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Abstract. The way brain networks maintain high transmission efficiency is believed to be fundamental in understanding brain activity. Brains 
consisting of more cells render information transmission more reliable and robust to noise. On the other hand, processing information in larger 
networks requires additional energy. Recent studies suggest that it is complexity, connectivity, and function diversity, rather than just size and the 
number of neurons, that could favour the evolution of memory, learning, and higher cognition. In this paper, we use Shannon information theory 
to address transmission efficiency quantitatively. We describe neural networks as communication channels, and then we measure information 
as mutual information between stimuli and network responses. We employ a probabilistic neuron model based on the approach proposed by 
Levy and Baxter, which comprises essential qualitative information transfer mechanisms. In this paper, we overview and discuss our previous 
quantitative results regarding brain-inspired networks, addressing their qualitative consequences in the context of broader literature. It is shown 
that mutual information is often maximized in a very noisy environment e.g., where only one-third of all input spikes are allowed to pass 
through noisy synapses and farther into the network. Moreover, we show that inhibitory connections as well as properly displaced long-range 
connections often significantly improve transmission efficiency. A deep understanding of brain processes in terms of advanced mathematical 
science plays an important role in the explanation of the nature of brain efficiency. Our results confirm that basic brain components that appear 
during the evolution process arise to optimise transmission performance.
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[4‒6]. In general, these models should preferably reproduce all 
of the mechanisms found in biological nerve cells and provide 
results consistent with experimental physiological data. Several 
trends in neuron modelling are being developed [7], of which 
the following two are most common. The first is detailed bio-
physical modelling, best exemplified by the Hodgkin-Huxley 
model [8], which describes ion channels on the tree-like spatial 
structure of a neural cell. The second is a family of so-called 
integrate-and-fire models, based on treating electrical activ-
ity as threshold process. In this paper, we explore yet another 
approach–namely treating the Levy-Baxter model as a Shannon 
communication channel [9‒11]. This model has an informa-
tion-theoretical character, and it can be seen as an attempt to 
grasp biophysical qualitative mechanisms participating in the 
transmission process in a mathematically rigorous, probabilistic 
way. The relevance of the presented quantitative results yields 
an interesting perspective on the future considerations of other 
models of neurons, such as the biophysical Hodgkin-Huxley 
model [8], the Izhikevich model [12], and integrate-and-fire 
models [13].

The human brain consists of more than 1011 neurons, in 
comparison, the Internet – the largest computer network in the 
world – has only millions of processing units. Artificial neu-
ral networks, starting with perceptrons, are designed as gener-
al-purpose architectures, whereas natural neural systems show 
high levels of specialisation according to different tasks and 
functions. Recently, authors have been looking at the high-
level organisation of the brain and biological systems [14‒19], 
including parts for different tasks and different sensory modal-
ities (e.g. sound, vision, touch). Nonetheless, similar organisa-
tion and processing [20] has been found at the very local level 
of connectivity within modules. Moreover, in Ferraz et al. [21], 

1.	 Introduction

Understanding the mechanisms of brain activity remains one of 
the most elusive but also most important frontiers in science. 
The brain can solve complex tasks, such as pattern recognition, 
within milliseconds – much more rapidly than any contempo-
rary computer vision system. Therefore, a huge effort has been 
undertaken lately to analyse neural coding. Recent attempts to 
quantify information transmission have concentrated on treating 
neural communication processes in the spirit of Shannon infor-
mation theory [1]. The basic concept of this theory is mutual 
information (MI) between input and output signals [2]. Mutual 
information plays an essential role in the Shannon fundamen-
tal theorem. This theorem states that it is possible to transmit 
information through a noisy channel at any rate less than the 
so-called channel capacity (maximal MI) with an arbitrarily 
small probability of error. Recent interesting analytical results 
concerning channel capacity in the context of stochastic reso-
nance for noisy threshold devices were presented in [3]. In this 
paper, the sufficient conditions for the optimality of a parallel 
array of independently noisy identical threshold nonlinearities 
– including model neurons in the limit of large array size (i.e., 
channel capacity) – were derived analytically.

