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Abstract

We present computer simulations of a two-way ANOVA gage R&R study to determine the effects on the

average speckle width of intensity patterns caused by scattered light reflected from random rough surfaces

with different statistical characteristics. We illustrate how to obtain reliable computer data that properly

simulate experimental measurements by means of the Fresnel diffraction integral, which represents an

accurate analytical model for calculating the propagation of spatially-limited coherent beams that have been

phase-modulated after being reflected by the vertical profiles of the generated surfaces. For our description

we use four differently generated vertical profiles and five different vertical randomly generated roughness

values.
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1. Introduction

As indicated in the international standard ISO 5725-1:1994 [1] concerning measurement

methods, the trueness of a measurement is quantified by a statistical term defined as bias which is

basically the difference between the expectation of the test results and an accepted reference value.

In general, these differences are well represented by two statistical terms known as repeatability

and reproducibility. Thus, when a hypothesis has to be tested experimentally, one of the most

reliable and robust accepted methods are the analysis of variances (ANOVA) and the gage

repeatability and reproducibility (gage R&R). In this report we give an illustrative working

example applied to speckle statistics, illustrating how data obtained by computer simulations

based on a well-established analytical model can be used in a way equivalent to that of laboratory

experimental data, with no loss of reliability to determine the average speckle width for different

reflective rough surfaces.
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Speckle intensity patterns that result from the reflection of an illuminating coherent source

on a rough surface have many applications in different fields, as the measurement of deformation

of large objects [2], studies on rough surfaces [3], astronomy [4], biological tissue imaging [5],

studies of coagulation processes [6], acoustics [7] etc.
As it is not possible to control exhaustively the roughness characteristics of real materials used

in speckle experiments, it becomes necessary to perform calculations based on numerical models

to validate some particular findings [8]. Most of the simulations on rough surface models are

based on vertical height distributions that follow random Gaussian probability density functions

[9] and it is difficult to find reports dealing with non-Gaussian density probability functions as

for example is included in [10–12].

It is commonly accepted that the average speckle width does not depend on the statistical

profile of the reflecting rough surface that causes an intensity speckle pattern. However, it may be

more natural to assume that the statistical characteristics of the vertical profiles of the simulated

rough surfaces may affect the average lateral speckle width. To provide a robust answer to

this question, in this report we present a two-way analysis of variances (ANOVA) and gage

repeatability and reproducibility (R&R) studies, using well-known equations for these methods.

We present a complete worked example, applied to evaluate the average speckle width due to

the reflection of a spatially-limited coherent beam from random-rough-surfaces with different

statistical characteristics. We focus on the shape of the histograms and the autocorrelations of the

intensity speckle patterns. For our description, a spatially limited illuminating coherent beam,

phase-modulated by reflection from a rough surface, is propagated up to an observation plane

by means of the Fresnel diffraction integral. The rough surface profiles considered in this report

are obtained by an algorithm that has been described in [13, 14]. This algorithm provides ample

flexibility to attain different random characteristics of the simulated surfaces by simply changing

the analytical expression of a generating function. In the following sections we describe our

ANOVA and gage R&R simulations.

2. Analytical description

2.1. Surface simulation

We begin our description by listing the steps required by the algorithm given in [13, 14] to

generate different random rough surfaces. As it will be apparent from the results presented in

the following sections, a one-dimensional model will be appropriate for the ANOVA and R&R

studies described in this report.

The first step consists in providing an analytical expression of a function f (x) that will

generate a surface with a random vertical height distribution. The vertical profile of the surface

generated, in turn, will have a corresponding autocorrelation function whose plot will exhibit a

central sharp peak. The width of this peak can be approximately set by some parameters defined

in the generating function. The only limitation imposed on f (x) is that it has to be a symmetric

decaying function [13, 14].

The next step consists in calculating the Fourier transform F(u) of f (x), u being the frequency

coordinate that corresponds to the spatial-coordinate x. Then, a so called pupil function is

calculated as P(u) =
√

F(u). Next, a random function η(u)with zero mean and uniform distribution

is generated and multiplied by the pupil function as P(u) η(u). The vertical distribution h(x) of

the simulated surface is obtained by calculating the inverse Fourier transform of the product

P(u) η(u). At this point it will be noticed that h(x) will be symmetric around the origin; this is not

a limitation of the algorithm as it is only necessary to obtain a shifted version of this function by
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introducing an appropriate phase term in the Fourier process. Finally the vertical height of h(x)
is properly scaled to attain a desired RMS value of the vertical height distribution.

