = −


a1(N1+1) · · · a1(N1+N2)

...
. . .

...
aN1(N1+1) · · · aN1(N1+N2)


,

Ω21 = −


a(N1+1)1 · · · a(N1+1)N1
...

. . .
...

a(N1+N2)1 · · · a(N1+N2)N1


.

To investigate cluster consensus of system (10), we introduce error matrices as
follows:

ei = xi − xN1, i = 1, . . . , N1 − 1,

e j = x j − xN1+N2, j = N1 + 1, . . . , N1 + N2 − 1,

E =
[
e1, . . . , eN1−1, xN1, eN1+1, . . . , eN1+N2−1, xN1+N2

]T
,

e =
[

e1, . . . , eN1−1, eN1+1, . . . , eN1+N2−1
]T

=

[

x1 − xN1, . . . , xN1−1 − xN1, xN1+1 − xN1+N2, . . . , xN1+N2−1 − xN1+N2

]T
.

Arranging (10) in terms of e, the error system for two clusters is defined as
follows:

eα = (In−2 ⊗ A)e + (In−2 ⊗ C) fe (E, t) − k (HG ⊗ Bθ)e, (11)

where ⊗ is the Kronecker product and

HG =


L̃1 Ω̃12

Ω̃21 L̃2

 ,
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L̃1 =


l11 − lN11 · · · l1(N1−1) − lN1 (N1−1)

...
. . .

...
l (N1−1)1 − lN11 · · · l (N1−1)(N1−1) − lN1(N1−1)


,

L̃2 =


l (N1+1)1 − l (N1+N2)(N1+1) · · · l (N1+1)(N1+N2−1) − l (N1+N2)(N1+N2−1)

...
. . .

...
l (N1+N2−1)1 − l (N1+N2)(N1+1) · · · l (N1+N2−1)(N1+N2−1) − l (N1+N2)(N1+N2−1)


,

Ω̃12 =


aN1(N1+1) − a1(N1+1) · · · aN1(N1+N2−1) − a1(N1+N2−1)

...
. . .

...
aN1(N1+1) − a(N1−1)(N1+1) · · · aN1(N1+N2−1) − a(N1−1)(N1+N2−1)


and

Ω̃21 =


a(N1+N2)1 − a(N1+1)1 · · · a(N1+N2)(N1−1) − a(N1+N2)(N1−1)

...
. . .

...
a(N1+N2)1 − a(N1+N2−1)1 · · · a(N1+N2)(N1−1) − a(N1+N2−1)(N1−1)


.

Now, define:

fe (E, t) =
[

f (x1, t) − f
(

xN1, t
)

, . . . , f
(

xN1−1, t
) − f

(

xN1, t
)

, f
(

xN1+1, t
)

− f
(

xN1+N2, t
)

, . . . , f
(

xN1+N2−1, t
) − f

(

xN1+N2, t
)

]T

=

[
f
(

xN1 + e1, t
) − f

(

xN1, t
)

, . . . , f
(

xN1 + eN1−1, t
) − f

(

xN1, t
)

,

. . . , f
(

xN1+N2 + eN1+N2−1, t
) − f

(

xN1+N2, t
) ]T

.

Theorem 1 The cluster consensus problem for system (7) is achieved with control
law (8) if P is a positive definite matrix satisfying:

[
AP + PAT

+ l2CCT − kλmin (HG) BBT
+ βP P

P −Ip

]
< 0, (12)

where β > 0 and take θ =
1

2
BT P−1.

Proof. First, select a Lyapunov function as follows to prove the cluster consensus
and show that system (11) is asymptotically stable:

V (t) = eT (t)
(

In−2 ⊗ P−1
)

e(t). (13)
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Now, Vα (t) yields in by using Lemma 3:

Vα (t) ¬ 2eT (t)
(

In−2 ⊗ P−1
)

eα (t)

= 2eT
(

In−2 ⊗ P−1
) [

(In−2 ⊗ A) e + (In−2 ⊗ C) fe (E, t)

− k (HG ⊗ Bθ) e
]

= eT
(

In−2 ⊗ P−1
)

(In−2 ⊗ A) e + eT
(

In−2 ⊗ AT
) (

In−2 ⊗ P−1
)

e

+ 2eT
(

In−2 ⊗ P−1C
)

fe(E, t) − 2keT
(

In−2 ⊗ P−1
)

(HG ⊗ Bθ) e

= eT
[
In−2 ⊗

(

P−1 A + AT P−1
)]

e + 2eT (In−2 ⊗ P−1C) fe (E, t)

− 2keT
(

HG ⊗ P−1Bθ
)

e.