The crucial part in mathematical or computer analysis of 
brain processes, or more generally neural network learning and 
information processing, is to develop appropriate models: one 
for a single neuron, next for a biologically-inspired network 
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it was shown that information processing can be optimised in 
neuronal networks even beyond critical states.

A lot of attention has recently been drawn to the relation 
between classical thermodynamics and modern information the-
ory. Although the two areas have always been somewhat con-
nected due to the common concept of entropy as their obvious 
similar figure, it is only now that contemporary research has 
opened new promising perspectives for them to link up. Inter-
esting examples of thermodynamics and information theory 
joint uses are more often seen in the field of brain science. For 
instance, Sengupta et al. [22] derive a relation between minimiz-
ing variational free energy and the tendency to maximise both 
metabolic and statistical efficiency. Poli et al. [23] used partial 
correlation to identify interconnected neuronal sub-populations 
and to derive network topology in in vitro cortical networks. By 
analysing multichannel activity propagation across an engineered 
axon network, applying pairwise difference analysis of neuronal 
responses, Chen et al. [24] have shown that neuronal ensembles 
generally outperformed individual cells in discriminating input 
patterns. Crago and Makowski [25], by studying action potential 
patterns with axonal stimulation, pointed out on the role of the 
relative firing rates of the two sources and the intersite conduction 
time between them on the firing rate, and the probability distribu-
tion of the action potential firing periods in the axonal endpoint. 
Other authors provided a quantitative theory that predicts brain 
sizes and quantifies the contributions of temperature-dependent 
metabolism, body size, and neural density [26, 27].

In our paper, we present quantitative results for both infor-
mation and information-per-energy efficiency. We discuss these 
quantitative results, addressing their qualitative consequences. 
We referred these qualitative implications to the results of other 
authors. We show how this efficiency depends on the infor-
mation source (firing rate), neuron parameters (synaptic noise, 
amplitude fluctuation, activation threshold), and neural archi-
tecture (local, inner and long-range connection distributions, 
size delay effects, inhibition strength). This provides inspired 
insight into the further analysis of biophysical models of neu-
rons and more advanced neural network architectures [28‒30].

2.	 Theory and models

2.1. Neuron model. Computational threshold neurons are 
inspired by integrate-and-fire models. The most commonly 
used artificial cells follow the McCulloch-Pitts approach. 
Such neurons compute the weighted sum of their inputs and 
produce responses based on a specific activation function. In 
this paper, a probabilistic model of a neuron derived from the 
idea proposed by Levy and Baxter was employed. It turned out 
that this model provides results consistent with physiologically 
observed values [31].

Neurons communicate by means of small electric currents, 
and the information is carried mostly by sudden sharp jumps 
of these currents, called action potentials or spikes. Assuming 
that a spike train is being recorded within some time interval, 
so that in each time slice, a spike is either present or absent, it 
is natural and justified to represent the spike train as a sequence 

of bits [32]. Discretisation is one of the most important points 
of neural communication [33]. Such discretisation allows us to 
treat both a neuron's stimuli and its response strictly as binary 
stochastic processes. The input to the neuron analysed in this 
paper comes from: information source {X (1), …, X (n)}, excit-
atory neurons {E (1), …, E (w)}, and a paired inhibitory neuron 
{I }. The information source is modelled by discrete binary 
stationary processes X (i), with the firing rate fr being the prob-
ability of a spike event occurring in a given time slot. Each 
input signal is then subject to synaptic noise φ and amplitude 
fluctuations Qi. The synaptic noise φ is a Bernoulli zero-one 
random variable with success probability s. The random vari-
able Qi is considered continuous and distributed uniformly on 
interval 

£
0, 1
¤
. This means that the output (i.e. bits 0 or 1) from 

a synapse is multiplied by a randomly chosen number from the 
interval 

£
0, 1
¤
 and this value goes next to the dendrosomatic 

summation process.
The total excitation of a neuron is expressed as sum σ  =

∑n
i = 1 X (i)φQi + ∑w

i = 1 E (i)φQi ¡ bIφQI. This combined signal σ 
finally undergoes the spike generator transformation so that the 
neuron responds with a spike if the magnitude of its excitation 
exceeds the assumed threshold g. Denoting the resulting spike 
as 1 and the lack of a spike as 0, the sequence of consecutive 
neuron responses constitutes an implicit stochastic binary pro-
cess {Z}.

