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Abstract. In the paper a new, state space, non integer order model of an one-dimensional heat transfer process is proposed. The model uses a new
operator with Mittag-Leffler kernel, proposed by Atangana and Beleanu. The non integer order spatial derivative is expressed by Riesz operator.
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1. Introduction

The modeling of processes and phenomena hard to analyse with
the use of other tools is one of main areas of application non
integer order calculus. Non integer models for many physi-
cal phenomena were presented by various Authors, for exam-
ple [3, 4, 6, 7, 22, 27]. Analysis of anomalous diffusion problem
with the use of fractional order approach and semigroup theory
was presented for example by [23]. An observability problem
for fractional order systems was presented for example by [11].
Minimal energy control for FO descriptor systems was analysed
for example by [24].

Heat transfer processes can also be modeled with the use
of non integer order approach. This problem has been inves-
tigated for example by [1,5,14,15]. The use of Caputo-Fabrizio
operator in modeling of heat transfer processes was discussed
by [25], the use operators with non singular kernel to modeling
of thermal processes was deeply analysed in paper [2].

This paper is intented to propose and analyse a new, state-
space model for heat transfer process in one dimensional plant.
The considered model derives directly from time-continuous
model given by [19] and [20] after replacing the Caputo (C) op-
erator by Atangana-Baleanu (AB) operator. This operator was
proposed by [2], it was presented also by [12], its use to model-
ing of heat transfer was considered for example by [25]. An in-
teresting collection of recent results discussing the use of AB
operator in modeling of different physical phenomena can be
found in [8]. The analytical solution of the Christov diffusion
equation is given in [26].

The paper is organized as follows: preliminaries describe
the Atangana-Baleanu operator and its Laplace transform. Next
the considered experimental heat plant and its time-continuous,
fractional order, state space model using C operator is given.
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Furthermore the passing to AB model is presented and elemen-
tary properties of the proposed model: spectrum decomposition
and convergence are analyzed. The analytical formula of the
step response is also given and proved. Finally the proposed
results are compared to the experimental results.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a non integer-order, integro-differential operator. It was given
for example by [4, 10, 13, 22]:

Definition 1. (The elementary non integer order operator)
The non integer-order integro-differential operator is defined as
follows:

aDα
t f (t) =




dα f (t)
dtα α > 0

f (t) α = 0
t∫

a

f (τ)(dτ)α α < 0

. (1)

where a and t denote time limits for operator calculation, α ∈R
denotes the non integer order of the operation.

The fractional-order, integro-differential operator can be de-
scribed by different definitions, given by Grünwald and Let-
nikov, Riemann and Liouville (RL) and Caputo (C). In this pa-
per the C definition is applied (see for example [4, 10, 13, 22]):

Definition 2. (The Caputo definition of the FO operator)

C
0 Dα

t f (t) =
1

Γ(M−α)

∞∫

0

f (M)(τ)
(t − τ)α+1−M dτ. (2)

where M −1 < α < M denotes the non integer order of opera-
tion and Γ(..) is the Gamma function.
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For the Caputo operator the Laplace transform can be defined
(see for example [9]):

Definition 3. (The Laplace transform for Caputo operator)

L (C0 Dα
t f (t)) = sα F(s), α < 0

L (C0 Dα
t f (t)) = sα F(s)−

M−1

∑
k=0

sα−k−1
0Dk

t f (0),

α > 0, M−1 < α ≤ M ∈ Z.

(3)

Consequently, the inverse Laplace transform for non integer
order function is expressed as follows ( [13]):

L −1[sα F(s)] = 0Dα
t f (t)+

M−1

∑
k=0

tk−1

Γ(k−α +1)
f (k)(0+)

M−1 < α < M, M ∈ Z.
(4)

A fractional-order linear state space system is described as:

0Dα
t x(t) = Ax(t)+Bu(t),

y(t) = Cx(t),
(5)

where α ∈ (0,1) denotes the fractional order of the state equa-
tion, x(t) ∈ RN , u(t) ∈ RL, y(t) ∈ RP are the state, control and
output vectors respectively, A, B, C are the state, control and
output matrices, respectively.

