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Abstract: In this paper, we propose sensorless backstepping control of a double-star in-
duction machine (DSIM). First, the backstepping approach is designed to steer the flux and
speed variables to their references and to compensate uncertainties. Lyapunov”s theory is
used and it demonstrates that the dynamic tracking of trajectories tracking is asymptotically
stable. Second, unfortunately, this law control called sophisticated is a major problem which
leads to the necessity of using a mechanical sensor (speed, load torque). This imposes an
additional cost and increases the complexity of the montage. In practice, this variable is
unknown and its measurement is expensive. To restrain this problem we estimate speed
and load torque by using a Luenberger observer (LO). Simulation results are provided to
illustrate the performance of the proposed approach in high and low variable speeds and
load torque disturbance.
Key words: backstepping control, double star induction machine (DSIM) drive, Luenberger
observer

1. Introduction

The growth of electrical energy consumption and high-power electrical applications, such as
rail traction or marine propulsion, have led to the use of polyphase machines (whose number
of phases is greater than three) to segment the power. Polyphase machines offer an interesting
alternative to reducing stress on switches and windings. Indeed, the multiplication of the number
of phases allows for splitting of the power and thus reduction of the switched voltages with a given
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current. In addition, these machines can reduce the amplitude and increase the frequency of torque
ripple allowing the mechanical load to filter more easily. Thus, the multiplication of the number
of phases offers high reliability by making it possible to operate with one or more faulty phases.
However, the dynamic structure is strongly nonlinear and the existence of strong coupling between
the torque and the flux creates a difficulty of control [1]. Among the most common machines
of multiphase machines is the Asynchronous Machine Double Star (DSIM). In the conventional
configuration, two identical three-phase windings constituting the two stars share the same stator
and are shifted by an electric angle. They have the same number of poles and are powered at the
same frequency. The structure of the rotor remains identical to that of a three-phase machine, so
it can be either squirrel cage or wound to form a three-phase winding. Such a machine has the
advantage, besides the power segmentation and the interesting redundancy that it introduces, it
significantly reduces the electromagnetic torque ripple and the rotor losses [2].

Modern control techniques lead to the control of asynchronous machines comparable to that
of the DC machine. These techniques include direct torque control, state feedback control, vector
control, and adaptive control. These techniques use both conventional and modern regulators that
make the aforementioned controls robust.

The sliding mode control presented in [2] was used for the variable speed drive of the dual
star asynchronous machine. The control thus constructed makes it possible to ensure, in addition
to well tracking performance, a fast dynamic and a short response time. However, this control law
represents some major disadvantage related to the use of the switching function in the control
law to ensure the passage of the approach phase of the slip. This gives rise to the phenomenon of
chatter which consists of abrupt and rapid variations of the control signal.

Adaptive control which is more robust has been used in [3, 4] as a proposed solution to the
problem of trajectory tracking and browsing phenomenon as well as mainly for the adaptation of
the gains of the fuzzy or neural regulator.

The fuzzy regulator has been proposed in [4, 5], for the adjustment of the sliding surface of
a regulator by sliding mode which guarantees to give a certain robustness. The results obtained
in simulation show that the performance is much better than that obtained with a sliding mode.
Fuzzy logic has been a real success in the control of dual star asynchronous machines [5, 6].

The DTC control is less sensitive to parametric variations of the machine and allows one
to obtain a precise and fast torque dynamics [7]. In most of these new strategies, hysteresis
comparators are discarded and replaced by new controllers (microprocessor, microcontroller,
DSP). These strategies have been proposed in order to improve the performance of the conventional
control and to allow the control of the switching frequency of the inverter.

The regulation of the speed of induction motors by Neural Networks control presented in [8],
is to improve the signal quality of the speed (band width smaller) and to reject the disturbance
(load torque). However, this robustness decreases if the parametric variations are very important.