It is important to mention that once a rough surface represented by h(x) is numerically

obtained as described above, it has to be plotted for evaluation. If the plot of h(x) exhibits isolated

sharp peaks, then this particular function must be discarded as this type of peaks represent

flaws or scratches on the corresponding surface altering the diffraction patterns with undesired

ripples. Thus, we implemented a numerical routine to discard non-desired surfaces. This routine

consists in calculating the magnitude of the maximum and minimum of their correspondingheight

distributions symmetrically positioned around the horizontal axis. If any of these two amplitudes

is greater than three times the RMS value, this surface is discarded. By using this criterion, we

found that surfaces exhibiting isolated sharp peaks were efficiently discarded.

Figure 1 depicts a plot of a simulated rough surface free of defects. The vertical profile was

properly scaled to attain an RMS value of 0.1 µm.

Fig. 1. One of the simulated one-dimensional surfaces with RMS value of 0.1 µm.

The normalized autocorrelation plot that corresponds to the surface of Fig. 1 is plotted in

Fig. 2.

Fig. 2. The normalized autocorrelation corresponding to the surface plotted in Fig. 1. In the following section

we describe the optical process and the automated method used to measure the width of the central peak.
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2.2. Optical process

Once a set of valid surfaces is properly generated as described above, each surface is placed

on an object plane of an optical setup similar to the one depicted in Fig. 3 to illuminate normally

a region of the surface by a spatially-limited coherent source.

Fig. 3. An optical setup for illuminating and propagating the beam reflected from

a numerically generated rough surface (BS is a beam splitter).

On the object plane, the amplitude distribution Ψ(x) of the reflected beam is calculated as:

Ψ(x) = rect (x, A) exp [i4πh(x)/λ] . (1)

In (1) a rectangle function, rect (x, A) is introduced to spatially limit the extent of the illumi-

nating source on the object plane. The rectangle function is equal to one if |x | ≤ A/2, and to zero

otherwise. The parameter λ is the wavelength of the illuminating source. The plane of observation

is placed at a distancezfrom the object plane. Both planes are parallel to each other. The amplitude

of the propagated beam, ΨF (ξ), on the plane of observation with the spatial coordinate ξ (Fig. 3)

is calculated by means of the one-dimensional Fresnel diffraction integral [15] given as:

ΨF (ξ) =
1

√
iλz

exp

(
i2πz

λ

) ∞∫

−∞

Ψ(x) exp

[
iπ

λz
(x − ξ)2

]
d x. (2)

For our simulations we used A = 200 µm, λ = 0.6328 µm and z = 1 m.

The intensity distribution, I(ξ), on the plane of observation is calculated by using the amplitude

distribution given by (2) as:

I(ξ) = ΨF (ξ)ΨF (ξ)∗. (3)

In (3) the symbol ∗ represents conjugation.

Figure 4 depicts one of the normalized intensity distributions of a speckle pattern obtained

on the plane of observation.

It should be noticed that in Fig. 4 the observation window has been shifted to one side of the

origin. This shifting is introduced intentionally to avoid the contribution of ballistic photons that

could alter the statistics of the speckle patterns under study.
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Fig. 4. One of the normalized intensity distributions calculated on the plane of

observation by using the one-dimensional Fresnel diffraction integral, for the

surface depicted in Fig. 1.

It is worth mentioning that for each intensity distribution obtained on the plane of observation

we verified that the intensity histograms follow a decreasing exponential behavior in accordance

with well-known analytical equations [16].

Figure 5 depicts a plot of the autocorrelation that corresponds to the intensity distribution on

the plane of observation plotted in Fig. 4.

Fig. 5. The normalized autocorrelation for the speckle pattern plotted in Fig. 4.

To calculate a representative value of the width of the central peak of the autocorrelations

obtained avoiding possible errors of appreciation of an operator and also to automate the cal-

culations, we implemented a simple numerical method. First, the position of the central peak

maximum and the position of the first two minima at both sides of this peak are calculated.
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Then, following [16, 17] the horizontal distance between the referred two minima is taken as

the autocorrelation width.

The following four different generating functions f (x) were considered:

Generator I : f (x) = exp


−

(√
x2

L

)2α
; α = 1.2. (4)

Generator II : f (x) = exp


−

(√
x2

L

)2α
; α = 0.8. (5)

Generator III : f (x) =
[
1 +

1

N

( x

L

)2
]−N

; N = 6000. (6)

Generator IV : f (x) = J0

( x

L

)
. (7)

In (7) J0 is the Bessel function of order zero of the first kind.

