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CALCULATION OF SQUEEZING FORCES DURING
LONGITUDINAL ROLLING FOR THE FINAL PASSAGE

In this paper, the author derives theoretical formulae for calculating of squeezing
forces. This report is the first one concerning the method of forming stepped shafts
by longitudinal cold rolling. The formulae of the radial squeezing forces for the final
passage of longitudinal rolling were calculated under the Huber hypothesis of plastic
deformation and maximum shear stress.

1. Description of the method of longitudinal rolling

The method of longitudinal rolling is a new technique of accurate cold
working of stepped shafts [1]. The method allows for shaping the shafts
of any symmetrical cross-section, e.g. circular, square, hexagonal etc. The
shafts can be produced from stocking material in the form of an alloy steel
rod quenched and tempered to 36 + 38 HRC.

The general scheme of forming a stepped shaft of circular cross-section
by longitudinal cold rolling is presented in Fig. 1. The shaft (1), fixed in the
way allowing for its elongation in the forming process, is placed between
two shaping rollers (2), each of whom is supported by two support sleeves
(4) on the bearing axle (3).

The forming sequence consists of four steps marked by arrows a — b
— ¢ —d in Fig. 1 and turn of the shaft through an angle depending on the
transverse profile of the formed shaft step.

The cycle of forming sequence consists of the following stages:

— moving of the forming rollers to position a — b,
— the squeezing stage b — c,
— the longitudinal rolling stage ¢ — d,
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Fig. 1. The general scheme of longitudinal cold rolling of stepped shaft; d, — initial diameter, d —
diameter of stepped shaft

— the retracting stage d — a, [-] the returning stage a — b, in which the
pressing mechanism travels from the bumper to the initial position and
the formed shaft is rotated.

The full formation of the shaft step is completed after several passages.

At that time, the required reduction of the shaft cross-section dimensions and

elongation is obtained.

2. Calculation of squeezing forces in the process of longitudinal cold
rolling during final passage

The general aim of the original method of multiple forming of the shaft
cross-section is the reduction of step diameter by small deformation. After the
final passage, we can obtain step diameter (less than IT-8), surface roughness
(Iess than 0,63 um) and the surface layer without cracks, scratches etc.



www.czasopisma.pan.pl P N www journals.pan.pl
=
‘\.4
POLSKA AKADEMIA NAUK

CALCULATION OF SQUEEZING FORCES DURING LONGITUDINAL ROLLING... 83

During the final passage, the contact between the shaft and the forming
roller is only on the torus profile. Assuming the static model of squeezing of
the roller with torus profile (see Fig. 2), we can obtain the formulae (1, 2, 2°,
3, 3°, 3”) for the squeezing forces during the final passage in the longitudinal
rolling.

tm ax

axis of forming roller

Fig. 2. The scheme of deformation surface roughness of step shaft during final passage

2.1. Simplification assumptions

Simplification for calculations of radial squeezing force are the following:

— the depth of plastic deformation 6 = 2R, (see Fig. 3), but it is always
greater than the roughness of the original work surface;

— the forming roller is deformed only elastically, but the profiling shaft is
subject to elastic and plastic deformation (upper zone is elastic, lower is
plastic);

— in consequence of interaction of the roller and the shaft, there are plas-
tic deformations on the depth ¢, but in the shaft there are only elastic
deformation (see Fig. 3);

— the layer of plastic deformation does not change the characteristics of the
squeezing force [2];
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— both bodies (the roller and the shaft) interact statically, therefore the
contact pressure is the same as the pressure on the surface.

ax/ss of forming rofler

zone of plastic deformation F

zone of elastic deformalion

§22R,

Fig. 3. Fragment of plastic deformation zone during concentrated force on the forming roller of
torus profile

Considering the above assumptions, we will consider the following three

cases:

1. Fi = fi (Ry,,,R.) — Boussinesqu solution, which does not allows for
curvatures of the surfaces;

2. Fp=f (R, ,Re kn, kp) — Hertz solution, which partially allows for the
curvature of the surfaces (e.g. cylinder or sphere);

3. F3=f3 (R,max,Re,k;\,,k;)) — Bielajev solution, which is the most general
one, allowing for any curvature of the surfaces given by Landau — Lifszyc

equations.
Where:
F — static squeezing force between roller and shaft at rest,
... — mmaximal roughness of surface before longitudinal rolling,
R. — creep limit for the shaft material,
ky,kp — curvatures of the roller and shaft respectively.

Accepting the assumptions (2.1), we search for the function F = f
(Ry,..» Re, kn, kp) in the above three cases.

