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LOAD STABILISATION IN AN A-FRAME – A TYPE OF AN
OFFSHORE CRANE

The paper presents the dynamic model of an A-frame, which is a kind of an
offshore crane with a portal construction. The rigid finite element method (RFEM)
has been used in discretization of the flexible substructure. An application of optimi-
sation methods to define the drive function course of the hoisting winch is presented.
The goal of the optimisation is to ensure stabilization of the load’s position. In
order to achieve appropriate numerical effectiveness, the optimisation problem has
been solved for a simplified model of an A-frame. Comparison of numerical results
obtained for different types of objective functions and types of drive functions is
presented in the paper as well.

1. Introduction

Penetration and exploration of the sea floor is one of the modern methods
of civilizational expansion. Much of the petroleum and gas consumed by
humanity comes from undersea pools. Moreover, many oil and gas pipes,
as well as telecommunication cables, are nowadays laid on the sea floor.
Therefore, different deep-sea operations requiring sensitive accuracy (e.g.
rigging) must be performed more frequently. These operations are often done
from ships by using offshore cranes. Because the sea waves cause a motion
of the structure of the crane, the stabilisation and positioning of the load is
an important task in the design of such cranes. One possible example of this
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issue is the problem concerned with controlling the position of the cage of
a deep-sea remote operating vehicle (ROV) presented by Driscoll et al. [3].
It is important to notice that such vehicles operate at depths up to several
thousands meters.

There are many papers where dynamics and control of classical offshore
cranes with jib are considered, e. g. Li and Balachandran [12], Ellermann
et al. [4], Masoud et. al. [14]. A-frames are hardly ever a topic of scientific
papers. A-frames are produced on individual orders, but their significance in
trans-shipment, especially deep-sea operations, is undeniable. Dynamics and
control of this kind of cranes have been discussed in a doctoral thesis [5].

In the paper, two dynamic models of an A-frame are presented. In the first
one, the flexibility of a frame is taken into account, while in the second one
this flexibility is omitted. In both cases, the flexibility of rope is considered.
The classical rigid finite element method (RFEM) has been used to discretise
the frame. The algorithm of optimisation of the drive function for the drum
of the hoisting winch is proposed. The goal of the optimisation is to ensure
the stabilization of the load’s position, i.e. to hold it at the required depth
regardless of the ship’s motion. In order to achieve appropriate numerical
effectiveness, the optimisation problem has been solved using a simplified
model of an A-frame.

2. A-frame model

Fig. 1. A-frame scheme
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The scheme of an A-frame and the most important points of it are pre-
sented in Fig. 1. The following denotations are used: F – supporting structure,
P – pulley, R – rope, H – drum of the hoisting winch, L – load, SR, SL – right
and left servomotor forces, NR, NL – connection points of servomotors to the
A-frame, AR, AL – connection points of the A-frame to the deck, xF,1,xF,2,xF,3
and xD,1,xD,2,xD,3 – coordinate systems assigned to the supporting structure
(frame) and to the deck, respectively.

In the formulation of equations of motion of the system (A-frame), ho-
mogeneous coordinates and transformations have been used (presented in
details in Craig [2]). In this method, coordinates of point P determined in the
coordinate system {A} can be expressed in coordinate system {B} (Fig. 2.) as:

rB = B
AT rA, (1)

where rA =
[

xA1 xA2 xA3 1
]T

– vector of coordinates of point P
in system {A},

rB =
[

xB1 xB2 xB3 1
]T

– vector of coordinates of point P
in system {B},

B
AT =


B
AR rA/B

0

0 1

 – matrix of transformation,

rA/B
0 =

[
xA/B
1 xA/B

2 xA/B
3

]T
– vector describing the position of

the origin of coordinate system
{A} in system {B},

B
AR – matrix of rotation.

Euler’s angles ZYX have been used to describe the orientation of system
{A} with respect to {B}. The choice of angles describing this orientation
influences the form of the rotation matrix B

AR.
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Fig. 2. Coordinate transformation from the system {A} to {B}
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Detailed forms of transformation and rotational matrices for the model
have been presented in [5].

The frame is the main element of the supporting structure in such cranes.
In order to discretise the frame, the rigid finite element method can be ap-
plied. The rigid finite element method is presented by Kruszewski et al. [11]
and Wittbrodt et al. [15]. Let us consider a prismatic beam. First, the beam
of length L is divided into m sections of equal length. Flexible features of
the elements are concentrated in spring-damping elements (sdes), which are
placed in the middle of the elements of length ∆ (Fig. 3a). In the secondary
division, the flexible link is replaced by m+1 rigid finite elements (rfes)
numbered from 0 to m, and m sdes numbered from 1 to m (Fig. 3b).

