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Experimental identification of rotating
and stationary damping in a cracked rotor system

with an offset disc

In the rotor system, depending upon the ratio of rotating (internal) damping and
stationary (external) damping, above the critical speedmay develop instability regions.
The crack adds to the rotating damping due to the rubbing action between two faces
of a breathing crack. Therefore, there is a need to estimate the rotating damping and
other system parameters based on experimental investigation. This paper deals with
a physical model based an experimental identification of the rotating and stationary
damping, unbalance, and crack additive stiffness in a cracked rotor system. The model
of the breathing crack is considered as of a switching force function, which gives
an excitation in multiple harmonics and leads to rotor whirls in the forward and
backward directions. According to the rotor system model considered, equations
of motion have been derived, and it is converted into the frequency domain for
developing the estimation equation. To validate the methodology in an experimental
setup, the measured time domain responses are converted into frequency domain and
are utilized in the developed identification algorithm to estimate the rotor parameters.
The identified parameters through the experimental data are used in the analytical
rotor model to generate responses and to compare them with experimental responses.

1. Introduction

Rotating machinery operating above critical speeds requires careful study of
parameters responsible for instability in the rotor to ensure the safety of personnel
and machinery. Instability may occur because of more than one causes, and the
rotating (internal) damping is one of the important parameters. An accurate estima-
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tion of the rotor physical parameters through model-based identification procedure
is significant. This is because these parameters can be used in analytical models
to study rotor behavior to investigate instability regions. Cracks in rotor provide
not only local flexibility near the crack location but also provide rotating damping
due to opening and closure of the crack during rotation of the shaft, which leads
to rubbing of crack faces and stress concentration at crack front. For a fully open
crack condition, the stress concentration is higher, and the rubbing is negligible.
During breathing of the crack, the stress concentration is lower and the rubbing is
greater, whereas during the closure of the crack both will be negligible. Modeling
of the rotating damping is difficult and needs estimate from rotor responses for
accurate prediction in a rotor system [1].

Limited attempts have been made in the literature towards the development
of procedures for the experimental estimation of rotating damping. Most of the
studies focused on the instability analysis based on rotor system model owing to
assumed internal damping in a possible range [2] elaborated the regions of rotor
spin speed stability according to changes of whirl modes by changing the condition
of internal damping [3] and [4] illustrated the forward and backward whirls analysis
using Timoshenko beam theory, and study the effect of the internal and hysteretic
damping to find the region of stability. They also considered the gyroscopic couple
in a rotor system along with translational and rotary inertia [5] worked on the
stability analysis of the rotating system based on the Timoshenko beam model
considering the hysteretic damping and external damping [6] investigated the effect
of hysteretic damping at the critical, subcritical, and supercritical speeds of a rotor
system based on the direction of rotation considering the forward and backward
whirling. Dynamic instability in a rotor system was studied by [7] and [8] based on
random variations of the rotating damping. The stability analysis in a rotor system
with combined consideration of the dry friction damping and the viscous internal
damping was studied by [9]. Based on Euler-Bernoulli beam theory in the rotor
system including the effect of rotary and translational inertia along with gyroscopic
moment on the disc, [10] gave detail discussion on the estimation of the external
and hysteretic damping. [11] presented a modal analysis of a rotor system and
showed the effect of internal damping on the rotor instability in the presence of
forces due to fluid film (external damping) from journal bearings. The stability limit
speed was found to reduce owing to consideration of the shaft material (internal)
damping effect.

Many authors have proposed regression-based full spectrum analysis for the
identification of several rotor fault parameters. Most of them identified rotor pa-
rameters, such as the crack, residual unbalance, viscous (external) damping [12]
elaborated the use of full spectrum for detection of malfunctions in the rotating
machinery. The vibration caused by faults during rotation of the rotor may pro-
duce extra (or multiple) harmonic components. Hence, it includes the forward
and backward whirls in the rotor orbital motion. The identification of the whirls
conveys the sense of rotation concerning the spinning direction, and illustration
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of what is possible based on the full-spectrum plot [13] elaborated the estimation
of rotor-bearing parameters, such as the residual unbalance and bearing dynamic
parameters, through the model-based method for two-degree-of-freedom of the
rotor system.

The crack identification has been illustrated by many authors, which includes
other parameters such as unbalance, external damping, misalignment, etc. [14]
presented rotor-bearing vibrations of the system with a transverse crack opening
and closure behavior of the rotor shaft. [15] worked on the response of a dynamic
system of a Laval rotor with the unbalance and the shaft with a transverse crack
[16] and [17] illustrated the estimation of the crack size and its location in a
cracked shaft based on the finite element method. [18] and [19] described the
switching crack force model in a transverse cracked shaft for the identification of
parameters, such as the additive crack stiffness, viscous damping, and unbalance
based regression matrix method. They considered the full spectrum analysis in the
estimation of parameters, such as switching crack function with multi-harmonic
components, which produced forward and backward whirls. [20, 21] extended
the identification of crack parameters with an offset disc, which produces both
transverse and rotary inertia along with the gyroscopic effect in a Jeffcott rotor
model [22] presented a model-based methodology to identify the internal and
external damping, additive stiffness, and residual unbalance in a cracked rotor
system with an offset disc. However, the identification procedure was illustrated
through numerical examples only.

