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Numerical investigation of the basilar membrane vibration
induced by the unsteady fluid flow in the human inner ear

For a deeper understanding of the inner ear dynamics, a Finite-Element model
of the human cochlea is developed. To describe the unsteady, viscous creeping flow
of the liquid, a pressure-displacement-based Finite-Element formulation is used. This
allows one to efficiently compute the basilar membrane vibrations resulting from the
fluid-structure interaction leading to hearing nerve stimulation. The results show the
formation of a travelingwave on the basilarmembrane propagatingwith decreasing ve-
locity towards the peaking at a frequency dependent position. This tonotopic behavior
allows the brain to distinguish between sounds of different frequencies. Additionally,
not only the middle ear, but also the transfer behavior of the cochlea contributes to
the frequency dependence of the auditory threshold. Furthermore, the fluid velocity
and pressure fields show the effect of viscous damping forces and allow us to deeper
understand the formation of the pressure difference, responsible to excite the basilar
membrane.

1. Introduction

The human inner ear or cochlea is a bone structure of spiral shape and is com-
posed of mainly two conical chambers which are filled with fluid and separated
by a soft membrane, referred to as the basilar membrane. At the apical end, both
chambers are connected through a small opening, the helicotrema. At the base,
the chambers are closed by the stapes footplate and the round window membrane,
respectively. In case of a normal ear, sound is received by the eardrum and trans-
mitted to the cochlea through the middle ear ossicles. According to present hearing
theory, the vibration of the stapes footplate leads to pressure waves in the cochlear
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fluid, which in turn results in a characteristic vibration of the basilar membrane.
Related to the sound frequency, hair cells in certain areas of the basilar membrane
are stimulated, causing hearing nerve stimulation and, thus, leading to hearing
sensation.

In order to predict the effect of inner ear diseases on hearing sensation as
well as to develop new hearing implants, a deeper understanding of the cochlear
dynamics is needed. This is particularly important, since the cochlea represents a
closed hydraulic system with a complex geometry. The basilar membrane vibration
as well as the fluid pressure can only be measured locally in the basal domain by
conducting very elaborate experiments on temporal bone specimens of humans
or animals [1]. However, simulations with an adequate numerical model of the
inner ear allow one to study the characteristic basilar membrane vibration and
the cochlear fluid dynamics along the entire length of the hearing organ and thus
provide an insight into the fundamental physical effects occurring in this system.

Therefore, in this study a Finite-Element (FE) model of the uncoiled human
cochlea is developed.Here, only the passive properties aremodeled, i.e., the cochlea
is modeled without considering amplification by electro-mobility of the outer hair
cells. In the first part of this paper, the simplified field equations to describe the
oscillating fluid flow in the cochlea are presented. The differential equations are
discretized by the use of the Finite-Element Method and an adequate formulation
of the fluid-structure interaction is described. The user-defined element for the fluid
is briefly validated for a coupled system by comparing the calculated frequency
response of an oscillating beam in a viscous fluid with the corresponding analytical
solution. Then, the geometry and material properties for the cochlea model are
described with a particular focus on the material description for the basilar mem-
brane. According to the membrane’s anatomical structure, the membrane can be
divided into two zones, for which different material descriptions will be presented.

In the second part of this paper, the calculated basilar membrane vibration as
well as the fluid velocity and pressure fields are discussed. The simulation results
show the formation of a traveling wave on the basilar membrane. The amplitude
of this wave increases from the base towards the apex and peaks at a frequency
dependent location. This so-called tonotopic behavior then allows the brain to
distinguish sounds of different frequencies. Furthermore, it can be shown, that not
only the transfer behavior of the middle ear, but also that of the cochlea contributes
to the frequency dependency of the human auditory threshold. Investigating the
computed fluid velocity field in the thin viscous boundary layer close to the basilar
membrane, the damping mechanism leading to this traveling wave is identified.
Additionally, the results show that the cochlear fluid flow is strongly unsteady and
viscous. Further, the calculated pressure distribution in the fluid-filled chambers
is analyzed and indicates that the pressure is amplified from the ear canal to the
inner ear. Additionally, the pressure difference across the basilar membrane, which
evokes the characteristic basilar membrane vibration, results from the unsteady
inertia forces rather than from the compression of the fluid.
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Consequently, the novel contribution of this paper compared to previous stud-
ies can be summarized as follows: the pressure-displacement-based, viscous fluid
formulation is so far mainly used for sub-models in order to study the fluid flow
around hair bundles [2, 3]. However, in this paper, the fluid description is applied
in a developed two-box model of the entire cochlea. This allows us to simulate
and investigate the velocity and pressure fields in the fluid close to the basilar
membrane. It can be shown that in these fluid boundary layers significant vis-
cous forces are present acting, due to the fluid-structure interaction, on the basilar
membrane. This in turn then leads to the formation of the characteristic traveling
wave resulting in hearing nerve stimulation. Therefore, viscous forces have to be
captured in cochlear modeling. However, in most FE-models fluid elements as
acoustic elements or simplified displacement-based fluid elements are used partly
or completely neglecting these forces already in the underlying fluid equations
[4, 5]. Then, arbitrary defined impedance surfaces in the fluid domain or spatial
distributions of structural damping coefficients for the basilar membrane are ap-
plied in order to introduce sufficient damping to the cochlea model. However, this
approach can be regarded as a numerical approximation of the resulting basilar
membrane vibration pattern, rather than physical modeling, as it is presented in
this study. Further, the fluid description applied here allows us to efficiently com-
pute the cochlear fluid-structure interactions in the frequency domain. This is in
contrast to the commonly-used partitioned approach often resulting in numerical
instabilities during the time-consuming co-simulation.

In order to accurately describe the traveling wave on the basilar membrane,
not only the fluid formulation, but also the material description of the membrane
plays a significant role. Although experimental findings clearly indicate that the
basilar membrane is, based on its morphologic structure, divided into two different
zones, in most existing FE-models an isotropic material formulation for the entire
membrane is used, e.g., [6]. Then, usually material parameters are fitted with
respect to tonotopy resulting in questionably high Young’s moduli. However, this
is in contradiction to the morphologic structure of the pectinate zone with its
radially-orientated bands [7–9]. Therefore, in this study, for this zone an orthotropic
material formulation is applied resulting in a two-zone material description for the
basilar membrane.

Both, the applied fluid description and the presented material formulation for
the basilar membrane then allow one to accurately simulate with the developed
FE-model, the fundamental physical effects occurring in the human cochlea. The
simulation of the characteristic basilar membrane vibration and the fluid flow in
the human cochlea makes it possible to identify the mechanism for the excitation
and formation of the traveling wave on the basilar membrane. Since the vibration
of this membrane in turn leads to hearing nerve stimulation, the investigations
provide a deeper understanding for the generation of the resulting hearing sensation.
Further, the calculated transfer behavior for the basilar membrane demonstrates the
tonotopic organization of the human cochlea and thus clarifies the capability of
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the human inner ear to distinguish sounds of different frequencies. Additionally,
the results point out that the cochlear transfer behavior itself contributes to the
frequency dependence of the auditory threshold.

2. Method

The oscillating fluid flow in the cochlea is induced by the vibration of the
stapes footplate. In contrast to classical engineering flow problems, the oscillatory
fluid motions are small and, therefore, the nonlinearities resulting from large defor-
mations can be neglected. This allows colorredone to simplify the field equations
for the fluid to a linear set of equations in terms of displacement. In this way,
an efficient calculation of the cochlear fluid-structure interaction in the frequency
domain is achieved, as shown in the following.

2.1. Field equations for the fluid

In a first step, the kinematics for infinitesimal strains and the material descrip-
tion for the fluid are incorporated into the general conservation equations [10, 11].
Then, these equations are simplified for the flow in the inner ear by use of dimen-
sionless numbers [3]. In this way, the field equations for the fluid, which is treated
here as a viscous and compressible liquid, are derived.