To summarise, the basic neuron parameters in the Levy-Bax-
ter model are synaptic noise s, amplitude f luctuation Qi, and 
activation threshold height g. An overview of the information 
flow in the discussed model is pictured in Fig. 1.

2.2. Brain-inspired networks. In general, the brain can be 
regarded as an ensemble of individual cells, interconnected in 
such a way that the output of one neuron becomes the input 
to some of the others. The brain-inspired network we propose 
consists of nodes, each of them being a pair (E, I ) of excit-
atory and corresponding inhibitory neurons. These nodes are 
allocated uniformly over the circle of radius r. In this case, 
each node processes information under completely the same 
circumstances and we have a clear symmetric network. There-
fore, as a reference network, we propose already such network. 
As such reference networks, we propose a network without 
long-range connections or a network with full long-range con-
nections. Each node (E, I ) i is connected with neighbouring 
nodes (E, I ) i ¡ 1 and (E, I ) i + 1 through the output of excitatory 
neurons. Additionally, distant (i.e. not neighbouring) nodes can 
be connected through long-range connections. For each sin-
gle node, the strength of the inhibitory neuron in relation to 
the strength of the corresponding excitatory one is denoted by 
b = I/E. It is assumed that source signals can support excitatory 
neurons only. The output of one neuron within a given node 
becomes the input to the other one in the next discrete moment. 
Excitatory connections outnumber inhibitory ones by at least 
5:1 [34]. While the proposed neural network is quite simplified 
and far from the real brain, it gives inspired intuition for further 
research in this direction.

After fixing the reference network we consider a comple-
mentary architectures (Fig. 3A; all networks in [11], see Fig. 3). 
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The efficiency of these networks was examined both qualita-
tively and quantitatively. We analyzed the information process-
ing in the network architecture A with added long-range connec-
tion with the origin in an excitatory neuron and target neurons 
being both a not neighbor excitatory neuron and associated with 
it inhibitory neuron. In this architecture we assume that the 
excitatory neuron has connection to the source of information 
(e.g. stimuli). Next, we analyzed the network architecture B 
also with added the long-range connection with the origin in 
an excitatory neuron and target neurons being both a not neigh-
bor excitatory neuron and associated with it inhibitory neuron. 
However, in this architecture we assume that the excitatory 
neuron has no connection to the source of information. Next, we 
compared the information (MI) transmitted in the architectures 
A and B to the information transmitted by the corresponding 
neurons located in the symmetric architecture. This way we 
have opportunity to verify how the adding of the long-range 
connection affects the information being transmitted.

2.3. Mutual information analysis and energetic formulae. 
Mutual information is one of the key concepts of Shannon’s 
famous communication theory, published in 1948. The MI 
between two stochastic processes {X} and {Z} reads

	 I(X ; Z) = H(X ) ¡ H(X jZ) =
I(X ; Z) = H(X ) + H(Z) ¡ H(X, Z),

� (1)

where H(X jZ) is the entropy of X conditional on Z, and 
H(X, Z) is the joint entropy of X and Z. Mutual information 
should be understood as a measure of how much information 
of one process is ref lected in the realisation of the other one. 
This quantity shows its importance especially if one process 

(say Z ) is an outcome of some transformation of the known 
process X (i.e. X  7! to f (X ) = Z); e.g., the evolution of the 
signal transmitted through a neuron. The MI concept can be 
complementary both to cross-correlation analysis (since it 
also includes higher correlations [35, 36]) and to the Fisher 
information approach [37]. Particular entropies in (1) have to 
be estimated numerically. There are a number of high qual-
ity estimators; e.g., [38‒42]. We applied the one proposed by 
Strong et al. [38] which is not computationally expansive. To 
assure high accuracy of estimation, we applied this entropy 
estimator to sequences of 1,000,000 bits. Our extensive simu-
lations of Bernoulli and Markov processes have shown that the 
error between true entropy and the estimated value is on the 
order of 0.001, and the standard deviation was also on the order 
of  0.001. We first present an analysis of the MI between the 
input and output signal for simplif ied neural architectures [9]. 
However, biological systems rely mostly on economic energy 
management; therefore, energetic expenses of information 
transmission should also be taken into account during opti-
misation [26]. On the other hand, it is known [43, 44] that the 
signalling-related energy consumption increases linearly with 
the spiking frequency. Thus, in this approach, the following 
information-energetic formula can be considered as a measure 
of information-energetic efficiency:

	 Λ(b) = max
g

µ
max( fr, s) I( fr, s, b, g)
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Fig. 1. The neuron model studied in this paper is based on the Levy-Baxter approach.

Figure 3). The efficiency of these networks was examined
both qualitatively and quantitatively. We analyzed the infor-
mation processing in the network architecture A with added
long-range connection with the origin in an excitatory neuron
and target neurons being both a not neighbor excitatory neuron
and associated with it inhibitory neuron. In this architecture we
assume that the excitatory neuron has connection to the source
of information (e.g. stimuli). Next, we analyzed the network
architecture B also with added the long-range connection with
the origin in an excitatory neuron and target neurons being
both a not neighbor excitatory neuron and associated with it in-
hibitory neuron. However, in this architecture we assume that
the excitatory neuron has no connection to the source of infor-
mation. Next, we compared the information (MI) transmitted
in the architectures A and B to the information transmitted by
the corresponding neurons located in the symmetric architec-
ture. This way we have opportunity to verify how the adding of
the long-range connection affects the information being trans-
mitted.

2.3. Mutual Information Analysis and Energetic Formulae
Mutual information is one of the key concepts of Shannon’s
famous communication theory, published in 1948. The MI be-
tween two stochastic processes {X} and {Z} reads

I(X ;Z) = H(X)−H(X |Z) = H(X)+H(Z)−H(X ,Z), (1)

where H(X |Z) is the entropy of X conditional on Z, and
H(X ,Z) is the joint entropy of X and Z. Mutual information
should be understood as a measure of how much information of
one process is reflected in the realisation of the other one. This

quantity shows its importance especially if one process (say Z)
is an outcome of some transformation of the known process X
( i.e. X �→ to f (X) = Z); e.g., the evolution of the signal trans-
mitted through a neuron. The MI concept can be complemen-
tary both to cross-correlation analysis (since it also includes
higher correlations [35, 36]) and to the Fisher information ap-
proach [37]. Particular entropies in Equation (1) have to be
estimated numerically. There are a number of high quality es-
timators; e.g., [38–42]. We applied the one proposed by Strong
et al. [38] which is not computationally expansive. To assure
high accuracy of estimation, we applied this entropy estima-
tor to sequences of 1,000,000 bits. Our extensive simulations
of Bernoulli and Markov processes have shown that the error
between true entropy and the estimated value is on the order
of 0.001, and the standard deviation was also on the order of
0.001. We first present an analysis of the MI between the input
and output signal for simplified neural architectures [9]. How-
ever, biological systems rely mostly on economic energy man-
agement; therefore, energetic expenses of information trans-
mission should also be taken into account during optimisa-
tion [26]. On the other hand, it is known [43, 44] that the
signalling-related energy consumption increases linearly with
the spiking frequency. Thus, in this approach, the following
information-energetic formula can be considered as a measure
of information-energetic efficiency:

Λ(b) = max
g

(
max( fr ,s) I( fr,s,b,g)

ϑ( f 0
r ,s0)

)
, (2)

where the energy formula ϑ( fr,s) is equal to: s · (n fr +b fI +

∑w fw) for excitatory neurons with access to the source of stim-
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Fig. 1. The neuron model studied in this paper is based on the Levy-Baxter approach.