As per the literature survey, it has been found that most of the research works
focused are related to the identification of internal damping or identification of
crack parameters, separately, along with other rotor parameters. However, a lim-
ited study on the experimental identification has been established based on the
combined effect of a crack along with internal damping, which is most impor-
tant for the practical purpose. In fact, due to instability, the crack would grow,
and it will have more rotating damping and that will further reduce the instability
threshold. Therefore, in the present work, the identification of the internal damp-
ing owing to the rotor crack has been attempted experimentally. The procedure
is based on physical model-based regression and by utilizing the experimental
full spectrum responses. The crack is modeled based on a switching function
through Fourier series expansion. Dynamic condensation was used to eliminate
transverse rotational displacements from EOMs (equation of motion) since such
displacements are challenging to measure accurately. The full spectrum is ob-
tained through FFT, and it requires the phase correction with respect to a reference
signal with multiple harmonics. EOMs in frequency domain is used to develop
identification procedure from different harmonics of responses for estimation of
unknown rotor parameters, such as the rotating damping, stationary damping, un-
balance, and crack stiffness. The identification procedure has been tested for its
effectiveness and consistency with full spectrum responses for different combined
spin speeds.
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2. Modeling and identification in a cracked rotor system

This section illustrates the derivation of EOMs of a cracked rotor with an
offset disc, and it is utilized in the experimental identification of rotor system
fault parameters. A rotor shaft is considered with a fatigue crack that introduces
the internal damping owing to rubbing of crack faces, and an offset disc gives
gyroscopic moments. It also includes other parameters, such as the stationary
viscous damping in bearing and unbalance owing to a manufacturing defect. For
crack modeling, the switching crack function is assumed as a periodic function.
Fig. 1 shows the deflected cracked shaft with an offset disc. The supports at both
the ends of the rotor is assumed as a rigid in transverse translational directions,
which allow only the transverse rotational motion of the shaft. Point O represents
the origin of axis system, axially located at the disc on the axis passing through both
end bearings. The bearing axis is represented by z-axis and x-axis is considered
in the vertical (downward) direction or towards the gravity force. Due to the static
force mg, it produces an initial static deflection of the disc as ux0 and angular
displacement due to tilting of the disc as φy0. The rotor modeling and generation
of responses has been described now.

Fig. 1. Jeffcott rotor with an offset disc in the presence of a transverse crack in static condition

2.1. Model-based equations of motion

The fatigue crack in the rotor shaft results in a decrease in the local stiffness,
and correspondingly the natural frequency also decreases [14, 15]. Fig. 2 depicts
the motion of the disc in the stationary coordinate system (x, y) and the rotating co-
ordinate axes (ξ, η). The crack front is considered perpendicular to the ξdirection.
The translational disc displacements are shown in Fig. 2. Herein, ω is the shaft
spin speed, t is the time instant, e is the disc eccentricity (which is the distance
between the point C denoting the geometric center and G denoting the center of
gravity of the disc). The angle between the unbalance (direction of e) and the di-
rection perpendicular to the crack front (i.e., ξ axis direction) is the phase angle of
unbalance and it is denoted by φ. Forces owing to the rotating (internal) damping
(cH ), stationary (external) damping (cE ) and the gravity are shown in Fig. 2a. The
tilting angles of the disc ϕy0, ϕy and ϕx are shown in Fig. 2b,2c. The equations of
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(a)

(b)

(c)

Fig. 2. Disc motion (a) in the fixed and rotating frame of references in presence various forces
(damping, disc-weight and unbalance) (b) in x-z plane, (c) in y-z plane

motion with internal damping in the presence of a transverse fatigue crack in an
offset disc rotor system, including of unbalance force, is given as [22]

Mq̈v + (CE + CH − ωG) q̇v + (ωC1H +K) qv = fcr (t) −ωC1Hq0 + funb (t) (1)

where M, K, G, and CE are the mass, stiffness, gyroscopic, and external damp-
ing matrices, respectively. Here CH is symmetric matrix whereas C1H is skew-
symmetric matrix and both contain the rotating damping CH . Also, fcr is the crack
force vector owing to the local flexibility, fst is the static force vector due to weight
of the disc, funb is the unbalanced force vector, qv is the disc displacement vector
and its first and second-time derivatives are illustrated as q̇v and q̈v, respectively.
Details of the matrices and vectors are provided in Appendix A (Equation (A.1)).
Equation (1) in the complex form can be expressed as

M̄v̈ +
(
C̄ + C̄H − jωḠ

)
v̇ +

(
K̄ − jωC̄H

)
v = f̄cr (t) + f̄unb (t) + jωcH




ux0

0




(2)

with

r = ux + juy , ϕ = ϕy + jϕx ,
(
−Ipωϕ̇x

)
+ j

(
Ipωϕ̇y

)
= jIpωϕ̇ ,

ωcHuy − jωcHux = −jωcHr, ux0 + juy0 = r0ejθ,

M̄ =


m 0
0 Id


, C̄ =



cE 0
0 0


, C̄H =



cH 0
0 0


, Ḡ =



0 0
0 −Ip


,

K̄ =


k22 k23

k32 k33


, v(t) =




r (t)
ϕ(t)



, f̄cr (t) =

1
2
σ(t)




∆k22ux0
(
1 + e2jωt

)
∆k44ϕy0

(
1 + e2jωt

) 

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and

f̄unb (t) =



meω2ej(ωt+φ)

0



,

σ(t) =
1
2
+

2
π

cos(ωt) −
2

3π
cos 3(ωt) +

2
5π

cos(5ωt) −
2

7π
cos(7ωt) + · · · (3)

Detail steps in derivation of crack force fcr are illustrated in [20–22], σ(t) is the
switching function and its values are 0 or 1 for the crack in closed and open con-
ditions, respectively, during rotation of the shaft. The series of multiple harmonics
that appear in the crack force in Equation (3), is expressed as

1
2
σ(t)

(
1 + e2jωt

)
= 0.25 + 0.319ejωt + 0.25e2jωt + 0.106e3jωt

− 0.021e5jωt + 0.009e7jωt + 0.106e−jωt

− 0.021e−3jωt + 0.009e−5jωt + · · ·

(4)

The general form of Equation (4) is expressed as

1
2
σ(t)

(
1 + e2jωt

)
=

i=n∑
i=−n

piejiωt . (5)

The ith term coefficient in Equation (5) is denoted by pi, which is known as the
participation factor of the crack force for individual harmonics. The coefficients
decrease for the higher harmonics, which is independent of the crack depth in the
entire range of tc/R < 0.5, here tc is the crack depth and R is the radius of the
shaft. This is an assumption for the hinge model of the crack [15]. Then, the crack
force taken in the following form [22]

f̄cr (t) =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

piejiωt . (6)

Hence, the solution of the EOM in Equation (2) is taken of the following form

v(t) =
i=n∑
i=−n

v̄iejiωt . (7)

Therefore, the frequency domain form of the EOM (i.e., Equation (2)) takes
the following form


−(iω)2



m 0
0 Id


+ j(iω) *

,



cE 0
0 0


+



cH 0
0 0


+ jω



0 0
0 Ip


+
-

+ *
,



k22 k23

k32 k33


− jω



cH 0
0 0


+
-


v̄i = fi

(8)
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with

fi =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

pi +



meω2ejφ

0


i=1

+ jωcH



ux0

0


i=0

.