Fig. 3. Discretisation of a beam: a) primary division into elements with finite dimension in order

to determine parameters of sdes, b) secondary division

The basic parameters of the sde are values characterising spring and
damping features. These are, for spring features of the sde, three coefficients
of translational stiffness and three coefficients of rotational stiffness. The
damping features of the sde are also defined by three coefficients of trans-
lational damping and three coefficients of rotational damping. The stiffness
and damping coefficients of the sde, in which all such features of a beam
segment with length ∆ are concentrated, are determined on the basis of the
assumption that a real segment of the beam will deform in the same way
and with the same velocities of deformation as the equivalent sde under the
same load. The detailed considerations for a prismatic beam are presented
in [15]. There the Kelvin-Voigt rheological model is used. For translational
and rotational coefficients the following formulae are obtained (Fig. 4):

cx1 =
EA
∆

, dx1 =
ηA
∆
, (2)
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Fig. 4. Sde equivalent to features of one segment from primary division of a beam:

a) longitudinal; b, c) shear; d) torsional

cx2 =
GA
κ2∆

, dx2 =
ηA
κ2∆

, (3)

cx3 =
GA
κ3∆

, dx3 =
ηA
κ3∆

, (4)

cϕ1 =
GJ0

∆
, dϕ1 =

ηJ0

∆
, (5)

cϕ2 =
GJ2

∆
, dϕ2 =

ηJ2

∆
, (6)

cϕ3 =
GJ3

∆
, dx3 =

ηJ3

∆
, (7)

where E is Young’s modulus,
A is cross-section,
η is normal damping material constant,
G is shear modulus (Kirchhoff’s modulus),
η is a material constant of tangential damping,
κ2, κ3 are coefficients of cross-section shape, e.g. for a rectangular cross-

section this coefficient is equal 1.2,
J0 is polar moment of inertia of a cross section,
J2, J3 are second area moments of inertia of a cross-section with respect

to axis x2 and x3.
More information, also for other shapes of cross-section e. g. open pro-

files, can be found in [15] and [11].
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In our previous works [5] and [8], at first three beams were distinguished
(right-1, top-2, left-3) in the frame. Thus, the subsystems modelled have
been treated as rectilinear beams with constant or variable cross section.
Then, each beam was divided into rigid finite elements and spring-damping
elements, Fig. 5. This necessitates taking into account the reaction forces
and moments at points BL and BR, and increases the number of constraint
equations. This approach is described in [5].
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Fig. 5. A-frame divided into three beams which were divided into rfes and sdes

In this paper, we present a different approach. The frame is treated as
one beam, which is divided into rfes and sdes. The obtained chain of rfes
and sdes is presented in Fig. 6.

The position of each rfe of the undeformed beam is defined by the
coordinate system E{i} with respect to the coordinate system {0} of rfe 0, by
a transformation matrix with constant components:

0
ETi =


0
EΘi

0
Esi

0 1

 , (8)

where 0
EΘi is the matrix of cosines of the system E{i} with respect to {0},

and 0
Esi is the vector of coordinates of the origin of the system E{i} in {0}

(Fig. 7). The coordinate system {i} rigidly attached to the ith rfe moves to-
gether with rfe i when the beam is deformed. Its position in the coordinate



LOAD STABILISATION IN AN A-FRAME – A TYPE OF AN OFFSHORE CRANE 43

2,AR
R

1,AR
R

3,AR
R

1,AL
R

3,AL
R

}{F
3,F

x

1,F
x

2,F
x

)(rfe 0

)(rfe 1

)(rfe Rn

)(sde 11,

)(rfe 1n

2,AL
R

)(rfe 21 nn +

)(rfe
L

n

)(rfe 321 nnn ++

RS

L
S

)(rfe
S

n

Fig. 6. A-frame as one beam, and its division into rfes and sdes

system E{i} is defined by generalized coordinates of the ith element, which
are the components of the vector:

qi =


xi

φi

 , (9)

where xi, j =
[

xi,1 xi,2 xi,3

]T
and φi =

[
ϕi,1 ϕi,2 ϕi,3

]T
are vectors of

displacements and rotation angles presented in Fig. 7.

Fig. 7. The systems of ith rfe and generalized coordinates
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If we assume that angles ϕi, j are small, then the transformation matrix
from local coordinate system {i} to the system E{i} takes the following form
[15]:

Ti =



1 −ϕi,3 ϕi,2 xi,1

ϕi,3 1 −ϕi,1 xi,2

−ϕi,2 ϕi,1 1 xi,3

0 0 0 1


= I +

∑
D jqi, j, (10)

where
qi, j = xi, j

qi, j+3 = ϕi, j

 for j = 1, 2, 3,

D1 =



0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


, D2 =



0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


, D3 =



0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


,

D4 =



0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


, D5 =



0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


, D6 =



0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


.