The fluid displacement amplitudes are small compared to the geometry of the
cochlea. Thus, the dimensionless Keulegan-Carpenter number [12] is below one,
and the continuity equation in an Eulerian frame simplifies to

∂ρf
∂t
= 0 (1)

with the fluid density ρf and the time t.
The momentum equation contains the surface forces and the external body

forces. In order to describe the surface forces, the relation between the state of
stress and the state of deformation of the fluid is required. This link is given by the
material description. Since the material properties of the inner ear fluid are similar
to a salt-water solution [13, 14], the liquid is treated as a Newtonian fluid. Thus,
the stress tensor can be described by the dynamic viscosity ηf and the strain-rate
tensor. In contrast to many engineering flow problems, the fluid flow in the cochlea
is charaterized by low fluid velocities and small geometric dimensions. Therefore,
the Reynolds number is below one [15] and the nonlinear convective term in the
momentum equation can be omitted. However, the vibration of the stapes footplate
leads to an oscillating fluid flow and, thus, the dimensionless Womersley number is
large [15]. Therefore, the inertial term is retained. Neglecting external body forces,
the resulting linear momentum equation reads

−∇pf + ηf∇·

(
∇vf + (∇vf )T −

2
3
∇ · vfI

)
= ρf

∂vf
∂t

(2)
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with the fluid pressure pf , velocity vf = [uf, vf,wf]T and second-order identity
tensor I.

For the energy equation, external heat sources and body forces are neglected
and the field equation is written in terms of the fluid temperature Tf . Applying the
Fourier approach [16], this allows us to link the heat flux vectorwith the temperature
field through the thermal conductivity λth of the liquid. The stress tensor is again
described by the fluid viscosity and the strain-rate tensor assuming a Newtonian
fluid. According to the momentum equation, the inertial term is proportional to the
large Womersley number and, therefore, has to be retained, whereas the convective
term is dropped due to the low Reynolds number. Further, the low fluid velocities
lead to a low kinetic energy of the fluid and result in a very small Eckert number.
Therefore, the unsteady pressure variations, their convective transport, and the
thermal energy resulting from viscous losses are omitted. Additionally, the material
properties for the inner ear fluid lead to a dimensionless Prandtl number well above
one. Hence, the thermal-dissipative term, which scales with the reciprocal value of
this number is neglected and the energy equation simplifies to

∂Tf
∂t
= 0. (3)

The continuity equation (1) and the energy equation (3) show that the density and
temperature of the fluid flow in the cochlea are constant in time. The momentum
equation (2) contains the variables pressure and velocity. Dealing with small am-
plitudes in the field of cochlear mechanics, the velocity is replaced by the time
derivative of the displacement. The missing link between the variable pressure and
displacement provides the constitutive equation for a Newtonian fluid. The final set
of field equations for the fluid then reads

−∇pf + ηf∇· *
,
∇
∂uf
∂t
+

(
∇
∂uf
∂t

)T
−

2
3
∇ ·

∂uf
∂t

I+
-
= ρf

(
∂2uf

∂t2

)
(4)

and
∂pf
∂t
= −Kf∇ ·

(
∂uf
∂t

)
(5)

with the displacement vector uf and the bulk modulus Kf of the liquid. A more
detailed derivation of equation (5) can be found in [3].

2.2. FE formulation and fluid-structure interaction

In a second step, the Finite-Element Method is employed to discretize the
differential equations for the fluid. Based on the two-field incompressible elasticity
(u-p) form [17], the implementation as a user-defined element in ANSYS (Version
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15.0) was carried out [2]. For the fluid, the resulting FE formulation then reads


Mf
uu 0

0 0

︸      ︷︷      ︸
Mf



üf

p̈f


+



Df
uu 0
0 0

︸     ︷︷     ︸
Df



u̇f

ṗf


+



0 Kf
up

Kf
pu Kf

pp

︸         ︷︷         ︸
Kf



uf

pf


=



Ff

0

 (6)

with the nodal vector of the external fluid forces Ff , the symmetric mass ma-
trix Mf , and damping matrix Df . For the submatrices of the stiffness matrix Kf ,
which couple the nodal vectors of pressure pf and displacement uf , Kf

up =
(
Kf

pu
)T

holds. Therefore, the stiffness matrix is symmetric, as well. However, this matrix
is singular and thus no solution for the static state exists.

For the inner ear structures, a linear elastic behavior is assumed and an FE
formulation based on displacement is state of the art. Since themotion of the fluid is
described by displacements instead of velocities, the interaction with the structure
is set up at the fluid-structure interface (FSI) by simply coupling the displacement
degrees of freedom of the fluid with those of the structure

uf |FSI = us . (7)

This way, the previously appropriate partitioned matrices of the fluid and the
structure are coupled and forma linear, second order systemof differential equations

Mq̈ + Dq̇ +Kq = f (8)

with the symmetric mass M, damping D, stiffness K matrices and the nodal vec-
tors of the generalized coordinates q = [us, u f , p f ]T and the external forces f =
[Fs,F f , 0]T . In contrast to the commonly used partitioned approach, where the
variable velocity is retained in the fluid equations, this monolithic approach al-
lows one to solve the fluid-structure interaction problem without time-consuming
integration and sub-iterations as well as without stability problems occurring in
co-simulations. As the system of equations for the coupled problem is linear and
the excitation of the cochlea is harmonic with the angular frequencyΩ, the equation
is formulated and solved in the frequency domain and reads(

−Ω2M + jΩD +K
)

q̃ = Q̃ (9)

with the imaginary unit j. The nodal vector Q̃ contains the complex amplitudes of
the excitation forces and q̃ the complex amplitudes for the pressure and displace-
ment.

3. Validation

In this section, the presented FE formulation for the fluid of the cochleamodel is
validatedwith a fluid-structure interaction. For this purpose, the frequency response
of an oscillating beam vibrating in a viscous fluid is calculated and compared with
the analytical solution.
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3.1. Oscillating beam in a viscous fluid

As shown in Fig. 1, the beam has a rectangular cross section and is immersed
in a viscous fluid. Its left end is fixed at z = 0, whereas the unconstrained end
is excited through the harmonic oscillating force Fy (t) = F∗y exp ( jΩt) with the
angular frequencyΩ. The dimensions and material properties for the beam and the
fluid are given in Table 1 and are chosen according to the properties of the cochlea.

Fig. 1. System composed of an oscillating beam immersed
in a viscous fluid used to validate the user-defined fluid element

Table 1.
Geometry and material properties for the beam and fluid
component parameter value
beam length lb 10 mm

width bb 1000 µm
thickness tb 100 µm
density ρb 1000 kg/m3

Young’s modulus Eb 5·109 Pa
Poisson ratio νb 0.3

fluid length lf 15 mm
width bf 4.5 mm
height hf 7 mm
density ρf 1000 kg/m3

dynamic viscosity ηf 1·10−3 Pa·s
bulk modulus Kf 2·109 Pa

The material properties of the liquid are those of the cochlear fluid [13, 14]. In
order to ensure that the boundary conditions of the fluid domain have no significant
effect on the structural response, large dimensions of the fluid domain, compared
to those of the beam, are used. Further, the material properties for the beam
are in range with collagen fibers, which represent a basic component of biological
membranes [8] and the geometry of the beam is in similar rangewith the dimensions
of the basilar membrane.
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The frequency response of the beam, which is effected by the inertial forces and
viscous forces of the fluid, is calculated with a three dimensional FE-model. The
beam is meshed with standard quadratic solid elements SOLID186. Ten elements
were used along the thickness of the beam. For the liquid, the user-defined fluid
element, Eq. (6), is used. At the wetted surfaces of the beam, the fluid-structure
interaction is defined by the displacement constraint given by Eq. (7). In order to
capture the viscous forces occurring in particular in the fluid close to the beam,
this domain is discretized by fluid elements with an edge size of 3 µm. This yields
1300 solid elements and 90 000 fluid elements. The calculated frequency response
for the unconstrained end of the beam at z = lb is shown in Fig. 2.
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Fig. 2. Simulated frequency response and analytical solution
for the unconstrained end of the beam vibrating in a viscous fluid