The force term fi is expressed in the following form

f0 =



∆k22ux0

∆k44ϕy0




p0 + jωcH



ux0

0




for i = 0,

f1 =



∆k22ux0

∆k44ϕy0




p1 +



meω2ejφ

0




for i = 1,

fi =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

pi for i = 2, 3, 5, 7, · · · − 1,−3,−5, · · ·




(9)

In the time domain, the dynamic response of the rotor system v(t) is obtained
by the integration of Equation (2). The multiple harmonics of the rotor system
responses in the form of forward and backward whirling, v̄i, can be estimated by the
full spectrum of v(t). The full spectrum response is the frequency domain response,
which is obtained from time domain response, and its details are illustrated in the
next section.

3. Generation of full spectrum responses

Equation (7) is expressed for various forward and backward harmonics ‘i’, in
the following form

v(t) = v̄0 + v̄1ejωt + v̄2e2jωt + v̄3e3jωt + v̄5e5jωt

+ v̄−1e−jωt + v̄−3e−3jωt + v̄−5e−5jωt + ...
(10)

The appearance of various terms, v̄0, v̄1, v̄−1, v̄2, v̄−2, . . . in the above equa-
tion, which represents that the complex displacement can be expressed in terms
of amplitude and phase corresponding to different harmonics, ω, −ω, 2ω, −2ω,
. . . , which in graphical illustration, is called the full spectrum. Two methods are
illustrated in the next sub-section to extract the full spectrum from responses.

3.1. Description of regression-based full spectrum

The estimation of unknown complex displacement (v̄0, v̄1, v̄−1, v̄2, v̄−2, . . . ) is
known as the full spectrum displacements, Equation (10) is expressed in the form
of the regression equation (for the current case considered only up to 7th positive
and up to 5th negative harmonic expressions), as

A1n×9 v̄i9×1 = vn×1 . (11)
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The details of the matrices and vectors are illustrated in Appendix A (Equa-
tion (A.2)). Equation (11) gives the estimation of the unknown complex displace-
ments when using time domain displacement responses v(t)n×1 as input from
experimental setup through non-contact proximity probes in two transverse or-
thogonal directions. Equation (11) can be expressed as

v̄i9×1 =
(
AT

1 A1
)−1

AT
1 v(t). (12)

Equation (12) gives an estimation of, v̄i9×1 , which denotes the unknown dis-
placement of full spectrum. For the present case, only up to 7th positive harmonics
and up to 5th negative harmonics are considered. The present method requires
large numbers of time domain data sets for estimation, which is time-consuming.
Therefore, FFT based full spectrum estimation is illustrated in the next subsection
along with the phase compensation in full spectrum.

3.2. Description of FFT-based full spectrum

The most popular tool for the conversion of time domain responses to fre-
quency domain responses is known as FFT. The comparison of estimation through
regression-based (i.e., Equation (12)) and FFT-based full spectrum of multi-
harmonic response is necessary for its computational efficiency. It is observed
that both of the estimation methods (i.e., FFT-based and regression-based) of the
full spectrum give the amplitude same for each harmonic but phase differ. To avoid
this discrepancy, a time domain signal has to be measured at the same time instants
with respect to a shaft reference signal. While time domain displacement signal
is selected, the focus is given on the selection of complete cycle of shaft rotation,
(such as ωt = 2πn, where n is an integer) to avoid leakage error (which gives
inconsistency in both amplitude and phase while performing FFT). However, it
is problematic to capture signals in the aforementioned method for all practical
purposes. Adequate phase compensation can be performed to remove the ambi-
guity in phase, with the help of reference signal having multiple harmonics all in
the same phase. The full-spectrum estimation methodology is used according to
the paper [22], in which, the magnitude is represented by |v̄i (ω) |, and the phase
is represented by ∠θi for ith harmonic of the response displacement with i is an
integer (positive as well as negative). Herein, multiple harmonics of the reference
signal, which in complex form is utilized in the analysis. The phase of ith harmonic
of the reference signal is denoted by ∠ψi. The compensated full spectrum [22] is
given as

v̄ci = |v̄i (ω) |∠ (θi − ψi) (13)

where v̄ci = RiRe + jRiIm is the modified full-spectrum complex displacement.
Firstly, the estimation of system parameters is performed by both the methods

described in this section, viz. the regression-based and FFT-based methods, and
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are compared for the correctness and its accuracy. Before the identification of the
system, it is important to eliminate rotational DOFs (degrees of freedom) from
governing equations, which is illustrated in the next section.

4. Application of dynamic reduction scheme

In the present section, the dynamic reduction technique is utilized to remove
rotational (owing to tilting) DOFs. An accurate experimental measurement of
disc tilting (rotational DOFs) response is difficult. In Equation (8), the transverse
translational and rotational displacements are present, which are referred as master
DOFs and slave DOFs, respectively, and it is represented with subscripts m and
s, respectively. Moreover, the crack force in the right side of Equation (8) due to
rotational DOFs are ignored in the development of the transform matrix. After
partition of matrices for the master and slave DOFs, it takes the following form


−(iω)2



Mmm 0
0 Mss


+ j(iω) *

,



Cmm Cms

Csm Css


− jω



0 0
0 Gss


+
-

+ *
,



Kmm Kms

Ksm Kss


− jω



CHmm 0
0 0


+
-






qmm

qss



=




fi
0



.

