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Dynamic behaviour of axially functionally graded beam
resting on variable elastic foundation

In this paper, a comprehensive study is carried out on the dynamic behaviour
of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic
foundation. The material properties of the beam and the stiffness of the foundation
are considered to be varying along the length direction. The free vibration prob-
lem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied
to generate the governing equations. The results are presented as non-dimensional
natural frequencies for different material gradation models and different foundation
stiffness variation models. Two distinct boundary conditions viz., clamped-clamped
and simply supported-simply supported are considered in the analysis. The results
are validated with existing literature and excellent agreement is observed between the
results.

1. Introduction

In this era, advanced materials are continuously being researched and devel-
oped to improve the strength to weight ratio of structures. One such material is the
functionally graded material (FGM) in which the material properties vary continu-
ously along spatial directions. The advantage of FGMs over traditional composites
is that they retain most of the properties of their constituent materials because of
the continuous transition of materials. With these characteristics, FGMs naturally
attracted the attention of various structural engineers and researchers. As beams
are the most basic components of any engineering structure, many research works
are focussed on analysis of FGM beams. Neuringer and Elishakoff [1] derived
the first closed form solutions for natural frequency of FGM beams and obtained
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some unexpected results which were extensively investigated in their later work[2].
A new, fast and accurate approach was presented in [3] for determining the natu-
ral frequencies of FGM beams in free vibration. In this approach, the governing
equation was transformed to Fredholm integral equations and its nontrivial so-
lution gave the natural frequencies. Dynamic analysis on FGM Euler–Bernoulli
beams subjected to moving harmonic load was carried out by Simsek et al. [4]
where they used Lagrange’s equations to derive the equation of motion. Modified
couple stress theory along with Rayleigh–Ritz method were used by Akgoz and
Civalek [5] to determine an approximate solution for natural frequencies of FGM
micro beams. Sarkar and Ganguli [6] obtained closed form solutions for Timo-
shenko FGM beams in which axial variation of material properties with different
polynomial functions was considered. Rezaiee-Pajand and Hozhabrossadati [7]
provided analytical solutions for FGM double beam systems connected by mass-
spring system. Javid and Hemmatnezhad [8] used finite element method to perform
nonlinear free vibration analysis on FGM beams and direct numerical integration
technique was used to determine the natural frequencies. Chen et al. [9] inves-
tigated the thermal buckling behaviour of such beams using transformed-section
method.

The foundations of complex structures also play a vital role in engineering.
Over the years, various models have been presented by researchers for modelling
the elastic foundations. One such model is given by Winkler, which is used in
this study. It is the most basic model where it is assumed that numerous inde-
pendent and linear elastic springs make up the foundation, such that the vertical
displacement becomes proportional to the contact pressure at an arbitrary point
[10]. The Winkler models and its later variations have been extensively studied
by various researchers. Ying et al. [11] presented exact solutions for bending
and free vibration of FGM beams using 2D theory of elasticity and state space
method. The research work by Yan et al. [12] was focussed on dynamic response
of cracked FGM beams subjected to a constantly moving load. Fallah and Aghdam
[13, 14] studied the nonlinear free vibration and thermo-mechanical buckling of
FGM beams subjected to axial load and obtained the closed form solutions us-
ing He’s variational method. Yaghoobi and Torabi [15] investigated the imperfect
FGM beams for post-buckling and nonlinear vibration behaviour using Galerkin
method. Kanani et al. [16] carried out nonlinear free and forced vibration analysis
on FGM beams using Galerkin method and derived the approximate solutions in
closed form with the help of a variational iteration method. Wattanasakulpong and
Mao [17] used Chebyshev collocation method to carry out free vibration analysis
on FGM beams subjected to different boundary conditions. Calim [18] investi-
gated the dynamic response of FGM beams supported on viscoelastic foundation
using complimentary functions method. Deng et al. [19] performed vibration and
buckling analysis on FGM double-beam system where Wittrick-William algorithm
was utilised to compute the natural frequency and buckling load. Lohar et al.
[20] conducted nonlinear forced vibration analysis on axially functionally graded
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beams using a semi-analytical approach based on Rayleigh-Ritz method. Karami
and Janghorban [21] investigated the size dependent behaviour of FGM nanobeams
where the governing equations were obtained byHamilton’s principle and solutions
were obtained using Navier series technique. FGM Timoshenko beam subjected to
moving mass was investigated by Esen [22] and effects of material constituents,
foundation parameters and inertia of the moving mass on the response of beam
were studied. Chaabane et al. [23] conducted static and dynamic analysis using hy-
perbolic shear deformation theory on FGM beams with different material variation
models.