For the validation of the user-defined fluid element, the simulation results are
compared with an analytical solution for the coupled system [18]. The derivation
is based on the partial differential equation for the plane vibration of the beam in
vacuum with its eigenfrequencies f i. The loads acting on the beam are separated
into the applied excitation force and the hydrodynamic load. For the latter one,
the complex hydrodynamic function Γ̃(Ω) is introduced which depends on the
oscillatory Reynolds number. Further, it is assumed that the mode shapes Mi ( z̄)
of the beam in vacuum with the normalized coordinate z̄ = z/lb remain valid for
the coupled system as well. For small vibration amplitudes the displacement of the
beam in y-direction is described by the analytical solution

ũy ( z̄,Ω) =
∞∑
i=1

(ρb Ablb)−1F∗y Mi ( z̄ = 1)Mi ( z̄)(
(2π f i)2 −Ω2

(
1 +

πbb
2ρf Γ̃(Ω)

4ρb Ab

)) (10)
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with the cross section Ab of the beam. This leads to the frequency response calcu-
lated for the right end of the beam at z = lb, which is compared to the simulation
results in Fig. 2.

Within the considered frequency range from 10 Hz to 10 kHz, the vibration
amplitude of the beam shows several peaks. At these resonance frequencies, the
phase, shown relative to the excitation force, changes by ± π. Thereby, the change
in phase is represented by a transition rather than a jump, and the resonance peaks
in the amplitude curve are broad indicating damping effects. Since for the beam
neither in the FE-model nor in the analytical solution structural damping is applied,
the only source of damping is provided by the fluid, caused by viscous dissipation
in the boundary layer.

In general, the simulation results for the frequency response of the beam are
in good agreement with the analytical solution. For frequencies above 4 kHz,
the results slightly differ. This discrepancy is due to spatial mode shapes of the
beam occurring for higher excitation frequencies. While these spatial motions are
captured in the three dimensional FE-model, the analytical solution is restricted
to the plane vibration of the beam. Hence, these investigations confirm that, for
small amplitudes, the user-defined fluid element is capable to accurately describe
the dynamics of the fluid-structure coupled system. Therefore, this FE formulation
will be used in the cochlea model to describe the fluid dynamics in the inner ear.

4. Cochlea model

In the following section, a passive FE-model of the human cochlea with sim-
plified geometry is described. This passive model excludes consideration of am-
plification by electro-mobility of the outer hair cells. With this numerical model
simulations are conducted investigating the fluid flow in the cochlea and the char-
acteristic basilar membrane vibration leading to hearing sensation. The dimensions
and material properties for the fluid and cochlear structures are presented with par-
ticular focus on the basilar membrane. This membrane is treated as passive. That
means, the cochlear amplifier within the organ of Corti containing the active outer
hair cells, is not represented in this model. Additionally, the excitation through
the oscillatory motion of the stapes footplate and the evaluation of the results are
specified.

4.1. Fluid spaces and cochlear structures

The geometry of the FE-model is shown in Fig. 3. In contrast to the anatomy of
the inner ear, the fluid-filled chambers are uncoiled. This simplification regarding
the geometry is commonly accepted in the field of inner ear mechanics [19, 20],
since the coiling of the fluid spaces is assumed to have only a minor effect on
cochlear dynamics [21]. The lower chamber, scala tympani, is separated from the
upper chamber, scala vestibuli by the basilar membrane, which is embedded by the
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spiral ligament and spiral lamina to a bony wall. At the basal end, scala vestibuli
is connected to the vestibulum, a fluid-filled cavity which comprises the stapes
footplate. At the apex, both chambers are connected by the helicotrema. Since the
compliant round window membrane at the basal end of the scala tympani prevents
any leakage of inner ear fluid, and neglecting the cochlear aqueduct, the cochlea
can be considered as a closed hydraulic system.

Fig. 3. Geometry of the human cochlea model

Because the basilar membrane is much more compliant than the bony wall, as
well as the spiral lamina and spiral ligament, all three structures are approximated
as rigid. The fluid domain has a total length of 41 mm and adds up to a volume
of 110 mm3. The distribution of the fluid volume along the cochlea model is
based on anatomical data for the human cochlea [22, 23] assuming a rectangular
cross section for the conical chambers. For the discretization of the liquid, 350 000
hexahedral user-defined fluid elements, Eq. (6), are used. In order to capture the
dynamic effects within the fluid boundary layers, fluid elements in these zones of
the model have an edge size of 2 µm. In the FE-model, boundary conditions are
applied to the fluid domain to represent the rigid walls of the cochlear chambers.
For this, the three displacement degrees of freedom of the corresponding fluid
nodes are constrained to zero. The material properties of the inner ear liquid are
similar to those of a salt-water solution [13, 14]. Therefore, the density, dynamic
viscosity and bulk modulus for water are used, Table 1.

The stapes footplate is hosted in the upper wall of the vestibulum. It has
an oval shape with an area of 3.1 mm2. Its material behavior is assumed to be
linear elastic and for the bone the Young’s modulus of 14100 MPa, the density
of 2200 kg/m3 and the Poisson ratio of 0.3 are used [24, 25]. The compliant
round window membrane, located in the lateral basal wall of the scala tympani,
is modeled as a cylindrical membrane with clamped edges. Its geometry with an
area of 2.1 mm2 and a thickness of 70 µm is based on anatomical data [26, 27].
Due to experimental results [28], small vibration amplitudes of the membrane are
expected and a linear elastic material description is used with a Poisson ratio of 0.3,
a density of 1200 kg/m3 and a Young’s modulus of 40 kPa which is in range with
the apical Young’s modulus of the basilar membrane [29]. Preliminary numerical
investigations not presented in this work, in which the Young’s modulus was varied
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in morphologically reasonable boundaries, have shown that the basilar motion is
only very little affected by the particular value of Young’s modulus. Hence, the
use of a simple linear elastic material without frequency dependence is considered
appropriate.

Both the stapes footplate and round window membrane are meshed with
quadratic solid elements SOLID186. To define the fluid-structure interaction, the
displacement degrees of freedom of the nodes on the wetted surfaces of the round
window membrane and the stapes footplate are coupled with those of the fluid,
Eq. (7).

4.2. Basilar membrane

The basilar membrane, as an elastic partition, separates the two fluid-filled
chambers and has a length LBm of 31 mm [30]. The width of the tapered membrane
increases in the FE-model exponentially from 80 µm at the base to 500 µm at the
apex. However, its thickness decreases linearly from 34 µm to 12 µm towards the
helicotrema. While for the estimation of the basilar membrane width µ-CT data are
used [31], these data are not appropriate to determine the membrane’s thickness
due to the limited resolution. Therefore, anatomical data for humans [32, 33] are
used instead, and are in range with the thickness distribution in cats [34].