2.2. Boussinesqu approach — solution F;

We assume that the interaction between the roller and the shaft is replaced
by the concentrated force F which does not allow for curvature of the contact
surface. We choose a coordinate system such that the force F has only the z
component and acts along the z — axis (x =y = 0).

The stresses are the following (according Boussinesqu theory) [3]:

Due to axial symmetry of the contact surface, the difference of stresses
(O'y - O'Z) between elasticity and plasticity domains equals 7,,,,, hence
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Fig. 4. Contact of the forming roller with the shaft in Cartesian coordinates x, y, z

.= _;_ﬁzs (x2 +Zz)7§; o,= —;—izzy(xz +zz)€'

oy — 0
Timax = >

Substituting the above formulae of o, and o, into 7,4, we obtain

R, = % Eyz2 (xz +zz)_g -7 (x2 +z° )_ig

On the line k — k there is 7,4 = 0,5 Re and z = 2R, , hence

8

F=3mRe-Ry (1)

max

It can be shown that application of M. T. Huber hypothesis leads to the
same result.

2.3. Hertz approach — solution F,

In solution F, according to Hertz [3], the components of the stress along
the z — axis at x = y = 0 for two spherical bodies can be described by the
following formulae:

—2(1”)'Z—(1+2v>‘(‘ Z ﬂ

1
o'y:o'lzzq
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o, =02 =¢q ( < )3 1
= 2 = _— — .
) Va? + 72
Appling the 7,,,, hypothesis (as in 2.2), we have:

2(HV)'Z—(]Jrzy)—( ¢ )—2( ¢ )3+2]

g1—0? 1
Tmax = =5
2 21

. 3F
Using z=2R, and g=¢, =— we get:
max 2Ma

oo

2R?

[max

2 0 2R
F:T[a Re D_1+2V +(1+\}) ! max _
2 \/a2+4Rtm
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3
2
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In the above equation we have introduced a new parameter a (a =
Va‘ - b, half — axis of the ellipse), which can be obtained from the formula

.- </§ (1-v)?F
22E(ky + kp)
In the case of steel shafts (v = 0, 3) we have:
P na’R, ( _ 2R, . )
15 VAEQR -d+2d, - R-d-d,))’
On the other hand, during longitudinal rolling of the round cross-section

2 1 2
of the shaft ky = — — —; kp = 7 (see Fig. 2) and a is given by:

d R

3 (a-w¥F-d-R.4,
““NYEQR - d+2d, - R—d-d,)

2)

29

We have obtained two equations which enable one to compute the press-
ing force. The geometric parameters: d, R 1 d, are shown in Fig. 2.

2.4. N. M. Bielajev approach - solution F3
Solution F3, according to Bielajev [4], is applied for the model shown

in Fig. 4. Formulae for the components of stress tensor along the z — axis
(at x =y = 0) are the following:
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3F ® ds 3F ® ds
=—z(1~- —-—zN
o7 2 )‘[ \/(az +s)3 (b2 +s)s 4t ;[\/(a2 +S)(b2 -'-S)S3 '

S ey s
S(EESTES)
3F ® ds 3F > ds
=—z(1- ———z
. 4T[Z( V)'z[ \/(a2+s)(b2 +s)ls 4 1'[\/(‘12 +s)(b2+s)s3 '
3F “
_ 1_

3F 1
=t =t_ =0,

%o (a2+zz)(b2+zz); R

where a i b are half-axes of the ellipsis of the contacting bodies.
From tables of integrals [5, 6], for b > a, we get:

I ds 2b
lr= V@ + P2 - (b? — a?)a?
9 (a + 5)°(b* + s5)s

8(()07 k) -

-

27 1

@ \Jor ¥ 2N +22)
,_f ds 2 (es2 2o
T J@robiree @ NP2 @ o
ZZ
/ _f” ds __2 | a*+z2 |
3T V@ +spB +5) a2 =D p?+z22)
ZZ
r 2
Iy = ds = [F(6.k) - E(g. D:
) V@ +sP(@+s)s b —a*h
Z

; f” ds 2 | a*+z2

5 = = - \/— ;
) & @ ) b? — a? b+ 22
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where & (¢, k) and F (¢, k) are elliptic functions.