(14)

Consider Lemma 6 to continue the proof of Lyapunov stability.

Lemma 6 The following inequality with vectors x, y and matrices P, D and S
is established:

2xT DSy ¬ xT DPDT x + y
T ST P−1Sy. (15)

Using Lemma 6 and Assumption 1, is given (16) as:

Vα (t)c ¬ eT
[
In−2 ⊗ (P−1 A + AT P−1)

]
e

+ eT
[
In−2 ⊗ (l2P−1CCT P−1

+ Ip)
]

e − 2keT
(

HG ⊗ P−1Bθ
)

e.
(16)

Substituting θ =
1

2
BT P−1, (16) is rewritten as follows:

Vα (t) ¬ eT
[
In−2 ⊗ (P−1 A + AT P−1)

]
e

+ eT
[
In−2 ⊗ (l2P−1CCT P−1

+ Ip)
]

e

− keT
(

HG ⊗ P−1BBT P−1
)

e.

(17)

Now, (17) can be written as:

Vα (t) ¬ εT
[
In−2 ⊗ (AP + PAT

+ l2CCT
+ PT P)

]
ε

− kεT
(

HG ⊗ BBT
)

ε,
(18)

where ε = (In−2 ⊗ P−1)e.

Vα (t) ¬ εT
[
In−2 ⊗ (AP + PAT

+ l2CCT
+ PT P)

]
ε

− kλmin (HG) εT
(

In−2 ⊗ BBT
)

ε.
(19)
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Using (12) and Schur complement lemma [8], (19) is rewritten as follows:

Vα (t) ¬ −βεT (In−2 ⊗ P) ε = −βeT
(

In−2 ⊗ P−1
)

e = −βV (t). (20)

Hence, Vα
¬ −βV (t) which we can conclude from Lemma 5, Mittag-Leffler

stability results in (11).

4.2. Cluster consensus of fractional-order nonlinear multi agent systems by adaptive law

4.2.1. First-order system

In this subsection, the consensus tracking problem for followers which are
nonlinear is investigated. The followers with nonlinear dynamics are described
as follows:

xαi (t) = f î (t, xi (t)) + ui (t), i = 1, 2, . . . , n, (21)

where f î (t, xi (t)) is a nonlinear function for cluster î, which satisfies the Lipschitz
condition like Assumption 1. ui (t) is the control input.

The model of i-th leader is described by:

xαri (t) = f î (t, xri (t)) , i = 1, 2, . . . , n. (22)

The cluster consensus with the following condition is achieved:

lim
t→∞
‖xi − xri‖ = 0, ∀i ∈ l1 ,

lim
t→∞
‖xi − xri‖ = 0, ∀i ∈ l2 .

(23)

The adaptive sliding mode controller and adaptive law are designed as follows:

ui(t) = −θi
*.,

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/-
−ωsgn

*.,
n

∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/- ,
i, j = 1, 2, . . . , n, i , j,

(24)

θαi = βi
*.,

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/-
T

· *.,
n

∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/- ,
(25)
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where ω and βi are any positive constants, sgn(.) is the signum function, ai j ,
i, j = 1, 2, . . . , n is the (i, j)-th element of the adjacency matrix A. θi is the adaptive
gain for i-th agent. D = diag(d1d2 . . . dn) is the leader adjacency matrix. diis
used for describing the leader information exchange to i-th agent. di = 1, if
information is transmitted from leader to i-th agent and otherwise di = 0. For
each cluster, di = 1 for only one follower.

Theorem 2 The cluster consensus problem is achieved with control law (24) and

adaptive law (25) for the system (21) if θ0 ­
lλmax(M )

λmin(M )2
, λmin and λmax are the

smallest and largest eigenvalues with undirected graph G or directed graph with
the symmetric positive definite matrix M .

Proof. The system (21) can be rewritten as

xαi (t) = f î (t, xi (t)) + θi
*.,

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/-
− ωsgn

*.,
n

∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/- ,
i j = 1, 2, . . . , n, i , j .

(26)

Now system (26) can be written as:

Xα
= F (t, X ) − θM X −ωsgn(M X ), (27)

where

X = [x1, x2, . . . , xN1, xN1+1, . . . , xn]T,

F (t, X ) = [ f î (t, x1(t)) , f î (t, x2(t)) , . . . , f î

(

t, xN1 (t)
)

, f î

(

t, xN1+1(t)
)

,

. . . , f î (t, xn(t))]T,

and θ = diag(θ1,θ2, . . . , θn). M = H + D, where H is the Laplacian matrix of
G described for two clusters which is described in (10) and M is a symmetric
positive definite matrix. In the undirected graph G, M is always a symmetric
positive definite matrix and in directed graph G, if information is sent and received
between two nodes, M is a symmetric positive definite matrix.