Apart from these, a few research works on beams resting on variable elastic
foundation have also been conducted by various researchers, but most of these
are on homogeneous beams. Eisenberger and Clastornik [24] presented the first
work on free vibration of beams resting on variable elastic foundation where they
proposed two methods for obtaining the natural frequency of the beam. Kacar et al.
[25] conducted free vibration analysis on beams resting on elastic foundation with
varying stiffness using differential transform method. Mirzabeigy and Madoliat
[26] investigated nonlinear free vibration behaviour of beams subjected to axial
loads using energy method along with Hamilton’s principle and the solutions
were obtained using homotopy perturbation method. Zhang et al. [27] carried out
buckling and free vibration analysis on non-uniform beams using Hencky bar-chain
model. A few works on FGM beams resting on variable elastic foundation are also
available in the literature. Yas et al. [28] performed free vibration analysis on Euler-
Bernoulli FGM beams using generalized differential quadrature method. The work
by Jena et al. [29] is concerned with dynamic behaviour of FGM nanobeams.
Euler-Bernoulli beam theory was used to model the nanobeam and differential
quadrature method was used for the analysis.

The literature review presented above suggests that, despite the presence of
numerous works on beams resting on elastic foundation, research works on FGM
beams are extremely rare. Therefore, it is essential to thoroughly investigate the
vibration characteristics of the FGM beams with axial material gradation resting
on variable elastic foundations, which is the objective of this paper.

2. Mathematical formulation

The present paper discusses the dynamic behaviour of FGM beams resting
on variable elastic foundation. The free vibration problem is formulated based
on Euler-Bernoulli beam theory and Timoshenko beam theory separately. The
methodology used for the formulation for both the beam theories is based on
Rayleigh-Ritz approach.

An axially functionally graded beam of length L and cross-sectional area A
(= b × h), moment of inertia I (= (b × h3)/12) is shown in Fig. 1.
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Fig. 1. FGM beam resting on Winkler foundation

The material of the beam is considered to be varying along the length direction
following three different material models:

Material 1 : E(x) = E0 , ρ(x) = ρ0 ,

Material 2 : E(x) = E0

(
1 +

x
L

)
, ρ(x) = ρ0

(
1 +

x
L
+

( x
L

)2)
,

Material 3 : E(x) = E0e(x/L), ρ(x) = ρ0e(x/L) .

(1)

Here, E0 and ρ0 are the Young’s modulus and material density, respectively, at
one end of the beam. Poisson’s ratio µ remains constant throughout the beam and
the modulus of rigidity is given by G(x) = E(x)/2(1 + µ).

The stiffness of elastic foundation is also considered to be varying axially
following three different functions:

Constant : K f (x) = K0 ,

Linear : K f (x) = K0

(
1 + λ

x
L

)
,

Parabolic : K f (x) = K0

(
1 + λ

( x
L

)2)
.

. (2)

Here, K0 is the foundation stiffness at one end of the beam and λ is stiffness
variation coefficient.

2.1. Euler-Bernoulli beam theory (EBBT)

The assumptions of the Euler-Bernoulli beam theory that the beam is suffi-
ciently thin, the effects of shear deformation and rotary inertia are negligible, and
the plane sections remain plane after deformation are followed. The displacement at
a general point in the beam can be expressed in terms of mid-plane deformations as,

ū(x, z) = u(x) − z
dv(x)

d x
,

v̄(x, z) = v(x),
(3)
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where, ū and v̄ are displacement fields at a general point and u and v are dis-
placement components at the neutral axis (z = 0) of the beam along the axial and
transverse directions, respectively. The strain-displacement relation can now be
expressed as,

εxx =
du
d x
− z

(
d2v

d x2

)
. (4)

The total strain energy can be obtained by summation of the strain energy
stored in the beam and the strain energy of the foundation,

U =
1
2

∫
vol

σxxεxx dV +
1
2

L∫
0

K f (x)v2 d x. (5)

Substituting the expression of strain and σxx = E(x)εxx in the above equation
yields,