Fromamorphologic point of view [7–9] the basilarmembrane can be divided in
cross section into two distinct zones, the arcuate zone and the pectinate zone, Fig. 4.
In the arcuate zone, the filaments show relatively low stiffness, are evenly distributed
and embedded in a gelatinous ground substance [35]. In contrast, the filaments in the
pectinate zone are grouped into fibers, which in turn are organized into transversally
orientated bands and are immersed in a gelatinous ground substance [9, 34, 36].
Therefore, in thismodel, an orthotropicmaterial description is used for the pectinate
zone. This orthotropic material has isotropic material properties along the t- and
r-axes but has different material properties along the s-axis. Although this material
is called transversal-isotropic or polar-anisotropic in some references, in this work,
the general term orthotropic is used. For the arcuate zone, an isotropic material
behavior is assumed. This model is further motivated by the experimental findings
in [35]. Even though in [35] only basilar membranes of gerbils were investigated,
those findings are adopted for the human case because the authors were unable
to find morphological data for the human arcuate zone in current literature. There
are, certainly, differences between the basilar membrane of gerbils and humans,
however, they are assumed to be sufficiently small. Thereby, the ratio between the
pectinate and arcuate zone in width is 1:2, according to anatomical data [34, 37].
The AZ and PZ are kinematically coupled by eliminating redundant degrees of
freedom of overlapping nodes. This two-zone modelling approach for the human
basilar membrane is based on first approaches published in [38, 39] and colorredis
in contrast to most other FE-models of the basilar membrane, which ignore the
morphologic differences of these zones assuming an isotropic material behavior
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for the entire membrane, e.g. [5, 6]. The coordinate system shown in Fig. 4 has its
origin at the basal junction between the AZ and PZ in the middle of the basilar
thickness. The s-axis points along the junction in apical direction and the r-axis
points away from the AZ.

Fig. 4. Model of the basilar membrane composed of two zones
taking different morphologic structures into account

The orthotropic material description reads

ε = CPZσ (11)

which contains the compliance matrix

CPZ =


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−
νPZ
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−
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EPZ
s

1
EPZ
s

0 0 0

0 0 0 G1 0 0
0 0 0 0 G2 0
0 0 0 0 0 G2



(12)

with the coefficients

G1 =
1 + νPZ

st

0.5EPZ
s

, G2 =
1

GPZ
rs

(13)

as well as the vector for the strains ε = [εrr ε tt ε ss 2ε ts 2ε sr 2εrt ]T and the
vector for the stresses σ = [σrr σtt σss τts τsr τrt ]T . Thus, five material
parameters have to be defined for the pectinate zone, whereas for the isotropic
arcuate zone, two material parameters, the bulk modulus KAZ and the Young’s
modulus EAZ are sufficient to define thematerial formulation [40]. In the following,
these material properties are defined based on data published in literature.

The basilar membrane behaves isotropic in both zones at the apex [41, 42].
This seems reasonable for the pectinate zone as well, since the volume fraction of
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fiber bands in the apical pectinate zone is reported to be quite low compared to
the ground substance [42, 43]. Therefore, it is expected that the Young’s modulus
of the ground substance EGS dominates the Young’s moduli of both zones at the
apex s = LBM. Choosing EGS = 40 kPa, which is in range with experimental
findings [42, 43], it follows

EAZ = EPZ
t = EPZ

s = EPZ
r (s = LBM) = EGS . (14)

As shown by experiments, the stiffness of the pectinate zone is dominated by the
radially-orientated bands [35, 41–43]. Further, measurements indicate an expo-
nentially increasing diameter of these bands from the apex towards the base [44].
Therefore, the radial Young’s modulus of the pectinate zone is assumed to increase
exponentially towards the base

EPZ
r (s) = EPZ

r (s = 0)ec1s (15)

with

c1 = ln
(

EPZ
r (s = LBM)
EPZ
r (s = 0)

)
LBM

−1. (16)

Assuming an increase from the apex towards the base by 10-fold, which seems to be
in a reasonable range [42], the radial Young’s modulus at the base for the pectinate
zone is EPZ

r (s = 0) = 300 kPa. In contrast, the transversal Young’s moduli EPZ
s

and EPZ
t stay constant in space.

Although the stiffness in the pectinate zone is dominated by the radially-
orientated bands, the volume fraction of the fibers compared to the ground substance
does not exceed 20% in the basal domain [42]. Further, the ground substance
is described as an incompressible, gelatinous material [43, 45]. Therefore, it is
assumed that the bulk modulus of the basilar membrane is equal to the bulk
modulus of the cochlear fluid Kf . This completes the material description for the
arcuate zone

KAZ = Kf . (17)

The effective bulk modulus for the pectinate zone KPZ
eff then reads

KPZ
eff = Kf (18)

and leads to the Poisson ratios

νPZ
rs = 0.5 −

EPZ
r

6Kf
(19)

and

νPZ
st = 1 −

EPZ
s (EPZ

r + 3Kf )
6EPZ

r Kf
. (20)
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To complete the material description for the pectinate zone, the shear modulus GPZ
rs

is defined. Since no experimental data are available for the shear modulus, an
isotropic approach is assumed leading to

GPZ
rs =

EPZ
r

2(1 + νPZ
rs )

. (21)

For both zones of the basilar membrane, a density of ρAZ = ρPZ = 1200 kg/m3

is used and is in range with that for the tympanic membrane and round window
membrane [29, 46]. The damping matrix for the basilar membrane is defined
proportional to the stiffness matrix and for both zones a spatial constant factor
of ξBM = 0.07 is used and seems reasonable [39]. This is in contrast to the
approach described in [5, 47]. There, an arbitrary spatial distribution of Rayleigh
damping coefficients along the basilar membrane is required probably caused by
treating the entire basilar membrane as an isotropic material contradicting the real
anatomic structure of the membrane.

In the FE-model, the basilarmembrane ismeshed by 12 000 quadratic SOLID186
elements. Five elements were used along the thickness of the beam. The edges of
the membrane are clamped and the displacement degrees of freedom of the nodes
on the wetted surfaces of the membrane are coupled with those of the fluid, Eq. (7).
The most important geometry and material properties for the fluid and the basi-
lar membrane are summarized in Table 2. Further details of the FE-model are
described in the following work [48].

Table 2.
Most important geometry and material properties for the developed FE-model of the human cochlea

component parameter value
fluid volume Vf 110 mm3

density ρf 1000 kg/m3

dynamiv viscosity ηf 1·10−3 Pa·s
bulk modulus Kf 2·109 Pa

basilar membrane length lBM 31 mm
width bBM 80 µm...500 µm
thickness tBM 34 µm...12 µm
density ρAZ = ρPZ 1200 kg/m3

basilar membrane AZ Young’s modulus EAZ 40 kPa
bulk modulus KAZ 2·109 Pa

basilar membrane PZ Young’s modulus EPZ see Eq. (14-16)
Poisson ratio νPZ

rs see Eq. (19)
Poisson ratio νPZ

st see Eq. (20)
shear modulus GPZ

rs see Eq. (21)



Numerical investigation of the basilar membrane vibration induced by the unsteady . . . 395

4.3. Excitation and evaluation of results

The FE-model of the human cochlea is excited by the harmonic oscillation of
the stapes footplate. The excitation of the stapes footplate may consist of transla-
tional and rotational motion, as shown in [49]. Here, only translational, i.e. piston-
like excitation is considered and presented. Results for rotational excitation can be
found in [48]. The physiological amplitudes of the stapes footplate measured for
an ear canal sound pressure of 80 dBSPL in human temporal bone specimens [49]
are applied as kinematic constraints to the FE-model. The entire model sums up to
about 370 000 elements and the linear set of equations, see Eq. 9, is then solved in
the frequency domain within around 5 hours for each frequency. For the simula-
tion results shown in the following, the motion of the basilar membrane, the fluid
pressure, and velocities are evaluated at x = 0 in the vertical median yz plane of
the cochlea model.

5. Results

In this section, first the simulation results for the basilar membrane vibration,
the fluid velocities and pressure are shown for one single excitation frequency. Then,
the dynamic behavior of the cochlea model for different excitation frequencies
within the human audible frequency range is investigated.

5.1. Basilar membrane vibration

Hearing nerve stimulation results from the vibration of the basilar membrane
leading to shearing of the hair cells which are placed on the basilar membrane.
For a deeper understanding of the formation of hearing sensation, therefore, the
characteristic vibration behavior of the basilar membrane is of central interest. In
Fig. 5, the transversal vibration amplitude and phase of the basilar membrane are
shown relative to the amplitude of the stapes footplate along the s-axis of the basilar
membrane length for an excitation frequency of 2 kHz.