The fractional order derivative Atangana-Baleanu operator is
obtained via replacing the exponential kernel in the Caputo-
Fabrizio (CF) operator by the Mittag-Leffler kernel. It is defined
using the C or RL definition of fractional order derivative. Us-
ing these definitions we obtain the Atangana-Baleanu-Caputo
(ABC) or Atangana-Baleanu-Riemann (ABR) operator respec-
tively [2]:

Definition 4. (The Atangana-Baleanu-Caputo (ABC) operator)

ABC
aDα

t ( f (t)) = Mα

t∫

a

f ′(x)Eα

(
−α

(t − x)α

1−α

)
dx. (6)

where Eα(..) is the one parameter Mittag-Leffler function, Mα
is the normalization function equal:

Mα = 1−α +
α

Γ(α)
. (7)

In (7) Γ(..) is the Gamma function.

Definition 5. (The Atangana-Baleanu-Riemann (ABR) ope-
rator)

ABR

aDα
t ( f (t)) = Mα

d
dt

t∫

a

f (x)Eα

(
−α

(t − x)α

1−α

)
dx. (8)

where Eα(..) is the one parameter Mittag-Leffler function, Mα
is the normalization function expressed by (7), Γ(..) is the
Gamma function.

The Laplace transforms for the ABC and ABR derivatives
are as follows:

Definition 6. (The Laplace transform of the ABC operator)

L {ABC
aDα

t ( f (t))}(s) = Mα

1−α
sα{ f (t)}(s)− sα−1 f (0)

sα +
α

1−α

. (9)

Definition 7. (The Laplace transform of the ABR operator)

L {ABR
aDα

t ( f (t))}(s) = Mα

1−α
sα{ f (t)}(s)

sα +
α

1−α

. (10)

For the homogenous initial condition: f (0) = 0 both Laplace
transforms are equal:

L {ABR
aDα

t ( f (t))}(s) = L {ABC
aDα

t ( f (t))}(s). (11)

The non integer order spatial derivative was given by Riesz
and it has the following form (see for example [28]):

Definition 8. (The Riesz definition of FO spatial derivative)

∂ β Θ(x, t)
∂xβ =−rβ

(
0Dβ

x Θ(x, t)+x Dβ
1 Θ(x, t)

)
, (12)

where:
rβ =

1

2cos
(

πβ
2

) . (13)

In (12) 0Dβ
x and xDβ

1 denote left- and right-side Riemann-
Liouville derivatives, defined as underneath:

0Dβ
x Θ(x, t) =

1
Γ(2−β )

∂
∂x

x∫

0

Θ(ξ , t)dξ
(x−ξ )β−1 , (14)

xDβ
1 Θ(x, t) =

1
Γ(2−β )

∂
∂x

1∫

x

Θ(ξ , t)dξ
(ξ − x)β−1 . (15)

In (14) and (15) Γ(..) denotes the Gamma function, β > 1 is
the non integer derivative order with respect to length.

3. The non integer order, state space model
using Caputo operator

The simplified scheme of the considered heat plant is shown in
Fig. 1. It has a form of a thin copper rod heated with an electric
heater of the length ∆xu located at one end of rod. An output
temperature is measured using Pt-100 RTD sensors ∆x long at-
tached in points: 0.29, 0.50 and 0.73 of rod length. More details
of the construction are given in the section “Experimental Re-
sults”.
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Fig. 1. The simplified scheme of the experimental system

The fundamental mathematical model describing the heat
conduction in the plant is the partial differential equation of
the parabolic type with the homogeneous Neumann boundary
conditions at the ends, the homogeneous initial condition, the
heat exchange along the length of rod and distributed control
and observation. This equation with integer orders of both dif-
ferentiations has been considered in papers [16–18].