Let x̃i = xi − xri, so we can write as follows:

X̃α (t) = F (t, X ) − F (t, Xr ) − θM X̃ −ωsgn
(

M X̃
)

, (28)

where X̃ = [x̃1, x̃2, . . . , x̃N1, x̃N1+1, . . . , x̃n]T .
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The following Lyapunov function is considered:

V =
1

2
X̃T M X̃ +

n
∑

i=1

1

2βi

(θi − θ0)2, (29)

where θ0 is selected as:

θ0 ­
lλmax(M )

λmin(M )2
. (30)

The fractional-order derivative of V is given as follows:

Vα
¬ X̃T M X̃α

+

n
∑

i=1

1

βi

(θi − θ0) θαi

= X̃T M [F (t, X ) − F (t, Xr )] −
[
M X̃

]T
θ
[
M X̃

]
− ω

[
M X̃

]T
sgn

(

M X̃
)

+

[
M X̃

]T
θ
[
M X̃

]
− θ0

[
M X̃

]T [
M X̃

]
¬ lλmax(M )




X̃



2 −ω 


M X̃




1
− θ0λmin(M )2 


X̃




2

¬ −
(

θ0λmin(M )2 − lλmax(M )
) 


X̃




2
.

(31)

From (31), we can obtain that Vα
¬ −γ 


X̃




2
where γ = θ0λmin(M )2 −

lλmax(M ) ­ 0. So from Lemma 4, system is Mittag-Leffler stable which means
‖xi (t) − xri (t)‖ = 0, i = 1, 2, . . . , n and the cluster consensus for the system (21)
is achieved by using the controller (24) and adaptive law (25).

4.2.2. General form system

Consider a group of n agents which the model of i-th agent is described in
general form as follows:

xαi = Axi + C f î (t, xi) + Bui(t), i = 1, 2, . . . , n, (32)

where xi ∈ Rp are the states of i-th agent for i = 1, 2, . . . , n, f î (t, xi) =
(

f1 (t, xi) , f2 (t, xi) , . . . , fp (t, xi)
)T

is a nonlinear vector-valued function for each

cluster which satisfies Lipschitz condition,B is constant matrix and ui is the con-
trol input.



CLUSTER CONSENSUS OF GENERAL FRACTIONAL-ORDER NONLINEAR MULTI AGENT
SYSTEMS VIA ADAPTIVE SLIDING MODE CONTROLLER 655

The adaptive sliding mode controller and adaptive law are designed as follows:

ui(t) = −θik
*.,

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/-
−ωsgn

*.,
n

∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/- ,
i, j = 1, 2, . . . , n, , i , j,

(33)

θαi = βi
*.,k

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/-
T

· *.,k

n
∑

j=1

ai j

[
xi − x j

]
+ di [xi − xri]

+/- .
(34)

The model of i-th leader is described by:

xαri = Axri + C f î (t, xri) i = 1, 2, . . . , n. (35)

Let x̃i = xi − xri, so we can write as follows:

X̃α (t) = (In ⊗ A)X̃ + (In ⊗ C)(F (t, X ) − F (t, Xr )) − (θM ⊗ Bk)X̃

− (ωIn ⊗ B) sgn
(

(M ⊗ k)X̃
)

,
(36)

where X̃ = [x̃1, x̃2, . . . , x̃N1, x̃N1+1, . . . , x̃n]T , 1n = [11 . . .1]T , M = H + D, H is
the Laplacian matrix of G described for two clusters which is described in (10)
and ⊗ is Kronecker product.

Theorem 3 The cluster consensus problem is achieved with control law (34) and
adaptive law (35) for the systems (32) if P is a positive definite matrix satisfying:[

AP + PAT
+ l2CCT − 2θ0λmin(M )BBT

+ βP P

P −In

]
< 0, (37)

where β > 0 and take k = −BT P−1.