At the base, the amplitude of the basilar membrane is quite small and is in
the order of a few nanometers. Towards the apex, the amplitude increases reaching
a maximum amplitude of 125 nm at the characteristic longitudinal position z =
15.5 mm. Beyond that point, the amplitude decreases rapidly. Thus, the vibration is
totally ceased around z = 25 mm and results in an asymmetric amplitude response.
At the base, the phase of the basilar membrane vibration leads that of the stapes
footplate by +π/2. Towards the apex, at first, the phase decreases slightly, then,
around the characteristic position, it decreases strongly and eventually reaches a
plateau value of around -40π just beyond that point. Apical to z = 25 mm, the
phase can no longer be interpreted, since in this domain the vibration amplitude of
the basilar membrane is numerically zero.
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Fig. 5. Amplitude and phase of the basilar membrane relative
to that of the stapes footplate shown along the cochlea model for 2 kHz

The decrease in phase with the longitudinal position represents the formation
of a wave on the basilar membrane. This wave becomes apparent in Fig. 6, which
shows the instantaneous amplitude of the basilar membrane vibration for three
different points of time of a cycle as well as the corresponding envelopes.
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Fig. 6. Instantaneous amplitude of the basilar membrane and corresponding
envelopes shown along the cochlea model for 2 kHz

The peak of this wave travels from the base towards the apex, while the ampli-
tude of this wave increases. At the characteristic position, the so-called traveling
wave reaches its maximum amplitude. Mainly in this local domain, the stereocilia
of the inner hair cells placed on the basilar membrane get sheared and result in
hearing nerve stimulation. Beyond the characteristic position, the amplitude of
the traveling wave declines rapidly. However, just before the vibration amplitude
totally ceases, the traveling wave changes into a standing wave, indicated by the
phase plateau in Fig. 5. As further simulations in [48] show, for higher excitation
frequencies this phase plateau occurs closer to the base. At the same time, the
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level of the phase plateau is shifted to smaller phase values. This separates it more
clearly from the numerical noise level and the phase plateau becomes even more
pronounced. Along with experimental investigations [50], this is a clear evidence
for the existence of a standing wave in the cochlea, which occurs for higher frequen-
cies well beyond the characteristic position. The developed FE-model is capable
of describing this behavior and further numerical investigations will be conducted
in order to understand the formation of standing waves in the cochlea as well as to
clarify to what extend these waves of small amplitude may contribute to hearing
sensation.

The simulation results for the FE-model of the human cochlea show the for-
mation of a traveling wave on the basilar membrane. This is in agreement with the
observations during experiments on human temporal bone specimen [51]. Since for
these investigations the fluid chambers were opened and unphysiological high ear
canal sound pressures above 140 dBSPL were used, a quantitative comparison with
the simulation results is not possible. Further, recent measurements of the basal
basilar membrane vibration in gerbils [52] confirm the formation of a traveling
wave in the mammalian cochlea.

In literature, only very few measurements of the basilar membrane vibration
in human temporal bone specimen exist. In addition, these measurements are
conducted only in a few number of single points along the membrane. Therefore,
the simulated basilar membrane vibration cannot be validated quantitatively along
its entire length, but only in these very few points. In the following, the simulated
amplitude of the basilar membrane is validated locally at z = 12 mm by use of
the measurement in a human temporal bone [53]. The locally measured amplitude
ratio of the basilar membrane to the stapes footplate for 2 kHz is around 25 dB.
Since the amplitude ratio for the FE-model with 26 dB is in similar range, Fig. 5,
the simulation results for the basilar membrane vibration amplitude are likely to
be reasonable. However, since in [53] measurements are only available for one
single location, the simulation results can only be compared for this location. It
should be emphasized at this point that the orthotropic material formulation of the
basilar membrane presented here is based on its morphologic structure. Further,
realistic material parameters from experimental studies are used, which can be
assigned to the components of the membrane. This is in contrast to many other FE-
models, e.g., [6]. There, often a purely isotropic material description is used, and
usually material parameters are fitted with respect to tonotopy. However, this is in
contradiction to themorphologic structure of the basilarmembrane’s pectinate zone
with its radially-orientated bands and results in questionably high Young’s moduli.
The fundamental behavior of the phase shift also fits quite well comparedwith these
measurements in human temporal bones [53]. Altogether, the presented two-zone
material description for the basilar membrane seems appropriate to describe its
characteristic vibration pattern. However, the absolute value of the phase shift with
around 20 cycles is quite high, especially compared with other FE-models, [54].
These high values may be caused by neglecting the additional mass of the organ of
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Corti or by the influence of neglected fluid damping on the phase shift in this passive
cochlea model. Both assumptions are of concern for further detailed studies.

In the following, two characteristic properties of the traveling wave are dis-
cussed, i.e., the wavelength and the phase velocity. In Fig. 6, it can be seen that
the wavelength at the base of the basilar membrane is around 110 mm and thus is
large compared to the dimensions of the cochlea. Towards the apex, the wavelength
decreases strongly and is around 1 mm close to the characteristic position. This
indicates that the velocity of the wave alters along the length of the membrane.
Therefore, the wave velocity vφBM is calculated for the traveling wave

vφBM(z) = 2π f
������

(
dφBM(z)

dz

)−1������
(22)

with the constant frequency f = 2 kHz and the local phase gradient dφBM/dz,
calculated from Fig. 5. As shown in Fig. 7, the velocity of the traveling wave has its
maximum of about 220 m/s at the base. Due to the shortening of the wave length
towards the apex, the propagation of the traveling wave gets increasingly delayed.
Therefore, the wave velocity decreases strongly along the length of the membrane
towards the apex and is in the range of 1 m/s close to the characteristic position.
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Fig. 7. Phase velocity of the traveling wave along the basilar
membrane at 2 kHz

For comparison, the velocity of the pressure waves in the inner ear fluid is
calculated by the use of the fluid properties given in Table 1

cf =
√

Kf/ρf = 1414 m/s. (23)

Thus, the velocity of the traveling wave on the basilar membrane at the base is
around one order lower and even more than two orders of magnitude lower close
to the characteristic position as compared to the velocity of the pressure waves
in the cochlear fluid. This clearly demonstrates two different time scales in the
cochlea. There is a fast time scale represented by the fast pressure waves and a
slower time scale represented by the traveling wave on the basilar membrane. This
illustrates that the traveling wave is not a direct result of the traveling pressure
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waves. Instead, the slower scale only becomes evident by investigating the fluid
velocity field and the related fluid-structure interaction in the cochlea model. This
interaction is further discussed in the following.

5.2. Fluid velocity

The investigation of the fluid velocity distribution and derived velocity profiles
provide novel insights into the cochlear flow and enables us to classify the fluid
flow. Further, the simulations allow us to identify the viscous damping mechanism
which is responsible for the formation of the travelingwave.Additionally, the results
provide a first indication regarding the impact of coiling of the fluid chambers on
the apical fluid flow.

In Fig. 8, the instantaneous longitudinal fluid velocity field in the vertical
median plane of the FE-model can be seen for an excitation frequency of f =
2 kHz. Additionally, the instantaneous transversal basilar membrane and the stapes
footplate amplitude are shown, scaled by 2500 and 75 000-fold, respectively.
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Fig. 8. Instantaneous longitudinal fluid velocity field and basilar membrane vibration shown in the
vertical median plane of the FE-model for an excitation frequency of 2 kHz

In the entire fluid domain, the longitudinal fluid velocity is quite low. The
maximum longitudinal velocity vzf with around 0.4 mm/s occurs in the fluid layer
close to the basilar membrane near to the characteristic position at z = 15.5 mm.
With a characteristic length of L = 500 µm, which is in range of the width of the
basilar membrane, the fluid viscosity ηf and density ρf from Table 1, the maximum
Reynolds number is

Re =
ρf Lvzf
ηf

= 0.2. (24)

Since this dimensionless number is well below one for the entire fluid domain,
the fluid flow in the cochlea can be regarded as a creeping flow. The Womersley
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number, characterizing the unsteadiness of the fluid flow in the cochlear system, is

Wo = L

√
2π f ρf
ηf

= 56. (25)

In contrast to the Reynolds number, the Womersley number is well above one. This
indicates that the fluid flow in large sections of the fluid domain is dominated by
the unsteady inertia forces of the fluid, rather than the viscous forces.