U =
1
2

A

L∫
0

(
du
d x

)2
E(x) d x +

1
2

I

L∫
0

(
d2v

d x2

)2

E(x) d x +
1
2

L∫
0

K f (x)v2 d x. (6)

The kinetic energy of the dynamic system is expressed as,

T =
1
2

A

L∫
0

*
,

(
du
dt

)2
+

(
dv
dt

)2
+
-
ρ(x) d x. (7)

2.2. Timoshenko beam theory (TBT)

The effects of shear deformation and rotary inertia are considered in Timo-
shenko beam theory. Therefore, the displacements at a general point in the beam
are given as,

ū(x, z) = u(x) − zθ ,
v̄(x, z) = v(x),

(8)

where θ is the rotary displacement. The strain displacement relation can now be
expressed as

εxx =
du
d x
− z

dθ
d x

, γxz =
dv
d x
− θ. (9)

Here, εxx is the axial strain and γxz is the shear strain.
The total strain energy will be the summation of strain energy stored in the

beam due to axial deformation and shear, and the strain energy of the foundation

U =
1
2

∫
vol

σxxεxx dV +
1
2

∫
vol

τxzγxz dV +
1
2

L∫
0

K f (x)v2 d x. (10)
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Substituting the expression of strain from Eq. (9) along with the expression of
stress σxx = E(x)εxx , τxz = G(x)γxz in the above equation yields

U =
1
2

A

L∫
0

(
du
d x

)2
E(x) d x +

1
2

I

L∫
0

(
dθ
d x

)2
E(x) d x

+
ksh

2
A

L∫
0



(
dv
d x

)2
+ θ2 − 2θ

(
dv
d x

) G(x) d x +
1
2

L∫
0

K f (x)v2 d x,

(11)

where ksh is the shear correction factor. The expression of the kinetic energy of the
beam is written as

T =
1
2

A

L∫
0

*
,

(
du
dt

)2
+

(
dv
dt

)2
+ z2

(
dθ
dt

)2
+
-
ρ(x) d x. (12)

2.3. Dynamic analysis

Normalised coordinate system (ξ = x/L) is followed and a number of reference
points known as the Gauss points are generated throughout the domain to carry out
the computations. As per the Rayleigh–Ritz method, the displacement fields u, v
and θ for the beam are represented as linear combinations of unknown parameters
(di) and orthogonal admissible functions (αi), (βi) and (φi) as follows

u(ξ) =
nu∑
i=1

diαi (ξ) e jωt,

v(ξ) =
nu+nv∑
i=nu+1

di βi (ξ) e jωt,

θ(ξ) =
nu+nv+ns∑
i=nu+nv+1

diφi (ξ) e jωt,

(13)

It is to be noted that, in the case of Euler-Bernoulli beam, only the first two
expressions of the above equation are utilised. In the above expression, ω denotes
the natural frequency of the beam and, nu, nv and ns are number of orthogonal
functions for u, v and θ, respectively. These functions not only satisfy the boundary
conditions of the beambut are also continuous and differentiablewithin the domain.
The first set of the series of orthogonal function is known as start functions and it is
generated by satisfying the flexural, membrane and rotational boundary conditions
of the beam. The start functions for the two boundary conditions considered in this
study are furnished in Table 1.
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Table 1.
Start functions for different boundary conditions

Displacement field Boundary End conditions Function

u
CC

u = 0 at x = 0, L α1(ξ) = ξ (1 − ξ)
SS

v
CC

v = 0 at x = 0, L
β1(ξ) = {ξ (1 − ξ)}2

SS β1(ξ) = sin(πξ)

θ
CC θ = 0 at x = 0, L φ1(ξ) = sin(πξ)

SS θ , 0 at x = 0, L φ1(ξ) = cos(πξ)

These start functions are used to generate appropriate sets of higher order
functions using Gram-Schmidt orthogonalisation procedure, which is discussed in
detail in [30].

The set of governing differential equations of the dynamic problem are derived
using Hamilton’s principle, which has the mathematical expression

δ
*..
,

t2∫
t1

(T −U) dt
+//
-
= 0. (14)

Putting the expressions ofU andT alongwith displacement fields fromEq. (13)
in above equation reduces the governing set of equations in the following form

[
[K] − ω2[M]

]
{d} = 0, (15)

where [K] is the stiffness matrix and [M] is the mass matrix of the beam. The
elements of these matrices for both beam models are given in the Appendix. The
above equation is a standard eigenvalue problem, the solution of which gives the
natural frequency and mode shape of the beam.