(14)

Details of the vectors and matrices in Equation (14) are illustrated in Ap-
pendix A (Equation (A.3)). The statement of the transformation matrix, TD , ac-
cording to the dynamic condensation is obtained as

{qmm} = [I] {qmm} ,



qmm

qss



= TD {qmm} (15)

with

TD =



I
Li



, where Li =

−Ksm

Kss + iω2Gss − (iω)2Mss
,

whereω is considered as the central frequency in the range of frequency of interest.
According to the transformation and with consideration of the crack force owing
to rotational DOFs in Equation (14), it is expressed in the following form(

TD
)T 
−(iω)2



m 0
0 Id


+ ijω



cE 0
0 0


+ (i − 1)jω



cH 0
0 0



+iω2


0 0
0 −Ip


+



k22 k23

k32 k33




TDqmm =

(
TD

)T *
,




∆k22ux0

0




i=n∑
i=−n

pi

+



meω2ejφ

0


i=1

+ jωcH



ux0

0


i=0

+
-
.

(16)
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According to ith harmonic, TD is expressed as

TD
i =



1 0 tdi 0
0 1 0 tdi



T

, where tdi =
−k42

k44 − iω2Ip − (iω)2Id
. (17)

The reduced EOM (Equation (16)) with the help of transfer matrices is ex-
pressed in the following form(

−(iω)2MD + i jωCD + (i − 1)jωCD
H + iω2GD +KD

)
qmm = fD . (18)

On substituting Equations (A.4) through (A.9) into Equation (18) including
the complex form of the displacement vector, which is assumed as qmm = Ri, we
can get a single equation and is expressed as(

−(iω)2mi + i jω (cE ) + (i − 1) jωcH − iω2Ip
(
tdi

)2
+ ki

)
Ri

= meω2ejβ + (∆k22ux0) pi + jωcHux0

(19)

with

mi =

{
m +

(
tdi

)2
Id

}
, ki =

{
k22 + 2tdi k24 +

(
tdi

)2
k44

}
and Ri = RiRe + jRiIm .

5. Identification of internal damping and other rotor parameters

The description of the identification of the system parameter is presented in
this section. The method is presented for the estimation of unknown rotor system
parameters, such as the internal damping, external damping, additive crack stiffness,
and unbalance, which are difficult to predict by theoretical modeling. Equation (8)
is used to convert into a regression procedure to estimate the unknown parameters.
The complex form of Equation (19) is split, as

Real terms

−iω (cE ) RiIm − (i − 1)ωcH RiIm − mω2eRe − (∆k22ux0) pi

=

(
(iω)2mi + iω2Ip

(
tdi

)2
− ki

)
RiRe

(20)

Similarly, imaginary terms

iω (cE ) RiRe +
(
(i − 1)RiRe − ux0

)
ωcH − mω2eIm

=

(
(iω)2mi + iω2Ip

(
tdi

)2
− ki

)
RiIm .

(21)

Equations (20) and (21) are rearranged in matrix form for the identification by
using different harmonics and is expressed as

A x = b. (22)
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In the identification, the vector of unknown parameters is x, and the details
of the vectors and matrices, such as x, A and b in Equation (22), are given in
Appendix A (Equation (A.10) and (A.11)). For the estimation of x, Equation (22)
takes the following form

x =
(
ATA

)−1
ATb. (23)

More accurate identification of the vector, x, can be achieved by considering
multiple speeds of rotor displacement data. Hence, for the combined spin speeds
ω1, ω2, . . . , ωn, Equation (22) can be written as



A (ω1)
A (ω2)

...

A (ωn)



x =




b (ω1)
b (ω2)
...

b (ωn)




. (24)

Further, the expression of identity is utilized in the next section to illustrate
the estimation of system parameters, experimentally, and it is used in numerical
simulation for validation.

6. Experimental analysis

The transverse fatigue crack in the shaft has been generated based on three-
point bending test at UTM machine at Strength of Material Laboratory, IIT Guwa-
hati. The variation of compressive load applied on the shaft with the support span
of 140 mm is from 1.8 kN to 6.0 kN at operating frequency of 10 Hz. The stress
ratio utilized for this purpose is 0.3 at room temperature.

Fig. 3. Arrangement of the crack shaft experimental setup

On the motor shaft, instead of single slot (phase marker), there are two slots
(phase markers) at 180◦ with some difference in size. This gives the frequency of
the phase marker twice of the fundamental vibration component. However, only
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Fig. 4. Motor shaft with a slot and the sensor location
for the reference signal

Fig. 5. Close view of sensor, crack
and disc

Fig. 6. Close view of the fatigue crack at the tip of the notch on the shaft

one slot is chosen as a phase marker for the reference signal. Figures 5 and 6 show
the crack location near to the disc onto shaft and the close view of the crack at the
notch in the shaft, respectively.

6.1. Initial observations from the test rig

Two eddy-current proximity sensors are utilized for acquiring vibrational dis-
placements of the cracked rotor system, which are located in two orthogonal trans-
verse directions near the offset disc, as illustrated in Fig. 5. The sensor sensitivity
of the proximity sensor is 7.478 V/mm. A third sensor is utilized for the phase ref-
erence and is placed at the slot of the rigid motor shaft, so the negligible transverse
displacement of the motor shaft during its rotation. An impact test in the verti-
cal direction of the cracked rotor system was done for different shaft orientations
to obtained highest and lowest natural frequencies corresponding to fully closed
(healthy shaft) and fully open crack conditions.

The maximum natural frequency obtained is 65.0 Hz, when the crack was in
horizontal position and direction of impact is in the vertical direction, as shown
in Fig. 7. For this case, the notch effect was minimum, which was made for
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the initiation of a fatigue crack. Minimum natural frequency was obtained when
crack was in the downward direction and is 63.0 Hz. When the crack was in the
vertical direction, the natural frequencywas 64.0Hz.Using the influence coefficient
method [1], also natural frequency was obtained for intact shaft based on geometry
and material properties (refer Table 1) and a comparison is shown in Table 1.