Proof. The following Lyapunov function is considered:

V = X̃T (M ⊗ P−1)X̃ +

n
∑

i=1

1

βi

(θi − θ0)2 . (38)
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The fractional-order derivative of V is given as follows:

Vα
¬ X̃T (M ⊗ P−1 A+AT P−1)X̃+2X̃T (M ⊗ P−1C) [F (t, X )−F (t, Xr )]

+ X̃T (M ⊗ P−1)(θM ⊗ Bk)X̃ + X̃T (θM ⊗ kT BT )(M ⊗ P−1)X̃

+ 2X̃Tω(M ⊗ P−1B)sgn
(

(M ⊗ k)X̃
)

+ 2
n

∑

i=1

(θi − θ0)
*.,k

n
∑

j=1

ai j

(

x̃i − x̃ j

)

+ di x̃i
+/-

T

· *.,k

n
∑

j=1

ai j

(

x̃i − x̃ j

)

+ di x̃i
+/- .

(39)

Using Lemma 6 and Assumption and by getting k = −BT P−1 is given (40) as
follows:

Vα
¬ X̃T

(

M ⊗ P−1 Av + vAT P−1
)

X̃ +

n
∑

i=1

(

x̃T
i

(

l2P−1CCT P−1
+ I

)

x̃i

)

+ 2X̃T (

MθM ⊗ P−1Bk
)

X̃

+ 2
n

∑

i=1

(θi−θ0)
*.,k

n
∑

j=1

ai j

(

x̃i−x̃ j

)

+di x̃i
+/-

T *.,k

n
∑

j=1

ai j

(

x̃i−x̃ j

)

+di x̃i
+/-

= X̃T
(

M ⊗ P−1 A + AT P−1
+ l2P−1CCT P−1

+ I
)

X̃

− 2
n

∑

i=1

θi
*.,

n
∑

j=1

ai j

(

x̃i − x̃ j

)

+ di x̃i
+/-

T

P−1BBT P
−1

· *.,
n

∑

j=1

ai j

(

x̃i−x̃ j

)

+ di x̃i
+/- + 2

n
∑

i=1

(θi−θ0)
*.,

n
∑

j=1

ai j

(

x̃i−x̃ j

)

+ di x̃i
+/-

T

· P−1BBT P−1 *.,
n

∑

j=1

ai j

(

x̃i − x̃ j

)

+ di x̃i
+/-

= X̃T
(

M ⊗ P−1 A + AT P−1
+ l2P−1CCT P−1

+ I
)

X̃

− 2θ0X̃T
(

M2 ⊗ P−1BBT P
−1

)

X̃

¬ X̃T
(

M ⊗ P−1 A + AT P−1
+ l2P−1CCT P−1

+ I

− 2θ0λmin(M )P−1BBT P−1
)

X̃ .

(40)
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From (40), we can obtain Vα
¬ −βV if Theorem 3 is established. So from

Lemma 5, the system is Mittag-Leffler stable, which means

lim
t→∞
‖xi (t) − xri (t)‖ = 0, i = 1, 2, . . . , n

and the cluster consensus for the system (32) is achieved by using the controller
(33) and the adaptive law (34).

5. Simulation results

In this section, three numerical simulation examples are given to evaluate the
theoretical results.

Example 1. In this example, each agent is a single-link flexible-joint manipulator
shown in Fig. 3. The revolving joints are actuated by a DC motor and a linear
spring is used to model the elasticity of the joint. The state-space model which
the states of the system are position and velocity of motor and link is as follows:

θαm = ωm ,

ωα
m =

k

Jm

(θl − θm) − k

Jm

ωm +
KT

Jm

u,

θαl = ωl ,

ωα
l = −

k

Jl

(θl − θm) − mgh

Jl

sin(θl ),

where Jm and Jl are the inertia of the motor and link, θm and θl are the angular
rotation of the motor and the angular position of the link, respectively; and ωm

and ωl are the angular velocity of the motor and link [31].

Figure 3: Single-link manipulator with a flexible joint
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The manipulator is described by the form of (7) with α = 0.95 and the
numerical parameters are defined as follows:

A =



0 1 0 0

−48.6 −1.26 48.6 0

0 0 0 10

1.95 0 −1.95 0


, B =



0

21.6

0

0


, C = I4 ,

xi (t) =
[

θmi
, ωmi

, θli, ωli

]T
= [xi1(t), xi2(t), xi3(t), xi4(t)]T ,

f (xi, t) = (0, 0, 0, 0.333 sin(xi3(t)))T .

Cluster consensus for the manipulator is achieved for graph in Fig. 4 with
l = 0.333, β = 0.7, k = 28.75 and P is achieved by LMI (12) as follows:

P =



0.5283 −0.9689 0.4636 −0.0826

−0.9689 122.4712 −0.0074 0.0009

0.4636 −0.0074 0.5134 −0.0482

−0.0826 0.0009 −0.0482 0.0195


.