3. Results and discussion

Numerical results for free vibration of FGM beam resting on variable elastic
foundation are generated based on the methodology discussed above. Two different
boundary conditions are considered, namely, clamped-clamped (CC) and simply
supported-simply supported (SS). The number of Gauss points is taken as 24 and
the number of higher order functions for each displacement parameter is taken
as 8. The results are presented in the form of non-dimensional parameters which
are given as follows

ω̄ = ω L2
√
ρ0 A
E0 I

, K̄ f =
K0L4

E0I
, and ar =

h
L
.
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First of all, it is essential to validate the feasibility of themethodology presented
in this paper. In order to do that, a comparative study is carried out where the results
obtained through current method are compared with the results already available
in literature. The non-dimensional frequency parameter of homogeneous beam
supported on elastic foundation for clamped-clamped and simply supported-simply
supported boundary conditions are validated with the results provided by Chen et
al. [10] and Kacar et al. [25] and furnished in Table 2. It can be seen that the present
results show a decent agreement with the published results, which validates the
accuracy of the methodology presented in this paper.

Table 2.
Comparison of fundamental frequency parameters of homogeneous beam (Material 1)

Boundary
condition K̄ f

√
ω̄

EBBT TBT

Constant elastic foundation Chen et al. [10]

0 4.7212 4.7217 4.7314

CC 102 4.9427 4.9433 4.9515

104 10.1220 10.1220 10.1227

SS

0 3.1416 3.1415 3.1414

102 3.7484 3.7483 3.7482

104 10.0243 10.0242 10.0240

106 31.6235 31.6234 31.6217

Linear elastic foundation (λ = −0.2) Kacar et al. [25]

10 4.7424 4.7431 4.7511

CC 102 4.9219 4.9225 4.9296

103 6.1132 6.1135 6.1172

10 3.2118 3.2117 3.2117

SS 102 3.6999 3.6999 3.6999

103 5.6185 5.6195 5.6185

Parabolic elastic foundation (λ = −0.2) Kacar et al. [25]

10 4.7435 4.7442 4.7522

CC 102 4.9314 4.9320 4.9391

103 6.1625 6.1628 6.1664

10 3.2150 3.2150 3.2150

SS 102 3.7212 3.7212 3.7211

103 5.6788 5.6797 5.6787
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The non-dimensional frequency parameters for the first four modes of vibra-
tion are presented in Table 3 and Table 4 for linearly FGM beam (Material 2)
and exponentially FGM beam (Material 3), respectively. The results are presented
for Euler–Bernoulli beam and Timoshenko beam for different variable foundations
(constant, linear and parabolic), foundation stiffness (K̄ f ) and boundary conditions.
The value of foundation stiffness variation coefficient (λ) is kept constant at 0.5 for
the generation of results. The results indicate that the natural frequency increases
with the increase in foundation stiffness for all cases. It is also observed that the
increase in natural frequency is lowest for constant stiffness and highest for linear
stiffness. To clearly observe the behaviour of FGM beam with foundation stiffness,
some graphical results are also presented in Fig. 2. These graphs show the relation-

Table 3.
First four natural frequency parameters of linearly functionally graded beams (Material 2)

Boundary
condition K̄ f

√
ω̄1

√
ω̄2

√
ω̄3

√
ω̄4

EBBT TBT EBBT TBT EBBT TBT EBBT TBT

Constant elastic foundation

0 4.5161 4.5166 7.5043 7.5061 10.5077 10.5095 13.4877 13.5174

CC 102 4.6638 4.6643 7.5387 7.5405 10.5205 10.5223 13.4938 13.5234

104 8.7425 8.7426 9.7876 9.7882 11.6125 11.6139 14.0598 14.0868

0 3.0047 3.0075 6.0304 6.0348 9.0369 9.0398 12.0359 12.0382

SS 102 3.4270 3.4274 6.0973 6.1013 9.0571 9.0621 12.0445 12.0483

104 8.4444 8.6020 9.3439 9.6632 10.6449 10.9911 12.8248 13.1383

Linear elastic foundation (λ = 0.5)