(a) (b)

Fig. 7. Free vibration response of shaft due to impulsive force with an orientation of crack is placed
in the horizontal direction (a) time domain response and (b) frequency domain response

Table 1.
Rotor system parameters

Parameters Symbol Value Unit

Mass of disc m 1.8 kg

Mass moment of inertia
Ip 0.00489 kg·m2

Id 0.00235 kg·m2

k22 3.5056 × 105 N/m
Intact shaft stiffness k24 1.9671 × 104 N

k44 1.7048 × 104 Nm

Natural frequency
ωth 67.9 Hz
ωexp 65.0 Hz

Shaft static deflection ux0 5.386 × 10−5 m
Static tilting angle ϕy0 −6.21 × 10−5 rad

l 0.46 m
Length of shaft a 0.26 m

b 0.20 m

A VFD-M power source unit regulated the motor speed. Measurement was
taken near 3 Hz of motor speed for the slow run condition [23, 24]. The dSPACE
DAQ system is utilized to store the measurement signal at a sampling frequency
of 10 000 samples per second. The reference signal was utilized for acquiring
displacement signals of the shaft for complete multiple shaft rotational cycles,
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i.e. for ωt = 2πn, where n is the number of complete cycles. The importance of
complete cycles is given in [22] to avoid leakage error. For the slow run condition,
the acquisition of complete cycles of signals is illustrated in Fig. 8.

(a) (b)

(c) (d)

Fig. 8. Time domain response for slow roll near at 3 Hz (a) vertical direction reference signal
(x-direction) (b) vertical displacement (x-direction) (c) horizontal displacement (y-direction)

and (d) orbit plot from the vertical and horizontal displacements

Fig. 8a illustrates three complete cycles of the reference signal for 3 Hz motor
speed from the vertical direction sensor. During the same time duration, displace-
ment signals are acquired near the disc in both vertical (x-axis) and horizontal
(y-axis) directions and are illustrated in Figs. 8b and 8c, respectively. Also, Fig. 8d
depicts the shaft displacement orbit plot and it is seen that the origin is not inside
the plot, which shows the gap between the sensors and shaft in two orthogonal
directions (x and y) at the slow run condition. Since at slow run condition the
dynamic force is very low, hence Fig. 8d shows only the bow and sensor gap. From
Figs. 8b, 8c, 8d, it is to be noted that displacements have higher amplitudes due
to bow of the shaft. Similarly, for the higher spin speeds of 20 Hz, complete cycle
acquisition of signal is shown in Fig. 9.
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(a)

(b)

(c)

Fig. 9. Time domain response at 20 Hz (a) vertical direction reference signal (x-direction)
(b) vertical displacement and (c) horizontal displacement (y-direction

Now the FFT-based full spectrum, which was earlier discussed in Section 3, is
illustrated for the acquired time domain responses from the experimental setup for
slow roll and higher speeds. The responses in the vertical and horizontal directions
at disc location along with the reference signal are transformed in full spectrum
domain, which has a form of complex numbers.

These are illustrated in Fig. 10, and Fig. 11 for 3 Hz for the slow roll condition,
and 20 Hz for the higher spin speeds, respectively. Figs. 10a and 11a represent the
full spectrum amplitudes with frequency both in positive and negative directions of
the motor speed, and Fig. 10b and Fig. 11b represent the phase of the full spectrum
corresponding to displacements near the disc. For the reference signal, Fig. 10c
and Fig. 11c represent the amplitudes, and its phases are represented in Fig. 10d
and Fig. 11d, respectively, for 3 Hz and 20 Hz of motor speed.
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(a) (b)

(c) (d)

Fig. 10. Full spectrum plots for the slow roll at 3 Hz (a) amplitude of shaft displacements (b) phase
of shaft displacements (c) amplitude of reference signals and (d) phase of reference signals

(a) (b)

(c) (d)

Fig. 11. Full spectrum plots for the slow roll at 3 Hz (a) amplitude of shaft displacements (b) phase
of shaft displacements (c) amplitude of reference signals and (d) phase of reference signals
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6.2. Comparisons of full spectra

The present section illustrates a comparison of the estimation of two full
spectrum methods, i.e., regression-based and FFT-based. Amplitudes and phase
angles of complex shaft displacements, and phase angles of the complex reference
signal at different harmonics for the slow roll shaft speed (i.e., 3 Hz) are provided
for both the first and second methods in Table 2 for comparison. Phase angles of
reference signals are used for the phase correction of displacement signals and the
procedure is described in the next subsection. Similarly, displacement amplitudes
and phase angles at different harmonics, for higher spin speeds of 20 Hz, are
provided in Table 3. It can be inferred that the variations in amplitudes are found to

Table 2.
Amplitudes, phase angles and reference phase angles at different harmonics of full spectrum

for slow run rotor speed (3 Hz)

Amplitudes Phase angle Reference phase angle
Frequency Regression FFT Regression FFT Regression FFT

(10−5 m) (10−5 m) (rad) (rad) (rad) (rad)
0 160.7689 160.7728 0.7931 0.7930 0 0
ω 51.3491 51.3489 −0.0022 −0.0013 2.7451 2.7457
2ω 1.0689 1.0698 1.7482 1.7547 −0.0281 −0.0262
3ω 0.3017 0.3019 1.7213 1.7320 3.0001 3.0031
5ω 0.1687 0.1675 −0.2610 −0.2588 2.9232 2.9303
7ω 0.0928 0.0929 −1.7243 −1.7245 2.6542 2.6835
−ω 4.2316 4.2322 1.3574 1.3559 −2.7451 −2.7457
−3ω 0.4413 0.4397 2.7078 2.7046 −3.0002 −3.0031
−5ω 0.0268 0.0278 −0.1526 −0.1491 −2.9234 −2.9303

Table 3.
Amplitudes, phase angles and reference phase angles at different harmonics of full spectrum

for the 20 Hz spin speed

Amplitudes Phase angle Reference phase angle
Frequency Regression FFT Regression FFT Regression FFT

(10−5 m) (10−5 m) (rad) (rad) (rad) (rad)
0 160.6459 160.6419 0.7933 0.7933 0 0
ω 52.2777 52.2767 0.0190 0.0251 2.7966 2.8024
2ω 0.9996 0.9982 1.7815 1.7984 −0.0053 0.0068
3ω 0.6365 0.6375 1.3079 1.3296 −3.1343 −3.1163
5ω 0.4044 0.4056 −0.5920 −0.5641 −3.1129 −3.0832
7ω 0.0864 0.0871 −1.3129 −1.2764 −3.0795 −3.0409
−ω 4.6157 4.6148 1.2915 1.2849 −2.7966 −2.8024
−3ω 0.4653 0.4650 −1.5999 −1.6145 3.1344 3.1163
−5ω 0.0546 0.0541 1.7239 1.6786 3.1131 3.0832
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be negligible by two independent methods, whereas, the variations in phase angles
become negligible only after the phase compensation.