Figure 3). The efficiency of these networks was examined
both qualitatively and quantitatively. We analyzed the infor-
mation processing in the network architecture A with added
long-range connection with the origin in an excitatory neuron
and target neurons being both a not neighbor excitatory neuron
and associated with it inhibitory neuron. In this architecture we
assume that the excitatory neuron has connection to the source
of information (e.g. stimuli). Next, we analyzed the network
architecture B also with added the long-range connection with
the origin in an excitatory neuron and target neurons being
both a not neighbor excitatory neuron and associated with it in-
hibitory neuron. However, in this architecture we assume that
the excitatory neuron has no connection to the source of infor-
mation. Next, we compared the information (MI) transmitted
in the architectures A and B to the information transmitted by
the corresponding neurons located in the symmetric architec-
ture. This way we have opportunity to verify how the adding of
the long-range connection affects the information being trans-
mitted.

2.3. Mutual Information Analysis and Energetic Formulae
Mutual information is one of the key concepts of Shannon’s
famous communication theory, published in 1948. The MI be-
tween two stochastic processes {X} and {Z} reads

I(X ;Z) = H(X)−H(X |Z) = H(X)+H(Z)−H(X ,Z), (1)

where H(X |Z) is the entropy of X conditional on Z, and
H(X ,Z) is the joint entropy of X and Z. Mutual information
should be understood as a measure of how much information of
one process is reflected in the realisation of the other one. This

quantity shows its importance especially if one process (say Z)
is an outcome of some transformation of the known process X
( i.e. X �→ to f (X) = Z); e.g., the evolution of the signal trans-
mitted through a neuron. The MI concept can be complemen-
tary both to cross-correlation analysis (since it also includes
higher correlations [35, 36]) and to the Fisher information ap-
proach [37]. Particular entropies in Equation (1) have to be
estimated numerically. There are a number of high quality es-
timators; e.g., [38–42]. We applied the one proposed by Strong
et al. [38] which is not computationally expansive. To assure
high accuracy of estimation, we applied this entropy estima-
tor to sequences of 1,000,000 bits. Our extensive simulations
of Bernoulli and Markov processes have shown that the error
between true entropy and the estimated value is on the order
of 0.001, and the standard deviation was also on the order of
0.001. We first present an analysis of the MI between the input
and output signal for simplified neural architectures [9]. How-
ever, biological systems rely mostly on economic energy man-
agement; therefore, energetic expenses of information trans-
mission should also be taken into account during optimisa-
tion [26]. On the other hand, it is known [43, 44] that the
signalling-related energy consumption increases linearly with
the spiking frequency. Thus, in this approach, the following
information-energetic formula can be considered as a measure
of information-energetic efficiency:

Λ(b) = max
g

(
max( fr ,s) I( fr,s,b,g)

ϑ( f 0
r ,s0)

)
, (2)

where the energy formula ϑ( fr,s) is equal to: s · (n fr +b fI +

∑w fw) for excitatory neurons with access to the source of stim-
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( fr, s) is equal to: s ¢ (n fr + b fI +
+ ∑w fw) for excitatory neurons with access to the source of 
stimuli, s ¢ (b fI + ∑w fw) for excitatory neurons without access 
to the source, and s ¢ ∑w fw for inhibitory neurons; s0, fr

0 are 
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the values maximising the numerator. The numerator of the 
formulae corresponds to the capacity of the channel, while the 
denominator expresses the energy cost of the transmission and 
is proportional to the number of spikes actually used to transfer 
information. The role of inhibitors, long-range connections and 
size/delay effects are studied and information-energetic optimal 
parameters are determined.

3.	 Results

3.1. Feed-forward networks results. For better insight, we 
start by presenting the results for one-layer feed-forward net-
works. We show how the following quantities affect the trans-

mission abilities of the networks: synaptic noise, the height of 
activation threshold, the firing rate, and the type of input source. 
A number of surprising, non-intuitive effects were observed.

We begin with a synaptic noise analysis. One would intui-
tively expect the transmission to be less effective if this infor-
mation-losing factor is present. However, we found that high 
synaptic noise maximises mutual information for model neu-
rons with a relatively low activation threshold. It turned out that 
MI is maximised in a very noisy environment where less than 
half of the already-generated spikes (or even only one-third of 
their total number) are allowed two passes through synapses 
further to the network. Moreover, the value of this maximum 
(in fact efficiency) can be more than two times greater than 
that achieved in noise-free conditions (i.e., if s = 1) Fig. 2A. 