0 4.5161 4.5166 7.5043 7.5061 10.5077 10.5095 13.4877 13.5174

CC 102 4.6979 4.6983 7.5464 7.5482 10.5232 10.5250 13.4951 13.5247

104 9.2533 9.2534 10.1136 10.1141 11.8092 11.8103 14.1720 14.1977

0 3.0047 3.0075 6.0304 6.0348 9.0369 9.0398 12.0359 12.0382

SS 102 3.5107 3.5113 6.1114 6.1148 9.0613 9.0656 12.0463 12.0493

104 9.0305 9.1291 9.6991 9.8122 10.8831 10.9273 12.9674 13.2400

Parabolic elastic foundation (λ = 0.5)

0 4.5161 4.5166 7.5043 7.5061 10.5077 10.5095 13.4877 13.5174

CC 102 4.6821 4.6826 7.5431 7.5448 10.5221 10.5239 13.4945 13.5242

104 9.0583 9.0584 9.9625 9.9630 11.7246 11.7259 14.1253 14.1520

0 3.0047 3.0075 6.0304 6.0348 9.0369 9.0398 12.0359 12.0382

SS 102 3.4748 3.4755 6.1055 6.1089 9.0596 9.0663 12.0456 12.0498

104 8.8584 8.9376 9.5218 9.6846 10.7787 10.8922 12.9089 13.1302
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Table 4.
First four natural frequency parameters of exponentially functionally graded beams (Material 3)

Boundary
condition K̄ f

√
ω̄1

√
ω̄2

√
ω̄3

√
ω̄4

EBBT TBT EBBT TBT EBBT TBT EBBT TBT

Constant elastic foundation

0 4.7358 4.7363 7.8489 7.8507 10.9788 10.9806 14.0860 14.1251

CC 102 4.8739 4.8744 7.8809 7.8827 10.9906 10.9925 14.0916 14.1307

104 8.9461 8.9463 10.0353 10.0359 12.0166 12.0186 14.6186 14.6532

0 3.1262 3.1372 6.2900 6.3806 9.4287 9.4330 12.5621 12.6835

SS 102 3.5334 3.5381 6.3525 6.6344 9.4475 9.7124 12.5701 12.7790

104 8.6457 8.7687 9.5152 9.6293 10.9478 11.1336 13.2966 13.4354

Linear elastic foundation (λ = 0.5)

0 4.7358 4.7363 7.8489 7.8507 10.9788 10.9806 14.0860 14.1251

CC 102 4.9053 4.9058 7.8880 7.8898 10.9932 10.9950 14.0928 14.1319

104 9.4482 9.4482 10.3531 10.3537 12.2048 12.2063 4.7247 14.7581

0 3.1262 3.1372 6.2900 6.3806 9.4287 9.4330 12.5621 12.6835

SS 102 3.6142 3.6193 6.3656 6.4002 9.4515 9.4934 12.5718 12.7905

104 9.2305 9.2970 9.8601 9.9928 11.1814 11.2768 13.4334 13.4997

Parabolic elastic foundation (λ = 0.5)

0 4.7358 4.7363 7.8489 7.8507 10.9788 10.9806 14.0860 14.1251

CC 102 4.8905 4.8909 7.8849 7.8867 10.9921 10.9939 14.0923 14.1314

104 9.2452 9.2452 10.2071 10.2077 12.1245 12.1262 14.6809 14.7155

0 3.1262 3.1372 6.2900 6.3806 9.4287 9.4330 12.5621 12.6835

SS 102 3.5790 3.5845 6.3601 6.3905 9.4499 9.4887 12.5711 12.7461

104 9.0468 9.0969 9.6879 9.9263 11.0813 11.2621 13.3783 13.4550

ship between the first natural frequency of vibration and foundation stiffness. Three
material models, three variable stiffness models and two boundary conditions are
considered for generating the graphs. The value of foundation stiffness variation
coefficient (λ) is kept constant at 0.5. The general trend is clearly evident from
these figures, which is the increase in natural frequency with increasing foundation
stiffness, but the nature of the relationship is nonlinear. Also, the difference in nat-
ural frequency of different foundation models is clearly evident as the foundation
stiffness increases. Fig. 3 presents similar graphs, where the vibration characteris-
tics of the three material models are compared for linear foundation model. It is
seen from these figures that the natural frequency of Material 1 (Homogeneous
beam) is greater than those of Material 2 (Linear FGM beam) and Material 3



Dynamic behaviour of axially functionally graded beam resting on variable elastic . . . 461

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Effect of foundation stiffness on natural frequency of FGM beam (a, b, c) clamped-clamped,
(d, e, f) simply supported-simply supported
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(Exponential FGM beam) and the difference gets larger as the foundation stiffness
increases.