The effect of shaft bow is nullified, as described in subsequent sections, from
displacement amplitudes, and a comparison of orbit plots is also presented. Finally,
the rotor system parameters are estimated.

6.3. Removing the effect of bow and sensor gap of the shaft

The removal of the bow after phase compensation is discussed in numerical
simulation. It is important for the correct identification of rotor parameters that
the bow effect is removed from shaft displacement signals by using the slow roll
measurement of shaft displacement signals [23, 24]. To reduce the effect of bow,
the complex displacement in full spectrum at slow roll of rotor speed (i.e., in
vector form) for 1X harmonic is removed from the complex displacement in the
full spectrum at higher rotor spin speed. When the parameters to be estimated also
depend upon at the zeroth harmonic, such as due to internal damping (cH ) and the
participation factor (p0) in Equations (20) and (21), then the role of equilibrium
position becomesmore important as compared to the position of sensor gap removal
for the actual amplitude at the 0X harmonic. Hence, for the removing of the sensor
gaps with the help of full spectrum of slow roll at 0X harmonic from the full
spectrum of higher rotor speed, is similar to removing of the bow effect and it is
illustrated in Equation (25). However, the rest of the harmonics of the full spectrum
remains the same and is expressed as

s1(t)
without bow and

sensor gap

= s(t)
Experimental data

with bow and
sensor gap

−

((
R0 + R1ejωt

)
higher spin speed

)
︸                                 ︷︷                                 ︸

without phase compensation

+
(
(R0)higher spin speed − (R0)slow roll

)︸                                       ︷︷                                       ︸
removing sensor gap from equilibrium

position after phase compensation

+
(
(R1)higher spin speed − (R1)slow roll

)︸                                       ︷︷                                       ︸
removing bow after phase compensation

ejωt .

(25)

Equation (25) is used for finding out the response at higher shaft speeds after
removal of the bow and sensor gaps. The corrected full spectrum amplitude and
phase are utilized for the identification of rotor parameters, like the rotating damp-
ing, stationary damping, unbalance, and additive crack stiffness. The comparisons
of responses with or without bow and sensor gap are discussed in the next section.

6.4. Response comparison analysis

The response of time domain orbit plots, based on Equation (25) for the rotor
speed of 20 Hz, is illustrated in Fig. 12b and it is without the effect of bow and
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sensor gap from equilibrium position of the rotor shaft. Displacements are reduced
from the order 10−3 to 10−5 m and the origin is outside the orbit in this figure, as
compared to Fig. 12a, due to bow and the effect of sensor gap. Hence, after the
removal of the sensor gap, the origin comes inside the orbit as shown in Fig. 12b.
Since the crack was initiated by fatigue loading, hence the actual crack propagation
is not known and so the orbit is not correlating with hypothetical mathematical
models in which symmetry prevails. Fig. 13 shows the full spectrum amplitude
without bow and without sensor gap at the spin speed of 20 Hz rotor speed for 20
complete cycles of data. It can be observed that full spectrum plot is not symmetric
due to the nature of fatigue crack.

(a) (b)

Fig. 12. Orbit plot (x vs. y) for higher spin speed at 20 Hz (a) with a bow from sensor position
(b) without bow from the equilibrium position

Fig. 13. Full spectrum amplitude without bow and without sensor gap at the spin speed 20 Hz rotor
speed for 20 complete cycles

6.5. Estimation of rotor system parameters

The amplitudes and phases of the full spectrum displacement responses after
application of the phase compensation and the removal of the bow and sensor gap
through Equation (25), are utilized in the identification of rotor parameters using the
regression Equation (24). The identified parameters of the cracked rotor system are
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summarized in Table 4. For different combined speeds, such as the first combined
speeds for 15 Hz, 16 Hz, 17 Hz, the second combined speeds for 18 Hz, 19 Hz and
20 Hz and the last combined speeds for all 15 Hz through 20 Hz. It is observed from
Table 4, that the obtained estimates of the product of crack stiffness parameter and
participation factor (∆kξ pi) are maintaining consistency (the estimated parameters
for all combined speeds lie between estimates of parameters for lower speeds range
and higher speed range) except for 1X harmonic. And it is because of the bow
and unbalance forces also lie on 1X harmonic. Even the bow effect was removed
by slow roll rotor displacement, but still, it is affecting the estimates of the disc
eccentricity and its phase. However, the consistency in estimates has been seen in
the stationary damping and the rotating damping.

Table 4.
Estimated rotor parameters from experimental data

Parameters
15, 16 and 17 Hz 18, 19 and 20 Hz 15 through 20 Hz
combined speeds combined speeds combined speeds

cE (Nsm−1) 1291.9967 1775.0819 1377.2959
cH (Nsm−1) 483.5822 311.0272 418.0876
e(10−4 m) 10.1009 8.3721 1.8464
φ (deg) 173.4 −179.3 176.2
∆kξ p0 −11987.0984 −9913.9144 −9434.5097
∆kξ p1 231606.6802 276027.9744 −8341.9619
∆kξ p2 −65026.7530 −88689.1288 −70677.4922
∆kξ p3 29917.1322 68000.1890 43761.9400
∆kξ p5 −44649.7133 −31458.0987 −34736.0346
∆kξ p7 −16868.7076 −23160.3580 −18251.1669
∆kξ p−1 −285337.2953 −341353.1149 −304201.2771
∆kξ p−3 11526.3482 38653.1516 23014.2936
∆kξ p−5 −9579.1544 −12701.7005 −10344.1239