2
Introducing an additional variable w = (g) and using the above integrals

N 1-2v ! b2+72 N
2 b2w+z2
1-w b*wy + 12 )

w \/(bzw + Zz)(bz + ZZ) ’

3F 1 Z[v—w 2v—w |b2w+z2 1-2v
— = k 1- k - ;
7 bz(l—w){b[ w S@h+1-vT (e )] 2w \ 2 2 }

_3F 1 %)(lw) 1 S

T bz(l_W)D 2 \/(b2w+zz)(b2 +22)S’

where elliptic functions & (¢, k) 1 F (¢, k) are approximated as follows:

for computing the stress tensor we get [7]:

3F 1 z|1=nv
= 2 & (g, k
= b2(1—w){b[ W o

1 3
E(p, k) = arcctg% o [1 - Z(l —w) — 6_4(1 _

D :
- )= (1 =w) 4w — 5
1+DZIZI = 1404 E
BH B HH H
z 1 9 )
F (g, k) = arcctgz ofl+ 4_1(1 -w)— —(1 -w)
0
ﬁ I r
o (1 W)+—(1 w) + (l -w) o
1+ 14@3j 0
BEH 0 Fils

From the Huber hypothesis we get:

1 2 2 2
Ored = E [(O-X - O-y) + (O-y - O-z) + (O-Z - O-X) ] s Txy = Ty = Tzg = 0.

On the line k — k (Fig. 3) the reduced stress is 0,.¢ = R, and the
coordinate z = 6 = 2R;.
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Using the computed stress tensor and collecting the terms under the
square root, we obtain the pressing force F for final passage during longitu-
dinal rolling:

1-2v

F= \/—ﬂR (11— 2){[—[%8(cp,k)+(1—v)77(cp,k)]— +
W+ )20 + &) 2

2wA(D2w + 8)(b + 82)

+1-2v—

1;2w(1+w)(1—2v)—2€>2[v(1+w)—1]r+
2w (2w +82) (b2 +62)
25 —0,5
} (3)
2 BZ

/ 0
Wherew:%<landb>a,k: V1 —w, ¢ = arcsin ﬁ+62=arctgz.

In formula (3), the pressing force F depends on three variables, i.e.
F = f (6,b,w), because the other parameters R, and v are given. They can
be obtained from the curvatures taking the following quantities form the work
by Landau — Lifszyc [8]:

20-m [“—W E (@0, k) =2 F (¢, k)
7b w

1-2v N Pw?Qv-1)=8*[2(nv-1)+w]
2 2w (B2w+82) (b2 +62)

(& [1-nv
+Z[ " E(p, k)—(1-v)F (9, k) |+

_3F(1 -V ) ds
ME ‘r a +s)\/(a +s)(b2+s
:3F(l—v2)°° ds

ME 4 (2 +S)\/(a2 +5)(@? +s)s

where A and B are given by following equations:

1 1 1 1
2(A+B)_IT+IT+R_+_
1 2

2
2
1 1 1 1 1 1
MA-B) =|[=— - —]| +|— - =| | +2cos2p 0| — - — —‘——
Ri R re R2 Ry R2 R;

R,
where: Ry = 0,5d,, R, =R, R, = 0,5d, R, = o0, ¢ = 180°.
The above integrals and specific values of the geometric parameters en-
able us to obtain the two final equations:
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2 E w(d,+d)
F=31 =b*(1-w) 1 ; 1 5 :
—v d, - d{[1-3(1-w)- ZA-w2|-w[1+1(1-w)+ Z(1-wp]
3)
2 E 1
F== b*(1 —w) . (3”)
2 1 3
31-v 2R3 -w) + 21 - wp|
3)
In this way, the three equations <{(3’) define uniquely the pressing
(37)

force F as a function of three variables 6, w, b in the implicit form (implicit
function theorem). It must be emphasised that we also need the assumption
w < 1, as it assumed in Bielajev theory. The complicated nonlinear form of
equations (3, 3°, 3”) does not allow for expressing the function F (J,w, b) in
an explicit form, except of very special cases. However, the solution can be
calculated by numerical methods.

Figure 5 shows an example of such a numerical solution (in the form of
graphs F (0) for different values of R,).
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Fig. 5. Graphs of squeezing forces F' = f (3, R,) for values r = 12 mm, D = 40 mm, d = 24 mm;
R, = (A = 300 MPa, B = 350 MPa, C = 400 MPa, D = 450 MPa), E = 2,1 - 10* MPa, v = 0,3.
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Obliczanie sily nacisku podczas walcowania wzdluznego dla przej¢ wykanczajacych
Streszczenie

W pracy opisano metodg¢ ksztattowania watkéw stopniowych w procesie walcowania wzdluzne-

go na zimno. Przedstawiono teoretyczne zaleznosci pozwalajace obliczy¢ warto$¢ promieniowe;j sily
nacisku w przejsciach wykanczajacych. Zaleznosci te opracowano w oparciu o hipotezy odksztal-
cania plastycznego M. T. Huberta.