The non integer order model with respect to both time and
space coordinates, employing Caputo and Riesz operators was
given in [20]. It takes the following form:



CDα
t Q(x, t) = aw

∂ β Q(x, t)
∂xβ −RaQ(x, t)+b(x)u(t),

∂Q(0, t)
dx

= 0, t ≥ 0,

∂Q(1, t)
dx

= 0, t ≥ 0,

Q(x,0) = Q0, 0 ≤ x ≤ 1,

y(t) = k0

1∫

0

Q(x, t)c(x)dx,

(16)

where α , β > 0 denote non integer orders of the system, aw, Ra
denote coefficients of heat conduction and heat exchange, k0 is
a steady-state gain of the model. Now we can express (16) as
the following, inifinite dimensional state equation:




CDα
t Q(t) = AQ(t)+Bu(t),

Q(0) = Q0,

y(t) = k0CQ(t),

(17)

where:





AQ = aw
∂ β Q(x)

∂xβ −RaQ,

D(A) =
{

Q ∈ H2(0,1) : Q′(0) = 0,Q′(1) = 0
}
,

aw,Ra > 0,

H2(0,1) =
{

u ∈ L2(0,1) : u′,u′′ ∈ L2(0,1)
}
,

CQ(t) = 〈c,Q(t)〉, Bu(t) = 〈bu(t)〉,

Q(t) = [q1(t),q2(t)..]
T .

(18)

In (18) D(A) denotes the field of the state operator A, ′, ′′ de-
notes the first and second derivative with respect to length, 〈..〉
is the standard scalar product.

The following set of the eigenvectors for the state operator A
creates the orthonormal basis of the state space:

hn =

{
1, n = 0
√

2cos(nπx), n = 1,2, ... .
(19)

Eigenvalues of the state operator are expressed as underneath:

λn =−awπβ nβ −Ra , n = 0,1,2, ... (20)

and consequently the state operator takes the form:

A = diag{λ0,λ1,λ2, ...}. (21)

Next, the spectrum σ of the state operator A is expressed as
underneath:

σ(A) = {λ0,λ1,λ2, ...}. (22)

From (20) it follows at once that λ0 > λ1 > λ2....
The input operator B has the following form:

B = [b0,b1,b2, ...]
T , (23)

where bn = 〈b,hn〉, b(x) denotes the heater function:

b(x) =

{
1, x ∈ [0, x0]

0, x �∈ [0, x0]
(24)

With respect to (19) and (24) each element bn takes the follow-
ing form:

bn =




xu, n = 0,
√

2sin(nπxu)

nπ
, n = 1,2, ...

(25)

The output operator C is expressed as follows:

C =




Cs1

Cs2

Cs3


 . (26)

Rows of output operator C are as underneath:

Cs j =
[
cs j,0,cs j,1,cs j,2, ...

]
j = 1,2,3..., (27)

where cs j,n = 〈c,hn〉, c(x) denotes the sensor function:

c(x) =

{
1, x ∈ [x1,x2]

0, x �∈ [x1,x2]
(28)

with respect to (19) and (28) each element c jn takes the form:

c jn =





x j2 − x j1, j = 1,2,3, n = 0,
√

2
(
sin(nπx j2)− sin(nπx j1)

)
nπ

,

j = 1,2,3, n = 1,2, ...

(29)
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Fig. 1. The simplified scheme of the experimental system

The fundamental mathematical model describing the heat
conduction in the plant is the partial differential equation of
the parabolic type with the homogeneous Neumann boundary
conditions at the ends, the homogeneous initial condition, the
heat exchange along the length of rod and distributed control
and observation. This equation with integer orders of both dif-
ferentiations has been considered in papers [16–18].

The non integer order model with respect to both time and
space coordinates, employing Caputo and Riesz operators was
given in [20]. It takes the following form:



CDα
t Q(x, t) = aw

∂ β Q(x, t)
∂xβ −RaQ(x, t)+b(x)u(t),

∂Q(0, t)
dx

= 0, t ≥ 0,

∂Q(1, t)
dx

= 0, t ≥ 0,

Q(x,0) = Q0, 0 ≤ x ≤ 1,

y(t) = k0

1∫

0

Q(x, t)c(x)dx,

(16)

where α , β > 0 denote non integer orders of the system, aw, Ra
denote coefficients of heat conduction and heat exchange, k0 is
a steady-state gain of the model. Now we can express (16) as
the following, inifinite dimensional state equation:




CDα
t Q(t) = AQ(t)+Bu(t),

Q(0) = Q0,

y(t) = k0CQ(t),

(17)

where:





AQ = aw
∂ β Q(x)

∂xβ −RaQ,

D(A) =
{

Q ∈ H2(0,1) : Q′(0) = 0,Q′(1) = 0
}
,

aw,Ra > 0,

H2(0,1) =
{

u ∈ L2(0,1) : u′,u′′ ∈ L2(0,1)
}
,

CQ(t) = 〈c,Q(t)〉, Bu(t) = 〈bu(t)〉,

Q(t) = [q1(t),q2(t)..]
T .

(18)

In (18) D(A) denotes the field of the state operator A, ′, ′′ de-
notes the first and second derivative with respect to length, 〈..〉
is the standard scalar product.

The following set of the eigenvectors for the state operator A
creates the orthonormal basis of the state space:

hn =

{
1, n = 0
√

2cos(nπx), n = 1,2, ... .
(19)

Eigenvalues of the state operator are expressed as underneath:

λn =−awπβ nβ −Ra , n = 0,1,2, ... (20)

and consequently the state operator takes the form:

A = diag{λ0,λ1,λ2, ...}. (21)

Next, the spectrum σ of the state operator A is expressed as
underneath:

σ(A) = {λ0,λ1,λ2, ...}. (22)

From (20) it follows at once that λ0 > λ1 > λ2....
The input operator B has the following form:

B = [b0,b1,b2, ...]
T , (23)

where bn = 〈b,hn〉, b(x) denotes the heater function:

b(x) =

{
1, x ∈ [0, x0]

0, x �∈ [0, x0]
(24)

With respect to (19) and (24) each element bn takes the follow-
ing form:

bn =




xu, n = 0,
√

2sin(nπxu)

nπ
, n = 1,2, ...

(25)

The output operator C is expressed as follows:

C =




Cs1

Cs2

Cs3


 . (26)

Rows of output operator C are as underneath:

Cs j =
[
cs j,0,cs j,1,cs j,2, ...

]
j = 1,2,3..., (27)

where cs j,n = 〈c,hn〉, c(x) denotes the sensor function:

c(x) =

{
1, x ∈ [x1,x2]

0, x �∈ [x1,x2]
(28)

with respect to (19) and (28) each element c jn takes the form:

c jn =





x j2 − x j1, j = 1,2,3, n = 0,
√

2
(
sin(nπx j2)− sin(nπx j1)

)
nπ

,

j = 1,2,3, n = 1,2, ...

(29)
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4. The non integer order, state space model
using Atangana-Baleanu operator

Assume that initial condition in state equation equals to zero.
Consequently the use of definition (6) or (8) to the equation
(17) gives:




ABC,ABRDα
t Q(t) = AQ(t)+Bu(t),

Q(0) = 0,

y(t) = y0CQ(t).

(30)

Assume that A, B and C operators of the equation (30) are ex-
pressed by (21), (23) and (26) respectively. The analysis of el-
ementary properties of the proposed model: step response and
convergence are presented in the next subsections.

The spectrum decomposition for system described by (16) is
discussed in detail in the paper [20]. The replacement the C op-
erator in (16) by ABC/R operator (6), (8) does not change the
form of state and input operators. This implies that the spectrum
of the system keeps the form (22) and consequently the system
can be decomposed to subsystems related to single eigenval-
ues λn.

4.1. The step response of the model. Assume that initial con-
dition is equal zero: Q0 = [0]. Using the Laplace transform (9)
or (10) to (30) we obtain the general formula of the time re-
sponse of the considered system to control u(t):

y(t) = y0

∞

∑
n=0

CL −1{Qn(s)}, (31)

where y0 is a steady-state gain of the model, necessary to fit the
response to experimental data, B and C are given by (23) and
(26) respectively, Qn(s) is as follows:

Qn(s) =
α1sα +α

(Mα −α1λn)sα +αλn
bnU(s), n = 0,1,2..., (32)

where Mα is expressed by (7), α1 = 1−α . The formula (31)
allows to compute the step response of the model to the each
control signal u(t), for which a Laplace transform exists. Par-
ticularly, if the control is the Heaviside function, the analytical
formula of step response can be given. It is described by the
following remark:

Remark 1. (The step response of the system (30) with ho-
mogenous initial condition) Consider the system described by
the equation (30) with homogenous initial condition Q0 = [0].
The step response of this system is given as follows:

y(t) = y0

∞

∑
n=0

CQn(t), (33)

where:

Qn(t) =
(

rn −
bn

λn

)
Eα(−qntα)+

bn

λn
1(t), n= 0,1,2... (34)

rn =
α1bn

Mα −α1λn
,

qn =
αλn

Mα −α1λn
.

(35)

Proof. The Laplace transform (32) for u(t) = 1(t) takes the
form:

Qn(s) =
bn (α1sα +α)

s((Mα −α1λn)sα +αλn)
, n = 0,1,2... (36)

The element Qn(s) can be presented as the following sum:

Qn(s) = Q1
n(s)+Q2

n(s), (37)

where:

Q1
n(s) =

bnα1sα

s((Mα −α1λn)sα +αλn)
= rn

sα

s(sα +qn)
, (38)

Q2
n(s) =

bnα
s((Mα −α1λn)sα +αλn)

= pn
1

s(sα +qn)
, (39)

pn =
αbn

Mα −α1λn
. (40)

The inverse Laplace transforms of components Q1,2
n (s) are as

follows (see [3], page 11, Eqs (1.34) and (1.35)):

Q1
n(t) = rnEα(−qntα), (41)

Q2
n(t) =

pn

qn
(1(t)−Eα(−qntα)) . (42)

Consequently Qn(t) takes the following form:

Qn(t) =
(

rn −
pn

qn

)
Eα(−qntα)+

pn

qn
1(t). (43)

Notice that:
pn

qn
=

bn

λn
. (44)

The use of (44) in (43) gives directly (34) and the proof is com-
pleted. �

To additionally check the above result assume that α = 1.0
(the integer order model with respect to time). This gives:




α1 = 0,

Mα = 1,

rn = 0,

qn = λn .

(45)

Applying (45) to (34) yields:

Qn(t) =
bn

λn
(1(t)− exp(λnt)) . (46)

The n-th mode of step response (46) is the n-th mode of step
response of integer order model of the considered system as it
is given in [20], equation (26).
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With respect to (31) and (34) the step response at the j-th
output of the system is as follows:

y j(t) = y0

∞

∑
n=0

Cn jQn(t), j = 1,2,3. (47)

The steady-state response of the n-th mode yss
jn can be ob-

tained as a final value of (34) for t → ∞. It is as follows:

yss
jn =

c jnbn

λn
. (48)

The result (48) can be also obtained applying Final Value
Theorem (FVT) to (36). With respect to (25), (29) and some el-
ementary transformations we obtain the direct dependency be-
tween steady-state response of the n-th mode and parameters of
the plant:

yss
jn =

4
π2n2λn

sin
(

nπ(x j2 − x j1)

2

)
·

· cos
(

nπ(x j2 + x j1)

2

)
sin

(nπxu

2

)
. (49)

The system described by (30)-(47) is inifite-dimensional. Its
use in modeling of the considered experimental plant requires
to use its finite dimensional approximation. This approximation
can be obtained via truncating further modes of solution. It im-
plies that the operators A, B and C can be interpreted as matrices
and the solution (47) takes the form of the following finite sum:

y j(t) = y0

N

∑
n=0

Cn jQn(t), j = 1,2,3. (50)

The value of N is the crucial parameter of the finite dimensional
model (50). Its analytical estimation is given in the next subsec-
tion.

4.2. Convergence. The convergence of the proposed model
will be analyzed using approach presented in the paper [21]. It
can be done by estimating the order N assuring a predefined
value of Rate Of Convergence (ROC). In the considered case
the ROC is defined as the increment of steady-state response yss

jn
as a function of order N. This increment is equal to the absolute
value of N-th mode of the steady-state response (48):

ROCN = |yss
jN |. (51)

The order N assuring the keeping predefined value ∆N of ROCN
is described by the following proposition:

Proposition 1. (The order of model N assuring the predefined
value of ROC = ∆N)
Consider the model of heat transfer process described by (30)
with non integer order 0.0 < α < 2.0, the ROC of the model is
defined by (51).