7. Validation through numerical simulations

In this section, a numerical simulation has been done through MATLABTM

Simulink model based on test rig configuration and estimated parameters through
experimental responses provided in Tables 1 and 4. Herein, the Simulink model
developed based on EOMs illustrated in Equation (2), and it generates time domain
responses for different rotor speeds. The Simulink block for the proposed rotor
system is developed. The simulation runs for 8 s duration to obtain responses and
is considered for complete cycles (n) of the rotor rotation. The sampling time is
kept the same as that used in experimentally acquired data.
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The generated numerical responses are used to plot the orbit and are illustrated
in Fig. 14 for the spin speed of 20 Hz. It compares well with the experimental orbit
plot, as shown in Fig. 12b, for the spin speed 20 Hz. These responses are used to
generate the full spectrumamplitudes for 20Hz rotor speed and are shown in Fig. 15.
Table 5 shows that the most of higher amplitudes are similar in the experimental
and numerical full spectrum, as well as lower amplitudes for 20 Hz rotor speed.
The similarity in the orbit and the full spectrum amplitudes from experimental data
and numerical generated data validates the identification algorithm.

Fig. 14. Orbit plot x vs. y through Simulink at 20 Hz

Fig. 15. Full spectrum response through Simulink (numerical) at 20 Hz

The identified multiple participation factor and crack stiffness product parame-
ter (∆kξ pi) are illustrated in Table 4. It is used to produce the crack force according
to Equation (6) after dynamic condensation, i.e., on elimination of the slave part,
as is given in Fig. 16. In Fig. 16, the full spectrum of the crack force for 20 Hz
rotor speed is shown by using of the identified ∆kξ pi for combined speeds (15
through 20 Hz).
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Table 5.
Validation amplitudes at different harmonics of full spectrum at 20 Hz rotor spin speed

Frequency
Experimental Simulation

Frequency
Experimental Simulation

(10−5 m) (10−5 m) (10−5 m) (10−5 m)

0 1.1408 0.8310 7ω 0.0861 0.0557

ω 1.3679 1.5526 −ω 4.6157 4.0634

2ω 0.9997 0.8573 −3ω 0.4658 0.1750

3ω 0.6361 0.3873 −5ω 0.0549 0.0470

5ω 0.4044 0.1715

Fig. 16. Crack force response at 20 Hz

8. Conclusions

The main goal of the present work is the experimental identification of the
rotating and stationary damping with the help of a rotor model. The existence of
rotating damping is considered only at the crack portion of rotor shaft and the
rotor speed much below the critical speed ensure negligibly small material rotat-
ing damping and from other portion of the rotor shaft. Apart from the damping,
the unbalance and the product of crack and participation factor were also esti-
mated. The full spectrum is obtained through the regression-based and FFT-based
methodology, and both compares well after the phase compensations, which uses
a multi-frequency phase reference signal from the motor shaft. The shaft bow and
sensor gap effects were removed through full spectrum vectors (complex) using the
slow run full spectrum vectors. Then, the estimated parameters are used in equa-
tions of motion of rotor test setup configuration and through numerical simulation
with Simulink block the displacement responses are generated. These displace-
ment responses are compared with experimental responses in the form of orbits
and full spectrum for validation of the identification methodology and overall rotor
modeling. The novelty of this work is that it gives as an idea of rotating damping
from the crack and it identifies experimentally along with stationary damping and
other parameters of the cracked rotor system. It also supports in the generation
of the periodic crack force, from which a newer crack model can be envisioned.
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The present work can be extended with the finite element modeling considering
shaft inertia and bearing flexibility to cater more practical rotor system.

A. Appendix: system matrices and vectors

The details of the matrices and vectors, mentioned in Equation (1), are given as

M =



m 0 0 0
m 0 0

Id 0
sym Id



, CE =



c22 0 c24 0
0 c33 0 c35

c42 0 c44 0
0 c53 0 c55



,

K =



k22 0 k24 0
k33 0 k35

k44 0
sym k55



, G =



0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0



,

CE =



cE 0 0 0
0 cE 0 0
0 0 0 0
0 0 0 0



, CH =



cH 0 0 0
0 cH 0 0
0 0 0 0
0 0 0 0



, (A.1)

C1H =



0 cH 0 0
−cH 0 0 0

0 0 0 0
0 0 0 0



, fcr (t) =
1
2
σ(t)




∆k22(1 + cos 2ωt)ux0

∆k22 sin(2ωt)ux0

∆k44(1 + cos 2ωt)ϕy0

∆k44 sin(2ωt)ϕy0




,

funb =




meω2 cos(ωt + φ)
meω2 sin(ωt + φ)

0
0




, fst =




mg

0
0
0




, q =




x
y

ϕy

ϕx




and q = qv + q0.

The static deflection force, fst = K q0, is given as




mg

0
0
0




=



k22 0 k24 0
k33 0 k35

k44 0
sym k55






ux0

uy0

ϕy0

ϕx0




.
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After expanding the above matrix, we get

ux0 =
mgk44

k44k22 − k2
24

uy0 = 0, ϕx0 = 0

ϕy0 =
mgk24

k2
24 − k44k22




and q(t)q = qv (t) + q0 where,

qv (t) =




ux (t)
uy (t)
ϕy (t)
ϕx (t)




and q0 =




ux0

0
ϕy0

0




.

The details of the vectors andmatrices,mentioned inEquation (11), are given as

A1n×9 (t) =



1 ejωt1 ej2ωt1 ej3ωt1 ej5ωt1 ej7ωt1 e−jωt1 e−j3ωt1 e−j5ωt1

1 ejωt2 ej2ωt2 ej3ωt2 ej5ωt2 ej7ωt2 e−jωt2 e−j3ωt2 e−j5ωt2

...
...

...
...

...
...

...
...

...