(a) (b)

Fig. 3. Effect of different material models on natural frequency of FGM beam (a) clamped-clamped,
(b) simply supported-simply supported

Fig. 4 shows a comparative study of Linear FGM beam (Material 2) with
different end supports for the linear foundation model. It can be observed that the
natural frequency of CC beam is greater than that of SS beam for all values of
foundation stiffness, but the difference becomes smaller as the value of stiffness
increases. This indicates that the effect of boundary condition on the dynamic
behaviour of FGM beams reduces as the foundation stiffness increases.

Fig. 4. Effect of boundary condition on natural frequency of FGM beam

The effect of foundation stiffness variation parameter (λ) on the dynamic
behaviour of FGM beam is depicted in Fig. 5. The results are presented for linear
and parabolic foundation and all threematerialmodels and two boundary conditions
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Effect of foundation stiffness parameter (λ) on natural frequency of FGM beam (a, b, c)
clamped-clamped, (d, e, f) simply supported-simply supported
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are considered. The value of foundation stiffness K̄ f is kept constant at 1000 and
the values of λ are varied from −1 to +1. It is seen form the figure that, when
the value of λ is on the negative side, the natural frequency for linear foundation
is lower than that of parabolic foundation, but the trend reverses as the value of
λ reaches the positive side. Also, the difference in the natural frequency of both
the foundations becomes more evident as the value of λ increases on positive or
negative side, and at the maximum value of λ = 1 and −1, the difference is 2%
to 3%.

Fig. 6 and Fig. 7 show the effect of variable foundation and foundation vari-
ation parameter (λ) on mode shape of FGM beam, respectively. To generate the
mode shapes the eigenvectors are normalised by dividing them by their maximum

(a) (b)

Fig. 6. Effect of variable foundation on the mode shapes of CC FGM beam (a)Material 2
(b) Material 3

(a) (b)

Fig. 7. Effect of foundation stiffness parameter (λ) on the mode shapes of SS FGM beam (a) Linear
(b) Parabolic
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value. The ordinate represents the normalised displacement (w∗) and the abscissa
represents the beam’s length. Fig. 6 is generated for CC beam and the values of
foundation stiffness (K̄ f ) and foundation stiffness parameter (λ) are fixed at 10000
and 0.5, respectively. Whereas, Fig. 7 is generated for SS beam made ofMaterial 3
where the value of K̄ f is fixed at 1000 and three values of λ (0, 0.5 and 1.0)
are selected for comparison. The variations in mode shapes (shifting of the point
of maximum deflection) for different foundation models and foundation stiffness
parameters are observed in the figures.

The effect of aspect ratio (ar = h/L) on the natural frequency of FGM beam
is shown in Table 5. The results are generated using Timoshenko beam theory and
provided for four values of aspect ratio (1/100, 1/50, 1/10 and 1/5) for all mate-
rial models, foundation models and boundary conditions considered in this study.
The general trend observed from the table is that the natural frequency gradually
decreases as the aspect ratio increases. It can be seen that natural frequency for
ar = 1/5 has a visible derivation from ar = 1/100 (3% to 4 %).

Table 5.
The effect of aspect ratio (ar = h/L) on the natural frequency of FGM beam