Fig. 2. The influence of a neuron and neural network on transmission efficiency, measured as mutual information (MI). A) MI dependence on 
synaptic success s in a feed-forward network consisting of 5 neurons with the threshold set to g = 0.25. Analogous results were presented in [9] 
for g = 0.30. The cross-section (marked by the blue line) for  fr = 0.6 is presented in the right panel. This cross-section was chosen to illustrate 
that maximal information transmission can be reached in a very noisy synapse (i.e. the probability s that spike will be transmitted is less than 
0.4). B) Comparison [9] of maximal MI values (red dotted line) with those achieved as s = 1 (green solid line). Size of a dot is proportional to 
1 ¡ s (noise), indicating that the bigger the dot, the corresponding mutual information value is achieved at a lower s. C) MI dependencies on 
threshold g for Bernoulli source (red solid line) Markov (green and blue solid line). D) MI as a function of the strength of amplitude fluctuation 

maximized over all other parameters ( fr, s and g) – see Section 3.1 and 3.2 for details
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We observed non-zero synaptic noise (s < 1) in all ranges of 
parameters that globally maximise MI. The important role in 
the justification of this benefit of noise could be the stochas-
tic resonance effect, which is a form of noise-enhanced signal 
transmission in a wide variety of nonlinear physical and bio-
logical systems [3].

The threshold is a neural mechanism that prevents weak 
signals (in the sense of their cumulated amplitude) from being 
passed down through an axon to other neurons. Since only 
signals strong enough to exceed the barrier are able to make 
a neuron f ire, intuition suggests that the maximal amount 
of information transmitted within a given neural structure 
falls as the value of the threshold grows. However, our cal-
culations show that transmission eff iciency turns out to be 
a non-monotonic function of the activation threshold. For 
comparison, we consider two types of processes as informa-
tion sources. We consider Bernoulli processes and two-state 
Markov processes. In turn, in the case of Markov sources, we 
studied two cases. In the f irst case the conditional probability 
that, after spikes, there will be no spike, is equal to 0.1 and 
in the second case it is 0.05. Presence of spike corresponds 
to “1” in bits՚ sequence. We observed a universal value of the 
threshold for which MI has a local maximum (Fig. 2C). This 
value is achieved for most of the model neural architectures, 
regardless of the type of information source (correlated and 
non-correlated) [45].

The study of feed-forward networks was finalised with 
an analysis of the influence of signal amplitude fluctuations 
(damping, uniform, amplifying); another important component 
in neural computations [31]. It was found in [10] that the more 
amplifying the fluctuations are, the more beneficial to trans-
mission efficiency the synaptic noise becomes. Furthermore, 
it turned out that maximal efficiency remains nearly constant, 
almost regardless of the fluctuation type. The efficiency stays 
at the same level for all networks, except these with strong 
amplifying fluctuations, for which transmission is slightly more 
efficient (Fig. 2D). Finally, it was exposed that for a wide range 
of thresholds, both for damping and amplifying fluctuations, 
the MI behaves in the opposite way to the corresponding cor-
relations between input and output signals. Moreover, it was 
shown in [46, 47] that the role of mutual information in the 
Shannon fundamental theorem, describing the limits of opti-
mal decoding schemes, can not be replaced by straightforward 
correlations.

3.2. Brain-inspired networks results. The results obtained 
for simple feed-forward networks form an adequate introduc-
tion to the analysis of more complex neural communication 
systems. The information transmission rate per energy used 
(2) in a class of brain-inspired networks (Fig. 3A) involving 
components such as excitatory and inhibitory neurons or long-
range connections was studied by [11]. It was shown that all 
network components in a broad range of parameters signifi-
cantly improve the information-energetic efficiency.

It turned out that the presence of inhibitory neurons (i.e. 
if b > 0); can improve information-energetic transmission 
efficiency by 50 percent in comparison to networks lacking 

inhibitory connections (if b = 0); Fig. 3B. Transmission is 
most information-energetic effective if the inhibitory-excitatory 
strength ratio is below 0.5.