On the other hand the combination of these approaches as neuro-fuzzy at [8], adaptive blur
at [4, 9], adaptive with DTC at [7] and the ANFIS controller (Adaptive Network Fuzzy Inference
System) in [8] gives better results in performance, robustness, pursuit and stability. It also helps
to achieve a better response time.

In fact, it can be concluded that each type of control can be advantageous when used in one
direction and disadvantageous when used in another, because of its dynamic structure (DSIM) is
strongly non-linear and coupled. The situation changes with the appearance of the theory of non-
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linear systems in control theory where the researchers are interested in new control techniques
that allow for approaching large systems with a systematic approach. Among these methods is
the backstepping control method, which was introduced during the 1990s by several researchers,
Kokotovic is quoted. The application of the latter is found, for example, in the field of aeronautics
in [10], and in the field of robotics in [10, 11], and electrical machines [12, 13], and also for power
network power regulation in [14].

The coupling between the backstepping approach and sliding mode control in [10], and use
of the neural network for induction motors in [15, 16], have given some satisfactory results by
ensuring the system convergence (stability) even if the settling time considered is a little bit longer
and is not practical in implementation (complex) [17, 18].

The majority of the control laws of asynchronous machines such as vector and non-linear
commands require the measurement not only of the stator currents (possibly stator voltages) but
also of the mechanical speed. Moreover, the load torque is a measurable disturbance but the
price of the sensor often makes this measurement unrealistic. The control without the mechanical
sensor (speed, load torque) has become a major concern in the industry.

Among several approaches without mechanical sensor of the asynchronous machine used
neural networks [15, 16]. Another approach is based on a model of behavior of the machine
which is based on observation techniques from the automatic extended Kalman filters in [17],
extended Luenberger filters in [17, 18], adaptive methods in [19], and non-linear observers such
as, for example, second order sliding mode observers [20].

All the traditional approaches to speed sensorless vector control use the method of flux and slip
estimation using stator currents and voltages but that speed estimations are erroneous, particularly
the ones related to the low-speed range. MRAS (Model Reference Adaptive System) techniques
are also used to estimate the speed of an induction motor [21]. These also show speed errors in
the low-speed range and settle to an incorrect steady-state value. The extended Kalman filter has
been used for the speed sensorless vector control of an induction motor, but it remains the most
sensitive since it requires the exact values of the machine parameters [22].

This paper is organized as follows: the field - oriented dual star induction motor (DSIM)
is described in Section 2, Section 3 reviews the backstepping control design, in Section 4 the
estimation of the rotor speed and load torque using a developed Luenberger observer is discussed
(using only electrical measurements). Finally, the simulation results and conclusion are given in
Section 5.

2. Backstepping control of the dual stator asynchronous motor

The difficulty in controlling a dual stator asynchronous machine lies in the fact that there is
strong coupling between the input and output variables and the internal variables of the machine
such as flux, torque and speed. The types of controls as conventional control methods such
as torque control by frequency slip and the flux ratio of voltage to frequency, cannot ensure
significant dynamic performance. The development of electronics at current level, in the use of
static and semi-conductive converters, has allowed the application of new control algorithms such
as the vector control (identical to a DC machine with separated excitation) which is based on the
decoupling of flux and torque in AC machines. The principle of the vector control called control
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by flux orientation, obtained by the adjustment of torque by a component of the current and the
flux by the other component, that is to say orients another of the stator flux components, rotor or
the gap on a reference axis rotating at the rotating field speed. The vector control leads to high
industrial performance of asynchronous drives. If we make the rotor flux coincide with the axis
(d) of the frame linked to the rotating field and after the rotor flux orientation by:

Φrd = Φrd, Φrd = 0, (1)

where the instantaneous value of the electromagnetic torque is given by:

Cem = p
Lm

Lm + Lr

(
Iqs1 + Iqs2

)
Φr . (2)

So the main objective after [17, 18] is to produce reference voltages for the static voltage
converters supplying the (DSIM). Note that X∗ for reference represents the desired reference
trajectories for X (torque, flux, voltages and currents). Applying the orientation of the rotor flux
on the equations system of the machine leads to the equation [1, 18] with:
ω∗sr , which is the slip angular frequency; Tr =