The consequences for the resulting fluid velocity profile can be clearly seen
in Fig. 9. There, the instantaneous distribution of the longitudinal fluid velocity
along the cross section of the scala vestibuli and scala tympani is shown for the
basal domain. The times t1 to t4 in Fig. 9 are chosen such that t1 is at 0◦, t2 at
30◦, t3 at 60◦ and t4 at 90◦ with respect to the harmonic stapes footplate excitation.
Since in the basal region, the basilar membrane amplitude is still quite small, the
membrane can be regarded for simplicity as a rigid wall. Therefore, the velocity
profile is almost symmetric to the center of the cross section. As t1 through t4,
capture the first quarter cycle of the stapes footplate, the majority of velocities are
negative. The velocity profile characteristics are similar to the velocity profile for
an unsteady flow through a rigid pipe [55]. The prominent plateau, evoked by the
unsteady inertia forces, extends from the center towards the boundaries of the cross
section. Except of the fluid layers close to the rigid wall and the basilar membrane,
the velocity profile alters significantly. In these fluid layers, the viscous forces
dominate compared to the unsteady inertia forces. Due to the no-slip boundary
condition applied to the fluid in order to represent the rigid walls of the fluid
chambers and the displacement constraints at the fluid-structure interface at the
basilar membrane, the longitudinal fluid velocities there are zero or almost zero,
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respectively. This results in substantial velocity gradients in these so-called viscous
boundary layers.

However, in the cross section of the chambers close to the characteristic po-
sition, where the basilar membrane amplitude exhibits its maximum, the velocity
profile changes considerably, Fig. 10. Whereas the longitudinal fluid velocity close
to the rigid wall of the chambers hardly alters, the velocity in the viscous boundary
layer close to the basilar membrane increases significantly. This results in an asym-
metric velocity profile characterized by significantly increased velocity gradients in
the fluid layer close to the basilar membrane. These velocity gradients in turn lead
to viscous damping forces acting on the basilar membrane due to the fluid-structure
interaction. In this way, the vibration amplitude of the membrane decreases rapidly
beyond the characteristic position resulting in a global maximum along the cochlea,
Fig. 6. Further, these viscous damping forces cause an increasing phase delay of the
basilar membrane vibration which eventually results in the traveling wave caused
by the mechanisms explained in the previous section.
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The results show clearly that although the viscosity of the cochlear fluid, which
is in the range of water, may at a first glance seem negligibly low, the viscous forces
significantly affect the fluid flow and the resulting basilar membrane vibration.
Therefore, these forces have to be taken into account in order to simulate the
cochlear dynamics. As further investigations showed, for lower values of fluid vis-
cosity the basilar membrane vibration does no longer totally decay before reaching
the apex [48]. In particular for lower excitation frequencies, this in turn leads to
reflections in the apical region of the cochlea which contradicts with the spatial
frequency mapping of the hearing organ. The user-defined fluid element employed
in this study is capable of completely describing the viscous creeping flow in
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the human inner ear and provides an approach to compute the basilar membrane
vibration pattern resulting from the fluid-structure interactions in an efficient way.

In contrast, standard acoustic elements neglect the viscous damping forces
generated in the fluid boundary layers. Even though, these elements are rarely
used in FE-models of the cochlea in order to try to calculate the cochlear fluid
flow and the resulting basilar membrane vibrations [4]. Then, arbitrarily-defined
impedance surfaces in the fluid domain or spatial distributions of structural damp-
ing coefficients for the basilar membrane are applied in order to introduce sufficient
damping to the cochlea model. However, this approach can be regarded as a numer-
ical approximation of the resulting basilar membrane vibration pattern, rather than
physical modeling. Further, the use of acoustic elements leads to a constant fluid
velocity profile in the cross-section of the chambers. Therefore, these elements are
not appropriate to describe accurately the cochlear fluid and structural dynamics.

Beyond the characteristic position, the amplitude of the basilar membrane
vibration decreases rapidly and is totally ceased in the apical domain. Therefore,
the fluid velocity profile in this domain, Fig. 11, has a similar characteristic as
the velocity distribution in the basal domain, Fig. 9. However, the amplitude of
the longitudinal fluid velocity at the apex is about three orders lower compared to
the base. The significant deformation of the basilar membrane at the characteristic
position leads, in particular in this domain, to the interaction between the fluid
in the scala vestibuli and scala tympani. Thus, mainly in this domain the fluid
flow is already diverted into the scala tympani, rather than at the helicotrema.
This is a further possible reason, why the coiling of the cochlear fluid chambers
plays a minor role for the cochlear fluid flow and the resulting vibration pattern
of the basilar membrane. This justifies the geometry of the FE-model presented in
section 4.1 in retrospect.
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5.3. Fluid pressure

In the following, the fluid pressure distribution in the cochlear fluid is discussed
in order to explain the excitation of the characteristic basilar membrane vibration.
Thereby, the significance of the round window membrane as well as of the inertia
and the compressibility of the fluid for the resulting pressure difference which in
turn evokes the traveling wave is clarified.

At first, the calculated fluid pressure distribution in the cochlea model is
discussed for an excitation frequency of 2 kHz. In Fig. 12, the instantaneous
pressure field in the vertical median plane of the FE-model can be seen. For this
time point, the stapes footplate is moving out of the vestibulum and the amplitudes
of the basilar membrane and the stapes footplate are shown scaled by 2500 and
75 000-fold respectively.
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Fig. 12. Instantaneous fluid pressure field and basilar membrane vibration shown in the vertical
median plane of the FE-model for an excitation frequency of 2 kHz

The simulation results show that the maximum amplitude of the fluid pressure
in the cochlea is around 6 Pa and, therefore, quite low compared to classical
engineering flow problems. This maximum fluid pressure occurs in the vestibulum
close to the stapes footplate. Comparing the fluid pressure in the vestibulum with
the sound pressure of 80 dBSPL = 0.2 Pa in the ear canal, this demonstrates clearly
a pressure amplification between the outer and inner ear. This gain is provided by
the middle ear, since the area of the tympanic membrane is much larger compared
to that of the stapes footplate. Additionally, the lever action of the middle ear bones
results in a further amplification of the pressure.

From the vestibulum and the basal domain of the scala vestibuli, the fluid pres-
sure decreases towards the apex. This is in contrast to the fluid pressure in the scala
tympani, where the pressure amplitude is lowest in the basal domain and increases
towards the characteristic position. Since the round window membrane, located in
the lateral basal wall of the scala tympani, is very compliant, this structure offers
no significant resistance against the displacement of the fluid in this domain. This
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results in an pressure amplitude of almost 0 Pa at the basal end of the scala tym-
pani. Therefore, the simulation results indicate that the round window membrane
can be regarded as a closure of the scala tympani with negligible stiffness mainly
preventing the cochlear fluid from leakage. Apical to the characteristic position,
the fluid pressure in both chambers has an equal amplitude and oscillates in phase.
In particular, within the fluid close to the basilar membrane and the characteris-
tic position, the instantaneous fluid pressure field in Fig. 12 indicates significant
pressure gradients in the direction normal to the basilar membrane. As further
evaluations showed [48], thereby the pressure amplitude decreases with increasing
distance from the basilar membrane, which is in accordance with experimental
findings [56].