Material Foundation

√
ω̄

ar = 1/100 ar = 1/50 ar = 1/10 ar = 1/5

CC SS CC SS CC SS CC SS

Constant 6.2200 5.7556 6.2172 5.7550 6.1501 5.7412 6.0127 5.7043

Material 1 Linear 6.4634 6.0570 6.4608 6.0565 6.3987 6.0418 6.2726 6.0019

Parabolic 6.3551 5.9308 6.3524 5.9303 6.2883 5.9156 6.1574 5.8759

Constant 5.6017 5.0324 5.5986 5.0319 5.5225 5.0153 5.3607 4.9695

Material 2 Linear 5.7920 5.2885 5.7891 5.2880 5.7193 5.2726 5.5737 5.2303

Parabolic 5.7070 5.1828 5.7040 5.1823 5.6322 5.1673 5.4820 5.1261

Constant 5.7769 5.1319 5.7736 5.1314 5.6917 5.1154 5.5181 5.0717

Material 3 Linear 5.9596 5.3885 5.9564 5.3880 5.8808 5.3730 5.7228 5.3322

Parabolic 5.8758 5.2819 5.8725 5.2814 5.7945 5.2665 5.6310 5.2263

4. Conclusions

Dynamic behaviour of FGM beams resting on variable elastic foundation was
investigated in this study. Three different material models were considered, in
which the material properties varied along the length direction. The investigations
were carried out for different variable foundation models and boundary condi-
tions. The Euler-Bernoulli beam theory and Timoshenko beam theory were used
for mathematical description of the beam. The dynamic problem was formulated
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using Rayleigh-Ritz approach and Hamilton’s principle was used to generate the
governing equations. From the comprehensive study of the results for different
material models and foundation models it is concluded that various parameters like
foundation stiffness and its variation, beam aspect ratio and boundary conditions
significantly affect the natural frequency of FGM beam. This is especially true for
the foundation stiffness, as it is seen that increasing the foundation stiffness in-
creases the natural frequency. Also, the relationship between these two parameters
is found to be nonlinear in nature.

Appendix

Euler-Bernoulli beam theory
Elements of stiffness matrix

[K] =


K11 K12

K21 K22


,

[K11] =
A
L

nu∑
j=1

nu∑
i=1

1∫
0

dαi

dξ
dα j

dξ
E(ξ) dξ,

[K12] = 0, [K21] = 0,

[K22] =
I

L3

nu+nv∑
j=nu+1

nu+nv∑
i=nu+1

1∫
0

d2 βi

dξ2
d2 β j

dξ2 E(ξ) dξ + L
nu+nv∑
j=nu+1

nu+nv∑
i=nu+1

1∫
0

βi β jK f (ξ) dξ.

Elements of mass matrix

[M] =


M11 M12

M21 M22



[M11] = L A
nu∑
j=1

nu∑
i=1

1∫
0

αiα j ρ(ξ) dξ,

[M12] = 0, [M21] = 0,

[M22] = L A
nu+nv∑
j=nu+1

nu+nv∑
i=nu+1

1∫
0

βi β j ρ(ξ) dξ,
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Timoshenko beam theory
Elements of stiffness matrix

[K] =



K11 K12 K13

K21 K22 K23

K31 K32 K33



,

[K11] =
A
L

nu∑
j=1

nu∑
i=1

1∫
0

dαi

dξ
dα j

dξ
E(ξ) dξ,

[K12] = 0, [K13] = 0, [K21] = 0,

[K22] =
ksh A

L

nu+nv∑
j=nu+1

nu+nv∑
i=nu+1

1∫
0

d βi
dξ

d β j
dξ

G(ξ) dξ,

[K23] = −ksh A
nu+nv+ns∑
j=nu+nv+1

nu+nv∑
i=nu+1

1∫
0

d βi
dξ

φ jG(ξ) dξ, [K31] = 0,

[K32] = −ksh A
nu+nv∑
j=nu+1

nu+nv+ns∑
i=nu+nv+1

1∫
0

φi
d β j
dξ

G(ξ) dξ,

[K33] =
I
L

nu+nv+ns∑
j=nu+nv+1

nu+nv+ns∑
i=nu+nv+1

1∫
0

dφi
dξ

dφ j

dξ
E(ξ) dξ

+ ksh AL
nu+nv+ns∑
j=nu+nv+1

nu+nv+ns∑
i=nu+nv+1

1∫
0

φiφ jG(ξ) dξ.

Elements of mass matrix

[M] =



M11 M12 M13

M21 M22 M23

M31 M32 M33



,

[M11] = AL
nu∑
j=1

nu∑
i=1

1∫
0

αiα j ρ(ξ) dξ,

[M12] = 0, [M13] = 0, [M21] = 0,
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[M22] = AL
nu+nv∑
j=nu+1

nu+nv∑
i=nu+1

1∫
0

βi β j ρ(ξ) dξ,

[M23] = 0, [M31] = 0, [M32] = 0,

[M33] = IL
nu+nv+ns∑
j=nu+nv+1

nu+nv+ns∑
i=nu+nv+1

1∫
0

φiφ j ρ(ξ) dξ.

Manuscript received by Editorial Board, June 22, 2020;
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