Lr

Rr
which denotes the rotor time constant and

ω∗s = ω
∗
sr + ωr , the final expressions of the slip speed are:

ω∗sr =
Rr Lm

Lm + Lr

(
I∗qs1 + I∗qs2

)
. (3)

Consequently, the electrical and mechanical equations for the system after these transforma-
tions in the space control may be written as follows:

d
dt

Ids1 =
1

Ls1

[
Vds1 − Rs1Ids1 + ω

∗
s

(
Ls1Iqs1 + TrΦ∗rω

∗
sr

)]
, (4)

d
dt

Iqs1 =
1

Ls1

[
Vqs1 − Rs1Iqs1 − ω∗s

(
Ls1Ids1 + Φ

∗
r

)]
, (5)

d
dt

Ids2 =
1

Ls1

[
Vds2 − Rs2Ids2 + ω

∗
s

(
Ls2Iqs2 + TrΦ∗rω

∗
sr

)]
, (6)

d
dt

Iqs2 =
1

Ls1

[
Vqs2 − Rs2Iqs2 − ω∗s

(
Ls2Ids2 + Φ

∗
r

)]
, (7)

d
dt
Ω =

1
J

[
pc1

(
Iqs1 + Iqs2

)
Φ
∗
r − K fΩ − Cr

]
, (8)

d
dt
Φr = −c2Φr + Rrc1 (Ids1 + Ids2) , (9)

where the factors: c1, c2 are given by

c1 =
Lm

Lm + Lr
and c2 =

Rr

Lm + Lr
.

Rr is the rotor resistance; Rs1,2 is stator’s 1 and 2 resistance; Lm represents the mutual inductances;
Ls1,2 is stator’s 1, and 2 self-inductances; J is the moment of inertia; K f is the viscous friction
coefficient; P represents the pole-pair number; Lr is the rotor self-inductance.
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The rotor flux are estimated by the following two equations: (with the sign (ˆ) that represents
the estimated value either by the estimator or the observer):

d
dt
Φ̂dr = Rrc1 (Ids1 + Ids2) + ω∗sr Φ̂q + c2Φ̂dr , (10)

d
dt
Φ̂qr = Rrc1

(
Iqs1 + Iqs2

)
+ ω∗sr Φ̂dr + c2Φ̂qr . (11)

The rotor fluxes module is calculated as follows:

Φ̂r =

√
Φ̂2

dr
+ Φ̂2

qr . (12)

3. The step of backstepping control

The backstepping control technique provides a systematic method for designing a controller
for nonlinear systems [19]. The idea is to compute a control law in order to guarantee stability
based on Lyapunov’s theory.

The method consists in breaking up the system into a set of decreasing nested subsystems. The
calculation of the Lyapunov function is then performed recursively from the inside of the loop.
The objective of this technique is to calculate, at each stage of the process, a virtual command
which is thus generated to ensure the convergence of the system towards its equilibrium state [20].
This can be achieved from the functions of Lyapunov which ensure, step by step, the stabilization
of each synthesis step. Unlike most other methods, backstepping has no nonlinearity constraints.

Lyapunov’s theory is important for the stability of dynamical systems and the control theory,
where this stability is based on choosing the Lyapunov candidate function V (x) ≺ 0 (a positive
scalar function) for the system state variables, then on choosing the law of control which will
make this function V̇ (x) ≺ 0, for all x , 0, and V̇ (0) = 0.

If the both conditions are verified (V (x) ≺ 0, V̇ (x) ≺ 0), the system is globally asymptotically
stable, as: t → +∞ [16].