The functions given by (4)–(7) were selected to achieve surfaces with the most dissimilar

statistical characteristics between them. Although it may seem unusual, a Bessel generating

function was included to magnify differences between the random surfaces.

It is important to remark that the value of a typical average speckle width anticipated as

2λz/A = 6.328 × 10−3 m [16], does not necessarily have to coincide exactly with the width of

the autocorrelation obtained as described above, 5.7 × 10−3 m in the example. The discrepancy

obviously obeys statistical reasons and is irrelevant for the statistical purposes presented here. The

fundamental factor in our study resides in performing measurements always in strictly the same

conditions. Under this assumption, the statistical parameters being measured, such as repeatability

and reproducibility, will be demonstrated as highly reliable, as confirmed by the results given in

the following sections.

3. ANOVA and gage R&R calculations

To compare the effect that results from using different generating functions f (x) along with

different correlations and different RMS roughness values, we used the four different generating

functions described in the former section, (4)–(7). For each of the generating functions we assigned

five different L values, equally spaced, ranging from 3.0 × 10−6 to 3.8 × 10−6 m. Additionally,

there are five different equally spaced RMS values ranging from 1 × 10−7 to 1.8 × 10−7 m as

indicated in Tables 1–4.

It is worth mentioning that it would be desirable to present the data arranged in a single table.

However, due to the limitation of space, the data are presented in four tables instead of only

one. Each entry in the tables represents the average autocorrelation width of 20 processes. Each

process comprises: generation of a random surface profile, reflection of the illuminating beam

from the generated surface, propagation of the reflected beam up to the plane of observation by

means of the discrete Fresnel diffraction integral, calculation of the intensity distribution on the

plane of observation and calculation of the width of the central peak of the autocorrelation of

the speckle pattern according to the method described above. Each process was carried out using

6000 pixels and took approximately one minute using a two-core computer running at 1.8 GHz

each. As indicated above, we used A = 200 µm, λ = 0.6328 µm and z = 1 m. In the following
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Table 1. Data corresponding to the generating function I.

Generating function I: f (x) = exp


−

(√
x2

L

)2α
; α = 1.2

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 6.000 6.619 6.526 5.753 5.926

1.2 6.206 5.906 6.126 5.959 6.419

1.4 6.473 5.540 6.133 6.266 6.033

1.6 6.066 6.286 5.986 6.433 5.880

1.8 6.160 6.013 5.860 5.573 6.226

Table 2. Data corresponding to the generating function II.

Generating function II: f (x) = exp


−

(√
x2

L

)2α
; α = 0.8

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 6.130 5.945 6.075 6.053 6.052

1.2 5.980 5.972 6.188 6.085 6.022

1.4 6.052 5.990 6.067 6.157 5.990

1.6 6.022 5.970 6.108 6.100 6.005

1.8 6.063 6.147 6.007 6.032 5.990

Table 3. Data corresponding to the generating function III.

Generating function III: f (x) =
[
1 +

1

N

( x
L

)2
]−N

; N = 6000

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 6.032 6.192 6.043 6.072 5.988

1.2 6.020 6.042 5.970 6.073 6.010

1.4 6.027 6.107 6.012 6.078 5.957

1.6 6.025 6.178 6.000 5.958 6.042

1.8 6.107 6.053 6.097 6.063 6.100

Tables 1–4, the averages of the autocorrelation widths corresponding to each generating function

are presented.

In each of Tables 1–4 a generating function has K = 5 columns. Each column corresponds to

a different L value. There are M = 5 rows for each generating function; each row corresponding

109



M. Cywiak, D. Cywiak, E. Yáñez: TWO-WAY ANOVA GAGE R&R WORKING EXAMPLE . . .

Table 4. Data corresponding to the generating function IV.

Generating function IV: f (x) = J0

( x
L

)

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 6.003 6.278 5.903 6.007 6.290

1.2 6.147 5.857 6.143 6.000 6.193

1.4 6.025 6.090 6.292 5.902 6.138

1.6 5.987 6.287 6.273 6.108 5.930

1.8 6.152 6.125 6.183 6.122 6.105

to a different vertical RMS height. As there are four different generating functions, we introduce

the variable NN = 4 to represent the number of generating functions or, equivalently, the number

of tables.