The order N of model assuring the predefined value ∆N of
ROC meets the following inequality:

N ≥ 1
π

√√
R2

a∆N +16aw −Ra
√

∆N

2aw
√

∆N
. (52)

Proof. With respect to (20) and (49) the condition ROC ≤ ∆N is
equivalent to:

∆N ≥
∣∣∣∣

4
π2N2(awπβ Nβ +Ra)

∣∣∣∣ ·P, (53)

where:

P =

∣∣∣∣sin
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Nπ(x j2 − x j1)

2

)
cos

(
Nπ(x j2 + x j1)

2

)
·

·sin
(

Nπxu

2

)∣∣∣∣ . (54)

Notice that P expressed by (54) is not greater than one. It al-
lows to assume that P equals to one. It will give us the upper
estimation of N, but (53) takes to simplier form:

∣∣∣∣
4

π2N2(awπβ Nβ +Ra)

∣∣∣∣≤ ∆N . (55)

The absolute value in (55) can be ignored because the expres-
sion inside is always positive:

4
π2N2(awπβ Nβ +Ra)

≤ ∆N . (56)

The left side of (56) will be called the non integer order limiter
Lnio(N):

Lnio(N) =
4

π2N2(awπβ Nβ +Ra)
. (57)

Next assume that β = 2 (we consider integer order model with
respect to length). Then the non integer order limiter (57) takes
its integer order form Lio(N):

Lio(N) =
4

π2N2(awπ2N2 +Ra)
. (58)

Consequently the inequality (56) turns to:

∆Nπ4awN4 +∆Nπ2RaN2 −4 ≥ 0. (59)

The solution of double quadratic inequality (59) gives directly
the condition (52). This finishes the proof. �

The numerical verification of the above result is given in the
next section.

5. Experimental results

Experiments were done with the use of the experimental sys-
tem shown in Fig. 2. The length of rod is equal 260 [mm]. The
control signal in the system is the standard current 0−20 [mA]
given from analog output of the PLC. This signal is amplified
to the range 0−1.5 [A] and it is the input for the heater. The
temperature distribution along the rod is measured with the use
of standard RTD sensors of Pt-100 type. In the considered case
the size and location of sensors are following:




x = 0.29 : x1 = 0.26, x2 = 0.32

x = 0.50 : x1 = 0.47, x2 = 0.53

x = 0.73 : x1 = 0.70, x2 = 0.76
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With respect to (31) and (34) the step response at the j-th
output of the system is as follows:

y j(t) = y0

∞

∑
n=0

Cn jQn(t), j = 1,2,3. (47)

The steady-state response of the n-th mode yss
jn can be ob-

tained as a final value of (34) for t → ∞. It is as follows:

yss
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λn
. (48)

The result (48) can be also obtained applying Final Value
Theorem (FVT) to (36). With respect to (25), (29) and some el-
ementary transformations we obtain the direct dependency be-
tween steady-state response of the n-th mode and parameters of
the plant:
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The system described by (30)-(47) is inifite-dimensional. Its
use in modeling of the considered experimental plant requires
to use its finite dimensional approximation. This approximation
can be obtained via truncating further modes of solution. It im-
plies that the operators A, B and C can be interpreted as matrices
and the solution (47) takes the form of the following finite sum:

y j(t) = y0

N

∑
n=0

Cn jQn(t), j = 1,2,3. (50)

The value of N is the crucial parameter of the finite dimensional
model (50). Its analytical estimation is given in the next subsec-
tion.

4.2. Convergence. The convergence of the proposed model
will be analyzed using approach presented in the paper [21]. It
can be done by estimating the order N assuring a predefined
value of Rate Of Convergence (ROC). In the considered case
the ROC is defined as the increment of steady-state response yss

jn
as a function of order N. This increment is equal to the absolute
value of N-th mode of the steady-state response (48):

ROCN = |yss
jN |. (51)

The order N assuring the keeping predefined value ∆N of ROCN
is described by the following proposition:

Proposition 1. (The order of model N assuring the predefined
value of ROC = ∆N)
Consider the model of heat transfer process described by (30)
with non integer order 0.0 < α < 2.0, the ROC of the model is
defined by (51).