3.1. First step “speed loop, flux loop”
In this step, the objective is to force the rotation speed ω, to follow a given reference ωref as

well as possible. The first error variable e1 is defined as the error between the speed of rotation
and the speed desired by:

e1 = ωref − ω̂. (13)

By derivation, we obtain: ė1 = ω̇ref − ˙̂ω.
To ensure the operation of the machine in the linear regime (out of saturation), a flow control

is also carried out such that Φr follows the imposed trajectory Φref.
To achieve this goal we pose: e2 = Φ

∗
r − Φ̂r .

By derivation, we obtain: ė2 = Φ
∗
r − ˙̂
Φr .

The first Lyapunov candidate function is defined by:

V1 =
1
2

(
e2

1 + e2
2

)
.
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By derivation, we obtain:
V̇1 = e1ė1 + e1ė2 .

V̇1 = e1

[
ωref −

1
J

(
pc1

(
Iqs1 + Iqs2

)
Φ
∗
r + K fω + Ĉr

)]
+ e2

[
Φ
∗
r + c2Φ̂r − Rrc1 (Ids1 + Ids2)

]
.

According to the Lyapunov stability, the origins e1 = 0 and e2 = 0 of the system are
asymptotically stable when V̇1 is defined negative.

We then define
(
Iqs1 + Iqs2

)
and (Ids1 + Ids2) as the virtual control. Indeed, for an expert in

the field of electrical machines, this choice of virtual control is normal, that is to say, one looks for
the value that the virtual control must take so that the origin is stable, and the stabilizing virtual
function is determined so that:

V̇1 = −K1e2
1 − K2e2

2 ≺ 0 with K1 ≺ 0, K2 ≺ 0.

We find:

I∗qs1 + I∗qs2 =
J

pc1Φref

[
ωref +

K f

J
ω̂ +

Ĉr

J
+ K1e1

]
. (14)

I∗ds1 + I∗ds2 =
J

c1Lm

[
c2Φ̂r + Φ

∗
r + K2e2

]
, (15)

where: I∗
qs1 + I∗

qs2 and I∗
ds1 + I∗

ds2, represent the references of the components of the current.

3.2. Second step “currents loop”
For this step, our goal is the elimination of the current regulators by the calculation of the

control voltages. Other errors concerning the components of the stator current and their references
are defined as:

e3 = I∗qs1 − Iqs1 , e4 = I∗ds1 − Ids1 , e5 = I∗qs2 − Iqs2 , e6 = I∗ds2 − Ids2 .

The dynamics of errors is given by:

ė3 = İ∗qs1 − İqs1 = İ∗qs1 −
1

Ls1

(
Vqs1 + γ1

)
,

ė4 = İ∗ds1 − İds1 = İ∗ds1 −
1

Ls1
(Vds1 + γ2) ,

ė5 = İ∗qs2 − İqs2 = İ∗qs2 −
1

Ls2

(
Vqs2 + γ3

)
,

ė6 = İ∗ds2 − İds2 = İ∗ds2 −
1

Ls2
(Vds2 + γ4) ,

with:

γ1 = −Rs1Iqs1 − ω∗s
(
Ls1Ids1 + Φ

∗
r

)
,

γ2 = −Rs1Ids1 − ω∗s
(
Ls1Iqs1 + TrΦ∗rω

∗
sr

)
,
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γ3 = −Rs2Iqs2 − ω∗s
(
Ls2Ids2 + Φ

∗
r

)
,

γ4 = −Rs2Ids2 − ω∗s
(
Ls2Iqs2 + TrΦ∗rω

∗
sr

)
.

The new function of Lyapunov is given by:

V2 =
(
V1 + e2

3 + e2
4 + e2

5 + e2
6

)
,

V̇2 = V1 +
(
−K3e2

3 − K4e2
4 − K5e2

5 + K6e2
6

)
,

V̇2 =
(
V̇1 + e3ė3 + e4ė4 + e5ė5 + e6ė6

)
.

We look for the value that must be taken by the reference control
(
V ∗
ds1,V

∗
qs1,V

∗
ds2,V

∗
dq2

)
for

the origin to be stable. The stabilizing virtual function is determined so that:

V̇2 = V̇1 +
(
−K3e2

3 − K4e2
4 − K5e2

5 + K6e2
6

)
≺ 0.