For the calculations, it is necessary to construct an overall single table, formed by concate-

nating each one of the above tables at the right of the other. This general table has a total of

N = NN×K = 20 columns. Under this assumption we can refer to each entry in this general table

as xp,s , where p = 1, 2, ..M and s = 1, 2, ..N . An entry xp,s in the general table can be related to

an entry in a table that corresponds to a specific generating function by the parameter denoted

as xp,q,k = xp,(q−1)K+k , where q = 1, 2, ..NN and k = 1, 2, ..K . Equivalently, in the parameter

xp,q,k the sub-indexes (p, q, k) represent an entry corresponding to an RMS value, a generating

function and an L value respectively and enables to describe the corresponding ANOVA and

R&R calculations.

We will follow the well-established ANOVA model known as “two-factor factorial with

random factors”. This is a two-way model with interactions where the parameters are chosen

randomly. This model, as indicated in [18] is stricter and more exhaustive for examining main

effects even in the presence of interactions as compared with models with fixed effects. To attain

the described two-way ANOVA, following [19], we propose:

xp,q,k = µ + αp + βq + γp,q + εp,q,k . (8)

In (8), αp , βq , γp,q , and εp,q,k are random variables with zero mean and variances σ2
α, σ2

β
,

σ2
γ , andσ2, respectively. Additionally, E{µ} = µ, where the symbol E{ . } represents an expected

value.

In the following Table 5, there are presented the required ANOVA mean value parameters.

Table 5. Mean value parameters for ANOVA.

Mean value for each
generating function

at row p

Mean column value
for each generating

function

Mean row value of
the four generating
functions at row p

Mean total value

of all the entries

yp,q =
1

K

K∑

k=1

xp,q,k XCMMq =
1

M

M∑

p=1

yp,q XRMp =
1

NN

NN∑

q=1

yp,q XMT =
1

NN

NN∑

q=1

XCMMq

In Table 6, using the data from Tables 1–4, the following required mean parameters are

obtained.
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Table 6. Required measured mean values as defined in Table 5.

1 × 10−3 m

XCMMq 6.094 6.048 6.050 6.102

XRMp 6.094 6.065 6.066 6.082 6.058

XMT 6.073

The data of Table 6 can now be used in the ANOVA sum of squares of parameters and their

corresponding mean squares given in the following Table 7.

Table 7. Definition of sum and mean of squares of parameters.

Sum of squares Mean of squares

SSA = KNN
M∑

p=1

(
XRMp − XMT

)2 MSA =
SSA

M − 1

SSB = KM

NN∑

q=1

(
XCMMq − XMT

)2 MSB =
SSB

NN − 1

SSAB = K

M∑

p=1

NN∑

q=1

(
yp,q − XCMMq − XRMp + XMT

)2 MSAB =
SSAB

(NN − 1) (M − 1)

SSE =
K∑

k=1

M∑

p=1

NN∑

q=1

(
xp,(q−1)K+k − yp,q

)2 MSE =
SSE

NN(K − 1)M

It is straightforward but lengthy to demonstrate the following relations given in Table 8 [17].

Table 8. Expected square values.

E {MSA} = σ2
+ KNNσ2

α + Kσ2
γ

E {MSB} = σ2
+ KMσ2

β
+ Kσ2

γ

E {MSAB} = σ2
+ Kσ2

γ

E {MSE} = σ2

Using Table 7 and the data from Tables 1–4 the results of the following Table 9 are obtained.

Table 9. Measured mean and sum of squares.

(m2)

SSA = 1.662 × 10−8 MSA = 4.155 × 10−9

SSB = 6.114 × 10−8 MSB = 2.038 × 10−8

SSAB = 1.273 × 10−7 MSAB = 1.060 × 10−8

SSE = 2.286 × 10−6 MSE = 2.857 × 10−8

The mean values given in Table 9 will be used in the following equations for calculating

repeatability r, reproducibility R and gage repeatability-and-reproducibility R&R:

r = σ =
√

MSE , (9)
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R =

√
σ2
β
+ σ2

γ =

√
MSB

kM
+

(M − 1)
K M

MSAB − MSE

K
, (10)

R&R =

√
σ2
+ σ2

β
+ σ2

γ =

√
MSB

kM
+

(M − 1)
K M

MSAB +
(K − 1)

K
MSE . (11)

In a special case of (10), when the data are highly concentrated around the mean, the radicand

approaches to zero or it may even be negative. In this particular case, the value assigned to R is

zero, see for example [20].