It was found (Fig. 3C) that long-range connections can lead 
to a significant improvement in target neurons' information-en-
ergetic efficiency, even by 70 percent, if the neuron starting 
this connection has no access to the source of stimuli (Fig. 3C 
right). If the connection originates from a neuron that has such 
access, it can bring a 40 percent loss to the target neuron's effi-
ciency (Fig. C left), however this connection increases the effi-
ciencies of the starting neuron and the neurons neighbouring 
the target neuron by up to 24 percent.

It was established (Fig. 3D) that the most effective network 
is the one with the smallest size r (the most compact one): we 
observed that a twofold increase in the size can cause even 
a threefold decrease of information-energetic efficiency [11].

4.	 Discussion and conclusions

Evaluation of the eff iciency of information transfer in bio-
logical systems–in particular in the human brain–requires 
calculation of both the amount of information transmitted 
and the energy cost used in that process. This justif ies the 
information-energetic transmission (2) that we proposed and 
then optimised in this paper. A mathematical framework that 
provides tools for the quantif ication of information content 
and its transfer is information theory [2]. The estimation of 
energy required to maintain the signalling activity of neu-
rons is subject of interest for many authors in many contexts 
[26, 48-51]. It was shown that the signalling-related energy con-
sumption increases linearly with the average spiking frequency 
[51]. Moreover, recently for the characterisation of connectiv-
ity effectiveness within neurons population transfer entropy, 
which quantifies the information transferred between variables 
in terms of strength, time scale, and direction, was applied [52]. 
General questions arise: how do neurons and neural networks 
adapt to make the transmission more efficient? In particular, 
the role of synaptic noise, the activation threshold, and the 
amplitude f luctuations for a single neuron are of special inter-
est. The eff iciency should strongly depend on how neurons 
cooperate in the transmission process. The question is in fact 
about the essence of the role of long-range connections and 
the balance between excitatory and inhibitory neurons in the 
network architecture.

Noise is an inherent ingredient of biological systems 
[13, 53]. Zhang et al. [54] showed that even in a homogeneous 
neural network, noise can produce a variety of complicated 
dynamic spiking phenomena. Recent results indicate that syn-
aptic noise may be beneficial [55, 56]. Kanitscheider et al. [57] 
have found that it is possible to improve the efficiency of the 
code by optimising the tuning and noise correlations. Axonal 
and synaptic failure suppress the transfer of firing rate oscilla-
tions, synchrony and information during high-frequency deep 
brain stimulation [13]. It turned out that axonal variability may 
have a considerable impact on synaptic response variability. 
It was shown in [58] that action potential height and width 
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Fig. 3. Brain-inspired network model; note that on the scheme, the position of the input source in the centre is only figurative. We consider 
four five-node architectures, each powered with a three-dimensional source of information, drawn in the centre of each diagram. A) Informa-
tion-energetic characteristic across chosen brain-inspired architectures. B) Inhibition effects. C) Long-range connection effects for origin and 

target neurons. D) Size effects for fixed threshold g and globally – see Section 3 and [11] for details
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variabilities increase with a 3/4 power-law as the diameter 
decreases and translates these fluctuations into post-synaptic 
response variability. Malyshev et al. [59] presented that neu-
ral networks can combine high sensitivity to perturbations and 
operation in a low-noise regime. Moreover, certain patterns of 
ongoing activity favour this combination and energy-efficient 
computations. The interaction of two of the most common 
plasticity mechanisms – intrinsic and synaptic plasticity – was 
studied in [55]. It turned out that this interaction leads to repre-
sentations that allow spatiotemporal computations. It was also 
pointed out that these representations are structured to tolerate 
noise and to even benefit from it. The authors suggest noise as 
a possible mechanism for avoiding ineffective dynamics. The 
information-theoretic approach was also used to characterise 
learning phenomena in the presence of noise [60]. In [3], the 
authors address the effect of suprathreshold stochastic reso-
nance in the process of signal transmission in a parallel array of 
independently noisy identical threshold nonlinearities, including 
model neurons. It turned out that capacity is achieved when 
the signal distribution is the Jeffreys prior (as formed from 
the noise distribution) or when the noise distribution depends 
on the signal distribution via a cosine relationship. In our con-
siderations, noise is included in synapses and in amplitude 
fluctuations. Our quantitative research demonstrates that even 
significant synaptic noise can play a very positive role, as it can 
lead even to a twofold increase of the information transmission 
efficiency. Moreover, the more amplifying the amplitude fluc-
tuation mechanism is, the more positive is the role of synaptic 
noise in efficient information transmission.