Figure 4: The topology interaction of the agents

Simulation results are shown in Fig. 5.
The state trajectories of agents are shown in Fig. 5. In Fig. 5(a), first state

of agents x11 to x31 converge to one consensus value which is time varying and
x41 to x71 converge to another consensus value at time 0.1 second. In Fig. 5(b),
second state of agents x12 to x32 converge to one consensus value which is time-
varying and x42 to x72 converge to another consensus value at time 0.1 second. In
Fig. 5(c), third state of agents x13 to x33 converge to one consensus value which
is time-varying and x43 to x73 converge to another consensus value at time 5
second. In Fig. 5(d), fourth state of agents x14 to x34 converge to one consensus
value which is time varying and x44 to x74 converge to another consensus value
at time 7 second. So cluster consensus is achieved for all states of agents.
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Figure 5: Cluster consensus for (a) xi1 (t), (b) xi2 (t), (c) xi3 (t), (d) xi4 (t), i = 1, . . . , 7

Example 2. A directed graph with seven followers and two leaders which com-
municated with first and fourth agents is shown in Fig. 4. α = 0.95, ω = 1,

f1 (xi (t)) = sin

(

xi (t)

10

)

, f2 (xi (t)) = 2 sin

(

xi (t)

10

)

, βi = 1, i = 1, . . . , n are cho-

sen. The condition of Theorem 2 is satisfied and simulation results are shown in
Figs 6, 7.

Fig. 6 shows the position trajectories of agents in clusters; the followers
can track the leaders and cluster consensus achieves at time 1.5 second. The
effectiveness of the controller (24) and adaptive law (25) is shown in Fig. 7 where
both clusters are shown in same figure.
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Figure 6: Cluster consensus for graph Fig. 2, (a) cluster 1, (b) cluster 2
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Figure 7: Cluster consensus for both clusters

Example 3. A directed graph with seven followers and two leaders which
communicated with first and fourth agents is shown in Fig. 4. In this exam-
ple, each agent is a single-link flexible-joint manipulator and this is described

like Example 1 with α = 0.95, ω = 1, f1 (t, xi (t)) =

(

0, 0, 0, sin

(

xi3(t)

10

))T

,

f2 (t, xi (t)) =

(

0, 0, 0, 2 sin

(

xi3(t)

10

))T

, l = 0.333, β = 0.7, θ0 = 105.77 and P
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is achieved by LMI (37) as follows:

P =



0.5349 −0.9707 0.47 −0.0828

−0.9707 107.0333 −0.0183 0.001

0.47 −0.0183 0.5195 −0.0484

−0.0828 0.001 −0.0484 0.0196


.

Simulation results are shown in Fig. 8.
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Figure 8: Cluster consensus for (a) xi1 (t), (b) xi2 (t), (c) xi3 (t), (d) xi4 (t), i = 1, . . . , 7

Fig. 8 shows the position trajectories of agents for each state. In Fig. 8(a),
first state of agents x11 to x31 follow the first leader and x41 to x71 follow the
second leader after 3.5 second. In Fig. 8(b), second state of agents x12 to x32
follow the first leader and x42 to x72 follow the second leader after 0.5 second.
In Fig. 8(c), third state of agents x13 to x33 follow the first leader and x43 to
x73 follow the second leader after 0.5 second. In Fig. 8(d), fourth state of agents
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x14 to x34 follow the first leader and x44 to x74 follow the second leader after
1 second. By comparison Fig. 3 and Fig. 8, the convergence speed increases by
using adaptive sliding mode controller. Also, the comparison of these examples
is shown in Table 1. So, it demonstrates the efficiency of the proposed adaptive
controller.

Table 1: Comparison of examples

System Graph
Adaptive sliding
mode controller

Average consensus
time of the states

General form system 7 agents 3 second

First-order system 7 agents X 1.5 second

General form system 7 agents X 1.4 second

6. Conclusions

In this paper, cluster consensus for the general fractional-order nonlinear multi
agent systems has been studied. Adaptive sliding mode control has been proposed
for multi agent systems. First-order nonlinear systems and general form nonlinear
systems are both considered. Cluster consensus is achieved by an adaptive sliding
mode controller and to judge cluster consensus problem, the sufficient conditions
are given and the efficiency of the proposed adaptive controller is demonstrated.
The effectiveness of the proposed results is shown by simulations. In this paper,
fixed communication topologies are used, however, future work will concentrate
on cluster consensus of the fractional-order nonlinear multi agent systems under
switching communication topology.
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