Using (9)–(11) and the data from Table 9 the following results are obtained:

Table 10. Repeatability, reproducibility and gage R&R.

r = 1.69 × 10−4 m R = 0 (Negative radicand) R&R = 1.59 × 10−4 m

The results given in Table 10 are complemented with corresponding ANOVA F-tests. The

F-distribution is given as:

F (N1, N2, x0) =
Γ

(
N1 + N2

2

)

Γ

(
N1

2

)
Γ

(
N2

2

)
(

N1

N2

) N1
2

x0∫

0

x
N1
2 −1

(
N1

N2

x + 1

) N1+N2
2

dx. (12)

Table 11 enables to compare the measured F values with their corresponding x0 values ob-

tained by means of (12), setting a confidence interval of 95%, equivalently, F(N1, N2, x0) = 0.95.

Table 11. Measured F values and their corresponding x0 values.

Measured F values Degrees of freedom F (N1, N2, x0) = 0.95

FA = MSA/MSAB = 0.3918 N1 = 4, N2 = 12 x0 = 3.260

FB = MSB/MSE = 0.7133 N1 = 3, N2 = 80 x0 = 2.719

FAB = MSAB/MSE = 0.3712 N1 = 12, N2 = 80 x0 = 1.875

Table 11 contains relevant information. The three measured F quantities are smaller than

their corresponding x0 values. As a consequence, it is not possible to reject the null-hypothesis.

Thus, we conclude that the ample differences on the characteristics of the random rough surfaces

considered do not affect the average speckle width of the propagated intensity speckle patterns

calculated by means of the Fresnel diffraction integral. Neither the autocorrelation surface length

of the rough surfaces nor their different vertical RMS heights affected the average speckle width.

This result may be attributed to the quadratic phase in the Fresnel diffraction integral as it averages,

upon propagation, the phase of the reflected beam modulated by the main structural characteristics

of the rough surfaces such as asperity, roughness and waviness spacing.

The above one-dimensional study can, in principle, be extended to two dimensions. To carry

out this task it is necessary to generate two-dimensional surfaces with random vertical heights

on the initial plane and then calculate the propagation of the reflected beam up to a plane of

observation by means of the two-dimensional discrete Fresnel diffraction integral. However, the

processing time at these conditions would dramatically increase, making it necessary to devise
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an alternative approach to obtain some insight into whether the above results are valid in two

dimensions; therefore, we made use of the following approach. We generated one-dimensional

distributions exhibiting random vertical heights arranged on the initial plane in four different

directions: 0, 45, 90 and 135 degrees as the one shown in Fig. 6. For our purposes, these

distributions may be visualized as linear slices or sub-samples of random surfaces spatially

limited on the initial plane by a circular aperture.

Fig. 6. One of the randomly generated sliced surfaces as described in the text (units in m).

We now use the two-dimensional discrete Fresnel diffraction integral to calculate the propa-

gation of the reflected beam on the sliced surfaces along one axis on the plane of observation. For

brevity, we will refer to this method as a 2D-sliced approach. Fig. 7 shows one of the obtained

intensity profiles.

In Fig. 8 there is shown a normalized autocorrelation corresponding to the profile plotted in

Fig. 7.

Fig. 7. A normalized intensity profile along one axis on the plane of observation of an illuminating

beam reflected from one of the generated surfaces obtained with the 2D-sliced approach.
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Fig. 8. A normalized autocorrelation for the speckle pattern plotted in Fig. 7.

In Tables 12–15, there are shown the speckle widths obtained using the 2D-sliced approach.

Table 12. Data corresponding to the generating function I using the 2D-sliced approach.

Generating function I: f (x) = exp


−

(√
x2

L

)2α
; α = 1.2

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 8.817 10.022 10.017 8.767 8.800

1.2 7.467 8.600 8.355 7.633 7.783

1.4 8.967 9.900 7.850 8.516 8.016

1.6 9.000 9.417 8.533 9.783 9.933

1.8 9.517 9.983 8.400 7.516 8.050

Table 13. Data corresponding to the generating function II using the 2D-sliced approach.