1 ejωtn ej2ωtn ej3ωtn ej5ωtn ej7ωtn e−jωtn e−j3ωtn e−j5ωtn



,

V̄i9×1 =
⌊

v̄0 v̄1 v̄2 v̄3 v̄5 v̄7 v̄−1 v̄−3 v̄−5
⌋T

and

vn×1(t) =
⌊

v(t1) v(t2) · · · v(tn)
⌋
.

(A.2)

Details of the matrices and vectors mentioned in equation (14) are given as



Mmm 0
0 Mss


=



m 0
0 Id


,



Cmm Cms

Csm Css


=



cE 0
0 0


,



0 0
0 Gss


=



0 0
0 −Ip


,



Kmm Kms

Ksm Kss


=



k22 k23

k32 k33


,



CHmm 0
0 0


=



cH 0
0 0


,




qmm

qss

!


=




Ri

Φi




and




fi
0



=




∆K22ux0

i=n∑
i=−n

pi

0




+



meω2ejφ

0


i=1

+



ωcHux0ejπ/2

0


i=0

.

(A.3)
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On application of condensation, the reduced form of matrices and vectors, for
Equation (18), are given as

MD =
(
TD

)T 

Mmm 0
0 Mss


TD =



m +
(
tdi

)2
Id 0

0 m +
(
tdi

)2
Id


, (A.4)

KD =
(
TD
i

)T 

kmm kms

ksm kss


TD
i

=



k22+2tdi k24+
(
tdi

)2
k44 0

0 k22+2tdi k24+
(
tdi

)2
k44


, (A.5)

cD =
(
TD
i

)T 

cmm cms

csm css


TD
i =



cE 0
0 cE


, (A.6)

cDH =
(
TD
i

)T 

cHmm 0
0 0


TD
i =



cH 0
0 cH


, (A.7)

GD =
(
TD
i

)T 

0 0
0 Gss


TD
i =



−Ip
(
tdi

)2
0

0 −Ip
(
tdi

)2


, (A.8)

fD =
(
TD
i

)T 


fm
fs



=




meω2 cos(φ)
meω2 sin(φ)



+




(∆k22ux0) pi
0




− ω



0
−cHux0



. (A.9)

The details of the remaining matrices and vectors, mentioned in Equation (22),
are given as

x =
⌊
cE cH eRe eIm −p0 −p1 −p2 −p3 −p5 −p7 −p−1 −p−3 −p−5

⌋T
,

b =
{
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

}T
,

b1 = −k0R0Re , b2 =
(
ω2m1 + ω

2Ip
(
td1

)2
− k1

)
R1Re ,

b3 =
(
4ω2m2 + 2ω2Ip

(
td2

)2
− k2

)
R2Re ,

b4 =
(
9ω2m3 + 3ω2Ip

(
td3

)2
− k3

)
R3Re ,

b5 =
(
25ω2m5 + 5ω2Ip

(
td5

)2
− k5

)
R5Re ,

b6 =
(
49ω2m7 + 7ω2Ip

(
td7

)2
− k7

)
R7Re ,
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b7 =
(
ω2m−1 − ω

2Ip
(
td
−1

)2
− k−1

)
R−1Re ,

b8 =
(
9ω2m−3 − 3ω2Ip

(
td
−3

)2
− k−3

)
R−3Re ,

b9 =
(
25ω2m−5 − 5ω2Ip

(
td
−5

)2
− k−5

)
R−5Re , b10 = −k0R0Im ,

b11 =
(
ω2m1 + ω

2Ip
(
td1

)2
− k1

)
R1Im ,

b12 =
(
4ω2m2 + 2ω2Ip

(
td2

)2
− k2

)
R2Im ,

b13 =
(
9ω2m3 + 3ω2Ip

(
td3

)2
− k3

)
R3Im ,

b14 =
(
25ω2m5 + 5ω2Ip

(
td5

)2
− k5

)
R5Im ,

b15 =
(
49ω2m7 + 7ω2Ip

(
td7

)2
− k7

)
R7Im ,

b16 =
(
ω2m−1 − ω

2Ip
(
td
−1

)2
− k−1

)
R−1Im ,

b17 =
(
9ω2m−3 − 3ω2Ip

(
td
−3

)2
− k−3

)
R−3Im ,

b18 =
(
25ω2m−5 − 5ω2Ip

(
td
−5

)2
− k−5

)
R−5Im ,

A =



0 ωR0Im 0 0 ux0 0 0 0 0 0 0 0 0
−ωR1Im 0 −mω2 0 0 ux0 0 0 0 0 0 0 0
−2ωR2Im −ωR1Im 0 0 0 0 ux0 0 0 0 0 0 0
−3ωR3Im −2ωR3Im 0 0 0 0 0 ux0 0 0 0 0 0
−5ωR5Im −4ωR5Im 0 0 0 0 0 0 ux0 0 0 0 0
−7ωR7Im −6ωR7Im 0 0 0 0 0 0 0 ux0 0 0 0
ωR−1Im 2ωR−1Im 0 0 0 0 0 0 0 0 ux0 0 0
3ωR−3Im 4ωR−3Im 0 0 0 0 0 0 0 0 0 ux0 0
5ωR−5Im 6ωR−5Im 0 0 0 0 0 0 0 0 0 0 ux0

0 −ω
(
R0Re+ux0

)
0 0 0 0 0 0 0 0 0 0 0

ωR1Re 0 0 −mω2 0 0 0 0 0 0 0 0 0
2ωR2Re ωR2Re 0 0 0 0 0 0 0 0 0 0 0
3ωR3Re 2ωR3Re 0 0 0 0 0 0 0 0 0 0 0
5ωR5Re 4ωR5Re 0 0 0 0 0 0 0 0 0 0 0
7ωR7Re 6ωR7Re 0 0 0 0 0 0 0 0 0 0 0
−ωR−1Re −2ωR−1Re 0 0 0 0 0 0 0 0 0 0 0
−3ωR−3Re −4ωR−3Re 0 0 0 0 0 0 0 0 0 0 0
−5ωR−5Re −6ωR−5Re 0 0 0 0 0 0 0 0 0 0 0



. (A.10)
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