With K3, K4, K5, K6 being positive gains, the stator voltage can be rewritten as:

V ∗qs1 = Ls1
(
K3e3 − γ1 + İ∗qs1

)
, (16)

V ∗ds1 = Ls1
(
K4e4 − γ2 + İ∗ds1

)
, (17)

V ∗qs2 = Ls2
(
K5e5 − γ3 + İ∗qs2

)
, (18)

V ∗ds2 = Ls2
(
K6e6 − γ4 + İ∗ds2

)
. (19)

4. Proposed Luenberger observer developed for speed
and load torque sensorless vector control

4.1. Equation of observer
The purpose of the observer is to provide at every moment the state vector value or aevaluation

of it. In general, we consider that we always have system state equations. The trivial case consist
in performing open loop implementation, as illustrated in Figure 1, and it is based on a model of
the system, called the estimator, operating in an open loop. The complete structure of the observer
includes a feedback loop to correct the error between the output of the system and that of the
model.

By hypothesis, we suppose that the concerned observed system is completely observable and
completely controllable. It is defined by the equation of state:

Ẋ = AX + Bu

y = CX + Du
, (20)

with:

XT = [ϑ x Cr ] , A =

0 1 0
0 a1 a2
0 0 0

 , BT = [0 a3 0] , C = [1 0 0], D = 0,
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Observed system

∫
 +

++

+

Fig. 1. Block diagram of the proposed Luenberger observer

u =
(
Iqs1 + Iqs2

)
, a1 = −

K f

J
, a2 = −

1
J
, a2 =

2LmΦ
∗
r

J (Lm + Lr )
.

The observer of Luenberger is defined as a dynamic system whose state vector is denoted by
Z of the dimension (l, 1) and whose inputs correspond, on the one hand, to the input u of the
dimension (m, 1) and the output y of the observing system of the dimension (r , 1). The equations
of the observer are:

Ż = F Z + Hu + Gy (to study error stability).

X̂ = QZ + Ry + Su (to estimate X).

We impose the relation: Z = LX + ε, where: ε = X − X̂ , the error of estimations and we want
the output X̂ to be equal to X . After a shortest transient possible, it comes as:

Ż = FLX + Fε + Hu + GCX + GDu.

On the other hand: Ż = LẊ + ε which leads to:

[LA − FL − GC]X + [LB − H − GD]u + ε̇ = Fε. (21)

To guarantee the independence of the observed system state and the input, the conditions of
Luenberger are satisfied: 

L A − FL − GC = 0
LB − H − GD = 0

. (22)

Then we obtain the state equation of the error: ε̇ = Fε.
The dynamic of the error does not depend of the input u. However, the error tends to zero, it

is enough that F is stable. The matrix F can be chosen but must have stable modes faster than
those of the steady state (the pole placement technique has been used), the output equation of the
observer is written as:

X̂ = QZ + Ry + Su = [QL + RC]X + [RD + s]u.
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To guarantee that the output x̂ is equal to x in the steady state, it is necessary to impose two
conditions: 

QA − GRC = I

RD − S = 0
. (23)

4.2. Observer under noise measurement
In the case, where the output y is disturbed by the additive noise ξ we can see the behavior of

the proposed observer as:
– Taking the basic equation of the system and adding ξ the output:


Ẋ = AX + Bu

y = CX + Du + ξ
. (24)

– The observer will be: 
Ż = F + Hu + Gy

X̂ = QZ + Ry + Su
.

From the relation: Z = X L + ε, and taking into account additive noise on the output of the
observed system, Equation (21) becomes:

[LA − FL − GC]X + [LB − H − GD]u + ε̇ = Fε + Gξ. (25)

Taking into account the conditions of Luenberger, it comes to:

ε̇ = Fε + Gξ .