The pressure distribution in the fluid-filled chambers results in a pressure dif-
ference across the basilar membrane. For the instantaneous pressure field, Fig. 12,
the resulting pressure difference between scala vestibuli and scala tympani is shown
in Fig. 13 as well as its amplitude. This pressure difference evokes the characteristic
basilar membrane vibration. Its amplitude with about 6 Pa is maximal at the base
of the cochlea model. With increasing vibration amplitude of the basilar mem-
brane towards the apex, Fig. 6, the amplitude of the pressure difference across the
membrane decreases. At the characteristic position, the large vibration amplitude
of the basilar membrane leads in this domain to an interaction between the fluid
flow in the scala vestibuli and scala tympani. Thus, the pressure difference across
the basilar membrane is already compensated in this sector of the fluid domain,
rather than at the helicotrema.
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cochlear fluid shown along the cochlea model at 2 kHz

The pressure difference between the fluid-filled scala vestibuli and scala tym-
pani is responsible for the excitation of the basilar membrane, which in turn results
in hearing nerve stimulation. In order to develop a deeper understanding for the
excitation of the traveling wave on the basilar membrane and thus for the generated
hearing sensation, the formation of this pressure difference is investigated.

The cochlear fluid is slightly compressible. This may suggest that along the
fluid chambers a standing pressure wave resulting from the compressibility of
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the fluid is developed. This standing pressure wave then may cause a pressure
difference across the scala vestibuli and scala tympani, which in turn may evoke the
characteristic vibration pattern of the basilar membrane. If the pressure difference
primarily results from the compression of the cochlear fluid, the calculated pressure
difference must alter considerably with an increase of the bulk modulus of the fluid.
However, this is not the case, as shown in Fig. 13. Although the bulk modulus of
the cochlear liquid is increased by several orders and thus the fluid for this case can
be regarded as incompressible, the pressure difference across the basilar membrane
hardly changes.

This finding can be explained, if the wave length λf of the standing pressure
wave in the slightly compressible fluid is compared to the dimensions of the fluid
chambers. For an excitation frequency of f = 2 kHz, the wave length is

λf =

√
Kf

√
ρf f
= 0.707 m. (26)

In contrast, the total length of the fluid chambers including the helicotrema counts
just 64.5 mm for the human cochlea. Thus, less than one-tenth of the standing
pressure wave resulting from the compression of the fluid fits into the cochlear
chambers. Therefore, it is not the compression, but the inertia of the cochlear fluid
leading to the pressure difference across the fluid chambers, which in turn excites
the characteristic basilar membrane vibration.

5.4. Tonotopy and cochlear gain

Up to this point, the dynamic behavior of the cochlea model is investigated
only for one single frequency. In the following, the transfer behavior of this coupled
system for different excitation frequencies covering the relevant frequency range
for human hearing perception between 100 Hz and 8 kHz is analyzed. This allows
us to identify the distribution of the characteristic frequencies along the basilar
membrane and thus explains the mechanism which allows the human inner ear to
distinguish sounds of different frequencies. Further, the investigations clarify the
contribution of the cochlear transfer behavior to the frequency dependence of the
auditory threshold.

In Fig. 14, the amplitude of the basilar membrane vibration relative to that of
the stapes footplate is shown for different excitation frequencies. Independent of
the excitation frequency, all these amplitude responses represent the same charac-
teristics. Starting at the base, the amplitude of the traveling wave increases towards
the apex and then reaches a global maximum. Apical to this characteristic position,
the amplitude decreases rapidly resulting in an asymmetric amplitude response.
However, the characteristic position depends on the excitation frequency. For low
excitation frequencies, the amplitude of the travelingwave peaks close to the apex of
the cochlea model, whereas for an increased frequency, this characteristic position
is shifted towards the base.
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Fig. 14. Amplitude of the basilar membrane relative to that of the stapes
shown along the cochlea for different excitation frequencies

As discussed in Section 5.1, the characteristic position correlates with the
narrowdomain on the basilarmembrane,where the stereocilia of the inner hair cells,
placed on the basilar membrane, get sheared causing hearing nerve stimulation.
The simulation results for the basilar membrane vibration thus clearly demonstrate,
that for each single frequency hearing nerves are stimulated primarily in a certain
domain of the basilar membrane. This feature of the human cochlea then allows
the brain to distinguish between sounds of different frequencies presented at the
external ear canal. In thisway, the human cochlea acts similar to a discrete frequency
analyzer, mapping the excitation frequency to a particular characteristic position
on the basilar membrane. This transformation is also called the tonotopy.

For the simulation results in Fig. 14, the corresponding tonotopic map is
calculated and shown in Fig. 15. For a logarithmic frequency scale, it becomes
evident that the frequencies related to the corresponding characteristic positions are
distributed almost logarithmically along the length of the basilar membrane. Even
though no direct measurements of the human basilar membrane are provided in
literature for validation, this finding is reasonablewhen compared to psychoacoustic
data of humans [57]. Dividing the audible frequency range into 13 so-called critical
band widths and correlating these with results of psychoacoustic experiments,
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Fig. 15. Tonotopic map calculated from the simulated basilar
membrane vibration and compared to psychoacoustic data [57]
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the obtained psychoacoustic tonotopic map is in agreement with the numerical
result.

Considering once more the amplitude responses for the basilar membrane,
Fig. 14, it is notable, that in addition to the shift of the characteristic position
also the maximum amplitude changes with the excitation frequency. Since the
amplitude of the basilar membrane is shown relative to that of the stapes footplate
and thus relative to the excitation, this can be considered as the cochlear gain. As
the simulation results clearly indicate, this gain has its maximum at around 2 kHz.
This finding agrees well with the transfer behavior of the middle ear, captured
from experiments on human temporal bone specimens, indicating a maximum
amplification in the same frequency range [49]. Thus, the transfer behavior of both,
the inner ear and the middle ear, contribute to the frequency dependence of the
auditory threshold, which has its minimum close to 2 kHz for humans [58].

6. Discussion

Compared to other inner ear models published in literature, the FE-model
of the human cochlea reported in this paper is unique in two ways. First, the
pressure-displacement-based FE formulation is used to describe the flow of the
cochlear liquid. With this user-defined element it is not only possible to capture
the viscous effects occurring in the cochlear flow, but also to compute the basilar
membrane vibration resulting from thefluid-structure interaction in an efficientway.
Secondly, the material description of the basilar membrane is more sophisticated
compared to other studies. Here, different material formulations for the two zones
of the basilar membrane are chosen which is in contrast to the commonly used
approach, treating the entire membrane as an isotropic material. Thus this new
material description takes the morphologic structure of the basilar membrane into
account, whereby the number of material variables required can still be obtained
from experimental results provided in literature. Both, the fluid formulation and
the material description for the basilar membrane play an important role for the
resulting characteristic vibration pattern of the membrane, which in turn results in
hearing sensation.

In a first step, the pressure-displacement-based FE formulation for the fluid
is validated, Fig. 2. For this purpose, the vibration response of a cantilever beam
which is immersed in a viscous fluid is investigated. Thereby, the dimensions and
material properties of the fluid-structure coupled system are in a similar range as
those of the cochlea. The numerical results for the frequency response are then
compared to the analytical solution for the coupled system provided in [18]. Since
both results agree well, the user-defined fluid element is capable of accurately
describing the cochlear fluid-structure interactions.

In a second step, simulations on the cochlea model are conducted, at first
for one single excitation frequency. The simulation results show the formation of a
travelingwave on the basilarmembrane propagating from the base towards the apex,
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Fig. 6. Thereby, its amplitude increases reaching a maximum at a characteristic
position. This in turn leads, mainly in this domain of the membrane, to hearing
nerve stimulation. Beyond this point, the amplitude decreases rapidly. Further,
the wavelength and thus the velocity of this traveling wave decreases towards the
characteristic position, Fig. 7. At the base this velocity is around one order, and
close to the characteristic position more than two orders below the velocity of the
pressure waves in the fluid demonstrating the introduction of a second time-scale
in the cochlea. This way, the simulations provide a deeper understanding for the
formation of the traveling wave on the basilar membrane and thus for the generation
of hearing nerve stimulation resulting in hearing sensation.