The order N of model assuring the predefined value ∆N of
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lows to assume that P equals to one. It will give us the upper
estimation of N, but (53) takes to simplier form:
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The left side of (56) will be called the non integer order limiter
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. (57)

Next assume that β = 2 (we consider integer order model with
respect to length). Then the non integer order limiter (57) takes
its integer order form Lio(N):

Lio(N) =
4

π2N2(awπ2N2 +Ra)
. (58)

Consequently the inequality (56) turns to:

∆Nπ4awN4 +∆Nπ2RaN2 −4 ≥ 0. (59)

The solution of double quadratic inequality (59) gives directly
the condition (52). This finishes the proof. �

The numerical verification of the above result is given in the
next section.

5. Experimental results

Experiments were done with the use of the experimental sys-
tem shown in Fig. 2. The length of rod is equal 260 [mm]. The
control signal in the system is the standard current 0−20 [mA]
given from analog output of the PLC. This signal is amplified
to the range 0−1.5 [A] and it is the input for the heater. The
temperature distribution along the rod is measured with the use
of standard RTD sensors of Pt-100 type. In the considered case
the size and location of sensors are following:
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Fig. 2. The construction of the experimental system

Signals from the sensors are directly read by analog inputs
of the PLC in Celsius degrees. Data from PLC are read and
archivised by SCADA application. The whole system is con-
nected via PROFINET. The temperature distribution with re-
spect to time and length is shown in Fig. 3. The step response
of the model was tested in time range from 0 to Tf = 300 [s]
with sample time 1 [s], parameters were calculated via mini-
mization of the MSE (Medium Square Error) cost function (60)
using MATLAB fminsearch function.

Fig. 3. The spatial-time temperature distribution in the plant

To accuracy estimation the typical MSE cost function was
applied:

MSE =
1

3Ks

3

∑
j=1

Ks

∑
k=1

(
y+e j

(k)− y+j (k)
)2

. (60)

In (60) Ks denotes the number of collected samples for one sen-
sor, y+e j

(k) and y+j (k) are step responses of plant and model in
k-th time moments.

The parameters aw, Ra, α and β were estimated via min-
imization of the cost function (60) using MATLAB function
fminsearch. Results are given in Table 1.

Table 1
Parameters of the AB model

N α β aw Ra MSE

22 0.9293 1.9990 0.0004 0.0714 0.0233

The step response of the proposed model using (50) is shown
Fig. 4.

Fig. 4. Comparison the AB model to experiment for N = 22

The convergence was tested using the Proposition 1. The first
predefined value of ROC was equal: ∆N = 0.001. Using condi-
tion (51) we obtain N = 18. The comparison limiters (57) and
(58) to steady-state values of modes (48) is shown in Fig. 5.

Next the value ∆N = 0.0001 was analyzed. The use of condi-
tion (51) gives N = 32. All the limiters and steady state values
of modes (48) are illustrated by Fig. 6.
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Fig. 5. Convergence estimation for ∆N = 0.001, and parameters of
model given in Table 1

Fig. 6. Convergence estimation for ∆N = 0.0001, and parameters of
model given in Table 1

Figures 5 and 6 show that the condition (52) gives upper esti-
mation of N. The accuracy of estimation is better for bigger val-
ues of ∆N and smaller size N of the model. For smaller values
of ∆N and higher values of N the estimation is more “cautious”.

6. Final conclusions

The main final conclusion from the paper is that the AB op-
erator can be used to construct the state space model of the
one dimensional heat trasfer process. The diagonal form of the
state operator allows to obtain the analytical form of the step
response. The convergence of the model is also possible to an-
alyze.

The further investigations of the proposed model will cover
its detailed comparing to previously proposed C and CF mod-
els. The generalization of the presented results to fractional or-
der, linear systems is also planned to do.
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