The crucial role in neural information transfer is played 
by excitatory neurons, while inhibitory neurons play an aux-
iliary role [61‒63]. Many authors examine this mechanism in 
terms of excitation and inhibition balance [64‒66]. Research-
ers agree that inhibitory neurons play a positive role in brain 
activity, which corresponds to the results presented in our paper. 
Dehghani et al. [67] have found experimentally in human and 
monkey neocortexes that in all states of the wake-sleep cycle, 
excitatory and inhibitory neuron ensembles are well balanced, 
and co-fluctuate with slight instantaneous deviations from per-
fect balance, mostly in slow-wave sleep. Analysis of inhibitory 
interneurons and their circuits suggest [68] a possible revision 
of the dominant view that neurons represent information with 
firing rates corrupted by Poisson noise. Instead, the tight excit-
atory/inhibitory balance may be a sign of a highly cooperative 
code, orders of magnitude more precise than a Poisson rate 
code. The relationship between network inhibition and the scal-
ing of the power spectral density exponent of avalanche activity 
in a neuronal network model was studied in [69]. It turned out 
that this scaling exponent depends on the percentage of inhib-
itory synapses. The results indicated that the level of inhibi-
tion affects the frequency spectrum of resting brain activity 
and suggests an analysis of the power spectral density scaling 
behaviour as a possible tool to study pathological conditions. 
We observed that inhibitors can strengthen the effectiveness of 
transmission by up to 50 percent.

A full description of brain networks (and evaluation of their 
efficiency) requires detailed characterisation of their architec-

tures. Not only the placement of neurons is important, but also 
the distribution of specific connections, including long-range 
connections and linkage with the information source [70]. 
While many authors describe the significance of connections 
[71], relatively little attention is paid to their–and networks 
overall–topology [72]. It was shown in [73] that long-range 
interaction in Hindmarsh-Rose neural networks can induce 
different features of information transmission among cou-
pled neurons, pictured by complex waves, zigzag fronts and 
quasi-periodic structures. It turned out that these features 
depend strongly on the specif ic range parameter. Memories 
are acquired and encoded within large-scale neuronal networks 
spanning different brain areas. It was demonstrated in [74] that, 
although intermingled locally, long-range connectivity defines 
distinct subpopulations of amygdala projection neurons and 
indicates that the formation of long-term extinction memo-
ries depends on the balance of activity between two defined 
amygdala-prefrontal pathways. Long-range projections from 
the frontal cortex are known to modulate sensory processing 
in multiple modalities. In [75], virus-assisted circuit mapping 
was used to identify the brain networks for top-down modu-
lation of visual, somatosensory and auditory processing. The 
approach, based on information theory [9], produced results 
consistent with other researchers' f indings, proving the posi-
tive effects of long-range connections. It turned out that when 
it comes to connectivity, the key role in information trans-
mission eff iciency is played by the position of the starting 
and target neurons of a given connection. It was observed that 
long-range connection improves the efficiency of the network, 
provided that the neuron starting the connection is not stimu-
lated directly by the information source.

Recent research suggests that organisms evolve in such 
a way that entails improvement of the neural information-en-
ergetic transmission efficiency [76]. Moreover, if one compares 
the measures of mutual information and the corresponding cor-
relations, the results support the argument that neural coding is 
much more subtle than the straightforward link between input 
and output, i.e. efficient neural transmission does not necessary 
coincide with high input-output correlation.

Nevertheless, the question of what is optimised during 
information transmission in the brain still remains open. The 
hypothesis that organisms evolve to optimise the transmission 
in terms of energy efficiency seems promising. The results pre-
sented in this paper give inspired insight for further research 
in this direction, applying other models of neurons, such as the 
biophysical Hodgkin–Huxley model, the Izhikevich model, or 
integrate-and-fire models, and more advanced neural networks.
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