So with the presence of noise the error of estimations can’t be equal to zero, which decreases
the performance of the observer. It is even possible to filter the output in order to eliminate the
noise, but this filter can also eliminate its own information of the dynamic of the system.

5. Simulation and interpretation of results

A series of simulation tests were carried out on the backstepping approach of a (DSIM) drive,
based on a Luenberger observer. Simulations have been realized under the Matlab environment.
The parameters of the used of dual-star induction motor are indicated in Table 2. See Figure 2, the
results presented in this article were made with the following synthesis parameters: the desired
flux is fixed at Φ∗r = 1 W b and K1 = K2 = 500, K4 = 300, K5 = K6 = 200.

The output directly supplies the first component of the state system vector y = ϑ (estimated),
and the matrix C of dimension (1, 3). We deduce successively: L is the dimension (2, 3), the state
vector of the observer is of dimension 2, F is the matrix of dimension (2, 3) and the matrices G,
H , Q, R are, respectively, of dimensions (2, 1), (2, 1), (3, 2), (3, 1).

To facilitate, we can write F in the following observable form:

F =
[
− f1 1
− f0 0

]
.
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Fig. 2. General structure of the order by backstepping control with Luenberger observer of the (DSIM)

From the equation’s solution det(λI − F) = 0, the characteristic equation of the observer is
written as:

λ2 + f1λ + f0 = 0.

The matrix A can be calculated in the point (s = λ) by the solution of the equation:
det(λI − F) = 0, this way we obtain: λ = 0.01 (s: derives Laplace).

We can chose −305, −70, for F matrix (choosing self-mode faster than modes of A (system)),
so that:

(λ + 305)(λ + 70) = λ2 + f1λ + f0.

We obtain: f1 = 375, f0 = 21 350.
The observer equations are:

Ż =
[
− f1 1
− f0 0

]
Z +

[
h1
h2

] (
Iqs1 + Iqa2

)
+

[
g1
g2

]
y

and 
ϑ̂l
ω̂

Ĉr

 =


a b
c d
e f

 Z +


r1
r2
r3

 y.
Since the matrix D is zero, we deduce directly that S is equal to zero.
From the relation: Z = LX + ε we can choose the matrix L in the following form:

L =
[

L0 1 L2
L1 L3 1

]
.
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Solving the Luenberger equation leads to

L2 =
1 − a1

f1
, L3 =

− f0L0

a2
, L0 = L3 − a1 − f1 ,

g0 = f1L0 − L1 , g1 = f0L0 ,

H = LB =
[

a3
a3L3

]
[QR] =

[
L
C

]−1

.

The first two columns correspond to Q and the last column to R.
Thus, the no-load start-up of the (DSIM) is performed and then the load torque step of

Cr = 14 Nm is applied at a time of t = 1−2.5 s. At t = 2.5 s the load is eliminated. The speed
reference is 250 rad/s until the time t = 4 s.

Figure 3 shows the actual and observed velocity curves. We note that the speed follows
its reference. For the curve of the load torque, it is noted that the observation error is greater
at the start-up since there are friction forces. However, the observer quickly converges, the
electromagnetic torque achieves a significant peak at the startup and also the components of the
current Iqs , see Figure 5, the signals follow their references and finally in Figure 4 the shape of
the components of the rotor flux shows that the decoupling still maintains.

The results obtained for the application of the backstepping command by the Luenberger
observer, show a clear improvement in performance, especially to the point where the load value

Fig. 3. Speed and torques responses using Luenberger observer

Fig. 4. Load torque and rotor flux responses using Luenberger observer
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Fig. 5. Stator current responses using
Luenberger observer

that was used by the control is unmeasured (unobserved). This improvement is reflected in the
quality of the speed signal, as well as in the almost total rejection of the disturbance (load torque).