Investigating the calculated fluid velocity field in the vicinity of the basilar
membrane, one can identify the dampingmechanism leading to the increasing delay
of the propagation of the traveling wave. The results clearly show the formation of
a viscous boundary layer close to the basilar membrane. In this fluid layer with a
thickness of a fewmicrometers and in particular close to the characteristic position,
significant velocity gradients occur, Fig. 10. These in turn lead to extensive viscous
damping forces affecting the vibration behavior of the basilar membrane, strongly
reducing the velocity and amplitude of the traveling wave. The importance of these
viscous damping forces gets particularly evident for lower excitation frequencies,
as further investigations show [48]. For lower values of fluid viscosity, the basilar
membrane vibration amplitude then no longer totally decays before reaching the
apex, which in turn leads to apical reflections and thus resulting in violation of the
tonotopy. This way, the investigations demonstrate that the viscosity of the inner ear
liquid has a significant impact on the characteristic basilar membrane vibration and
thus on hearing sensation. Therefore, an inviscid acoustic fluid formulation is not
appropriate to describe the cochlear fluid flow. Further, this justifies in retrospect
the choice of the viscous, pressure-displacement-based fluid formulation used in
this study.

Furthermore, the study of the velocity distribution across the cochlear chambers
allow to classify the cochlear fluid dynamics as a viscous, highly unsteady creeping
flow. Thereby the results indicate, that apical to the characteristic position the
longitudinal velocity of the liquid is several orders lower compared to the more
basal domain and thus, the flow throughout the helicotrema seems negligibly low,
at least for higher excitation frequencies, Fig. 11. Thus, the simulations indicate
that the coiling of the fluid chambers seems to play a minor role for the cochlear
fluid flow.

Compared to classical engineering flow problems, the pressure amplitudes in
the cochlear fluid are quite low with a maximum of around 6 Pa, Fig. 12. However,
the simulation results for the fluid pressure field in the cochlea clearly indicate
that the middle ear leads to an amplification of the pressure presented at the outer
ear canal. The maximum pressure amplitude occurs in the basal fluid domain of
the vestibulum and scala vestibuli. Due to the low stiffness of the round window
membrane, the pressure amplitude is minimal with almost 0 Pa at the basal end
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of the scala tympani. This way, the basilar membrane is subjected to a pressure
difference, which in turn evokes themembrane to vibrate, Fig. 13. As the simulation
results demonstrate, this pressure difference then decreases towards the apex. Due
to the significant vibration amplitude of the basilar membrane at the characteristic
position the pressure difference then gets entirely compensated in this domain,
rather than at the helicotrema.

The cochlear liquid is slightly compressible. Therefore, in this study, most sim-
ulations have been carried out using a compressible fluid description. On the other
hand, in order to estimate the influence of compressibility on cochlear dynamics,
simulations with an incompressible fluid description were carried out, Fig. 13.
These show that it is primarily the inertia of the fluid contributing to the pressure
difference across the fluid chambers and thus to the excitation of the basilar mem-
brane leading to hearing sensation instead of the compressibility. The reason for
this behavior is that within the relevant frequency range for hearing, the unrolled
length of the cochlea chambers is much shorter than the wave length of a standing
pressure wave within the slightly compressible cochlear liquid, see also explana-
tions in Section 5.3 and Eq. (26). Consequently, the calculated basilar membrane
vibration and its envelope are not significantly affected by the slight compressibility
of the cochlear liquid, as further numerical investigations, described in [48], show.
Furthermore, this implies that an incompressible fluid description may be used for
cochlear modelling in order to describe the fundamental physical effects occurring
in the cochlea.

Finally, the transfer behavior of the FE-model of the human cochlea is inves-
tigated for different excitation frequencies. The simulation results show that the
amplitude of the traveling wave on the basilar membrane peaks at a frequency
dependent characteristic position along the cochlea, Fig. 14. Mainly in this domain
hearing nerves are stimulated. For low excitation frequencies, this position is close
to the apex, whereas for increasing frequencies this point is shifted towards the
base. In this way, for each single frequency hearing nerves primarily in a certain
domain of the basilar membrane are stimulated and the human cochlea apparently
acts similarly to a discrete frequency analyzer. This transformation is also called
the tonotopy. This way, the simulations explain the capability of the human inner
ear to distinguish sounds of different frequencies. Analyzing the tonotopic map
of the human cochlea model, it is obvious that the characteristic frequencies are
distributed logarithmically along the basilar membrane, Fig. 15. This agrees well
with psychoacoustic observation for humans provided in [57]. The developed FE-
model clearly shows the formation of a traveling wave on the basilar membrane,
which is observed also in measurements [51, 52]. Therefore, the model is able to
represent the fundamental physical effects occurring in the human cochlea. Al-
though the basilar membrane vibration can be validated quantitatively only in a
very few points based on measurements provided in [53], the dynamic behavior
for these single points fits quite well. Since the parameters of this physical model
were not tuned to these few validation points and the material description of the
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basilar membrane is based on its real morphologic structure, it can be assumed that
the developed FE-model captures the real basilar membrane vibration behavior in
other points too.

Further, it can be seen from the simulations that the maximal amplitude of the
traveling wave relative to that of the stapes changes with frequency as well, Fig. 14.
This so-called cochlear gain has its maximum around 2 kHz. Thus, not only the
middle ear, but also the inner ear transfer behavior contributes to the frequency
dependence of the auditory threshold having its minimum in the same frequency
range for humans.

7. Conclusion

A deeper understanding of the fluid dynamics and the resulting vibration of the
basilar membrane in the cochlea, which in turn leads to hearing nerve stimulation,
is of central interest. However, measurements within this closed hydraulic system
with its complex geometry and delicate structures only provide a limited insight
into the cochlear dynamics. Therefore, in this study, a three-dimensional FE-model
of the intact human cochlea with a simplified geometry is developed to simulate
the fundamental physical effects occurring in this coupled system.

In contrast to previous inner ear models published in literature, here a two-zone
orthotropic material description is introduced for the basilar membrane based on
its morphologic structure and an user-defined pressure-displacement-based fluid
element is used to describe the flow of the cochlear liquid. In contrast to acoustic
elements, this fluid formulation allows one to capture the viscous forces in the
fluid and enables a numerically stable and efficient calculation of the cochlear
fluid-structure interactions compared to the commonly used partitioned approach.

The developed model allows one to predict the fluid flow in the human cochlea
and its interaction with the basilar membrane. The cochlear flow, which evokes the
basilar membrane vibration, is highly unsteady and viscous. Since the employed
fluid formulation also captures the viscous forces, the simulations allow us to
identify and understand the damping mechanism leading to the formation of this
characteristic wave. This travelingwave on the basilarmembrane then finally results
in hearing nerve stimulation in a frequency dependent domain. Thus, the cochlea
acts similarly to a discrete frequency analyzer and the calculated tonotopic map
agreeswell with psychoacousticmeasurements. Further the results indicate, that the
calculated transfer behavior of the cochlea does not compensate, but contributes to
the frequency dependence of the human auditory threshold. This way, the presented
FE-model allows one to gain deeper insights into the physical effects occurring in
the human cochlea and the simulation results significantly contribute to a deeper
understanding of the development of hearing sensation in an intact cochlea.

Since the developed model is based on physical parameters, small geometric
modifications will allow us to simulate pathological changes on hearing sensation.
This will help to clarify how inner ear diseases, such as semicircular dehiscence
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or endolymphatic hydrops, affect the auditory system. Comparing these results
with those of the intact cochlea model, this may also allow one to derive new
diagnostic methods. Additionally, the implementation of passive hearing implants
is conceivable in order to develop innovative hearing aids, whichwill be the concern
of future studies.
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