Generating function II: f (x) = exp


−

(√
x2

L

)2α
; α = 0.8

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 9.511 9.777 8.911 9.844 7.511

1.2 9.177 9.733 8.311 7.022 7.688

1.4 7.911 8.067 6.711 7.622 7.577

1.6 8.755 8.555 9.555 7.022 8.577

1.8 9.155 9.533 7.377 9.200 9.311
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Table 14. Data corresponding to the generating function III using the 2D-sliced approach.

Generating function III: f (x) =
[
1 +

1

N

( x
L

)2
]−N

; N = 6000

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 8.528 8.444 9.244 8.422 8.111

1.2 9.999 8.999 8.622 7.555 9.333

1.4 8.733 9.178 8.200 7.244 9.755

1.6 8.578 7.955 9.489 10.155 7.577

1.8 8.111 10.012 9.799 8.577 8.977

Table 15. Data corresponding to the generating function IV using the 2D-sliced approach.

Generating function IV: f (x) = J0

( x
L

)

L = 3.0 10−6 (m) L = 3.2 10−6 (m) L = 3.4 10−6 (m) L = 3.6 10−6 (m) L = 3.8 10−6 (m)

Roughness
Speckle width. 1 × 10−3 (m)

1 × 10−7 (m)

1.0 9.867 8.422 8.533 7.133 10.000

1.2 9.222 9.177 9.133 8.022 8.577

1.4 9.044 8.000 9.200 8.889 8.777

1.6 7.599 7.911 8.822 7.622 8.755

1.8 7.600 8.999 8.555 7.600 9.933

It should be noticed that the speckle widths in Tables 12–15 are greater than those obtained in

Tables 1–4. This result is in accordance with [15], where it is analytically demonstrated that for the

case of surfaces with random Gaussian distributions, spatially limited by a circular aperture, the

average speckle widths are approximately 1.2 times greater than the widths of the one-dimensional

case.

The processing time for each two-dimensional calculation took approximately 4 minutes and

each entry in a table was obtained by averaging three of these calculations. Tables 16–19 show

the obtained ANOVA and R&R results.

Table 16. Mean values obtained as defined in Table 5 using the 2D-sliced approach.

1 × 10−3 m

XCMMq 8.785 8.496 8.784 8.616

XRMp 8.934 8.520 8.408 8.679 8.810

XMT 8.6704

Table 19 reveals that the three measured F values are smaller than their corresponding x0

values. Thus, similarly to the one-dimensional case, it is not possible to reject the null-hypothesis.

As a consequence, it appears that the aforementioned one-dimensional results can be extended to

two dimensions.
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Table 17. Measured mean and sum of squares obtained with the 2D-sliced approach.

(m2)

SSA = 3.612 × 10−6 MSA = 9.029 × 10−7

SSB = 1.485 × 10−6 MSB = 4.949 × 10−7

SSAB = 1.229 × 10−5 MSAB = 1.024 × 10−6

SSE = 5.479 × 10−5 MSE = 6.848 × 10−7

Table 18. Repeatability, reproducibility and gage R&R obtained with the 2D-sliced approach.

r = 8.28 × 10−4 m R = 2.16 × 10−4 m R&R = 8.55 × 10−4 m

Table 19. Measured F values and their corresponding x0 values obtained with the 2D-sliced approach.

Measured F values Degrees of freedom F(N1, N2, x0) = 0.95

FA = MSA/MSAB = 0.8816 N1 = 4, N2 = 12 x0 = 3.260

FB = MSB/MSE = 0.7227 N1 = 3, N2 = 80 x0 = 2.719

FAB = MSAB/MSE = 1.4956 N1 = 12, N2 = 80 x0 = 1.875

4. Conclusions

We have presented an illustrative working example of an ANOVA gage R&R study for

speckle statistics. Four types of random rough surfaces were generated with different statistical

characteristics. The intensity speckle patterns produced by the reflection of a spatially-limited

coherence illuminating beam on the generated surfaces were calculated on a plane of observation

by means of the discrete Fresnel diffraction integral. We verified that, on the plane of observation,

all the accomplished intensity histograms exhibited the well-known exponentially decreasing

behavior. To assure that all the measurements were performed in strictly identical conditions an

automated method was implemented. The ANOVA and R&R results showed satisfactory values

of repeatability and gage-reproducibility. The corresponding F factors were adequate within a

confidence interval of 95%. Thus, the ANOVA and R&R results did not give any evidence for

rejecting the null hypothesis. In consequence, random rough surfaces exhibiting different random

characteristics do not appear to affect the average speckle width or the exponential decreasing

behavior.
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