5.1. Robustness test
5.1.1. Robustness of the observer for low speed

In order to evaluate the performance of the observer, especially when the machine (DSIM)
works in low speed, we have:

In the start stage, the load torque is maintained at zero, the speed of the machine reaches
20 rad/s and is held constant still when t = 3 s. So the load is applied between 1.5 s and 2.5 s.
This first stage allows one to test and evaluate the performance and the robustness of the observer
in low speed and nominal load (14 Nm).

At t = 2 s the machine accelerates steadily to achieve 200 rad/s), then at t = 3.5 s, we set the
load to zero. This second stage is to test the behavior the machine (DSIM) during a big transition
of speed, and robustness in high speed. Then we quickly decelerate the machine to 30 rad/at
t = 4 s and maintain it steady at t = 6 s.

The obtained results show two terms:
In the term of trajectory following: the machine speed in Figure 6 follows correctly its reference

speed. It shows only a small static gap during the startup. The same conclusion is reached for the
load torque estimated in Figure 7.

In the term of noise rejection: the torque is well rejected, especially in low speed. Otherwise,
a small gap appears during the law speed of the loaded machine (Figure 6: between 1.5 and 3.5 s).

Fig. 6. Speed and torque responses of the machine with application at the backstepping command
during low speed
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Fig. 7. Load torques and rotor flux responses of the machine at the application of the backstepping command
during low speed

5.1.2. Robustness with respect to the variation rotor resistance
We study the robustness of the backstepping control based on a Luenberger observer opposite

to the variation of the rotor parameters of the engine. The analysis of the robustness of control
is explored as opposed to the variation of resistance the Rr of the engine according to the
robustness tests presented in Figure 8. We note the insensitivity of the backstepping control
with the Luenberger observer facing the variation of the rotor resistance Rr of the dual star
asynchronous machine.

Fig. 8. Dynamic response of the machine with the application of the backstepping command during robust-
ness tests with respect to rotor resistance Rr
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6. Conclusion

In this paper, we used the backstepping recursive command with a Luenberger observer
of the speed and torque resistance for the control of a dual-star asynchronous machine. It can
clearly be seen that the development of the proposed robust control law has been applied. To
avoid the problem of the persecutory effects of speed sensors and the resistant torque, a developed
Luenberger observer has been proposed. The results obtained in simulation are very close to those
obtained using a speed sensor, and as a perspective, it would be interesting to add an estimator
for the rotor resistance, and developing the observer under noise.

Appendix 1

Table 1. Nomenclature of the parameters DSIM model

DSIM Double-star induction motor

IFOC Indirect field-oriented control

DFOC Direct field-oriented control

PI Proportional and integral

MRAC Model reference adaptive control

FLC Fuzzy logic controller

DTC Direct Torque Control

DSP Digital Signal Processor

LO Luenberger observer

ANFIS Adaptive Network Fuzzy Inference System

Vds, Vqs, Vdr, Vgr Stator and rotor voltages d−q axis components

Ids, Iqs, Idr, Igr, Iqr Stator and rotor currents d−q axis components

Φd, Φr, Φs Stator-rotor flux

Φd, Φq Stator flux d−q axis components

ωs, ωr, ω
∗
sr Stator and rotor pulsation respectively and speed sleep reference

Φ∗r Rotor flux control reference

Rs, Rr Stator-rotor resistance

Cr Load torque

ω Mechanical speed

Cem Electromagnetic torque

Ls, Lr, Lm Stator- and rotor inductance, mutual inductance respectively

J Total inertia

P Number of pole pairs

K f Friction coefficient

ϑs Angle between stator and rotor flux
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Appendix 2

Table 2. Machine parameters

Parameter name Symbol Value Unit

Stator resistances Rs1 = Rs2 = Rs 3.72 Ω

Rotor resistance Rr 3.72 Ω

Stator self-inductances Ls = Ls1 = Ls2 0.022 H

Rotor self-inductance Lr 0.006 H

Mutual inductance Lm 0.3672 H

Moment of inertia J 0.0662 Kg·m2

Viscous friction coefficient K f 0.001 N·m/rad

Supply frequency f 50 Hz

Pole pairs number p 1 /
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