The transformation matrix Bi that allows us to transform coordinates from
the local coordinate system {i} to the inertial coordinate system {} according
to the relation:

r = Bi ri, (11)

where ri is a vector of coordinates in local system {i},
r is a vector of coordinates in base system {},

has the form:

Bi = Bi(t,qi) = TD TF
0
ETi Ti = A(t) Pi(qi), (12)

where TD = TD(t) defines the motion of the ship deck with respect to base
system {},

TF = TF(ϕ(t)) describes the rotation of the frame in the coordinate
system of the deck {D},

0
ETi = const is defined in (8),
Ti = Ti(qi) has the form presented in (10),
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A(t) = TD TF ,
Pi = 0

ETi Ti.
In the case when the axes of local coordinate system {i} are chosen as

principal central axes of the rfe, the mass and inertial features of the ith rfe
are defined by: mi its mass, and Ji, j ( j = 1, 2, 3) which are mass moments
of inertia with respect to axis Xi, j.

The equations of motion of the system considered can be obtained from
Lagrange equations. This approach requires the kinetic and potential energy
of the system to be defined. The kinetic energy of the ith rfe can be calculated
as:

Ei =
1
2
tr{Ḃi Hi ḂT

i }, (13)

where tr{} denotes the trace of matrix {},
Hi is the pseudo-inertia matrix defined in [15].

Following the considerations presented in [15], one can obtain:

d
dt
∂Ei

∂q̇i
− ∂Ei

∂qi
= Miq̈i + ei, (14)

where Mi = diag{mi, mi, mi, Ji,1, Ji,2, Ji,3},

ei, j = ei, j(t, qi, q̇i) = tr
{
Bi, jHi

[
ÄPi + 2ȦṖi

]T}
,

Bi, j = A
∂Pi

∂qi, j
,

∂Pi

∂qi, j
=0

E TiD j = const.

The kinetic energy of the frame is:

E =

n∑

i=0

Ei, (15)

where n = n1 + n2 + n3 + 1, and it is possible to calculate:

d
dt

∂E
∂q̇F

− ∂E
∂qF

= MF q̈F + eF , (16)

where MF = diag{M0, . . . , Mn},
eF =

[
eT
0 . . . eT

n

] T
, qF =

[
qT

0 . . . qT
n

] T
.

The potential energy of deformation of sdes can be expressed as follows
[11]:
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VF =
1
2
qT

FKFqF , (17)

where KF is the stiffness matrix with constant coefficients. Similarly, one
can calculate the dissipation of energy as:

DF =
1
2
q̇T

FLF q̇F , (18)

where LF is the damping matrix with constant elements. From what has been
written above, one can calculate:

∂VF

∂qF
= KFqF , (19)

∂DF

∂q̇F
= LF q̇F . (20)

The potential energy of gravity forces of the frame can be calculated as:

VF
g =

n∑

i=0

mig θ3 Bi rC,i, (21)

where g is acceleration of gravity,

θ3 = [ 0 0 1 0 ],

rC,i = [ 0 0 0 1 ].

So:

∂VF
g

∂qF
= GF , (22)

where GF = [GT
0 . . . GT

n ],

Gi = [Gi,1 . . . Gi,6],

Gi, j = mi g θ3 D j rC,i,

D j is defined in (10).
ENERGY OF LOAD AND DRUM OF THE HOISTING WINCH

The load is modelled as a particle. The vector of its generalized coor-
dinates is expressed in the following form qL =

[
xL,1 xL,2 xL,3

]T
. The
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angle of rotation of the drum of the hoisting winch is denoted as ϕH . Kinetic
energy of the load and the drum can then be calculated as:

TR =
1
2
mL ṙ2

L +
1
2
IH ϕ̇2

H , (23)

where IH is the moment of inertia mass of the drum,

ṙ2
L = ẋ2

L,1 + ẋ2
L,2 + ẋ2

L,3.

Potential energy of the load is determined as:

V L
g = mL g xL,3. (24)

ELASTIC DEFORMATION OF THE ROPE

Fig. 8. Rope system

The rope system of the A-frame is presented in Fig. 8. It is assumed
that radii of pulleys are small compared to the dimensions of the whole
mechanism, and also that the rope passes through points S and H – centres
of the pulley and the drum, respectively. Because the radii of pulleys are small
and the length of the rope may be hundreds of meters, this simplification can
be seen as admissible. Potential energy of elastic deformation of the rope
and its dissipation can be expressed in the following forms:

VR =
1
2
cRδR∆2

R, (25)

DR =
1
2
dRδR∆̇2

R, (26)
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where δR =


0 if ∆R ≤ 0
1 if ∆R > 0

,

∆R = |LS| + |SH | − l0 − ϕH
dH

2
,

|LS| = |rL − rS | ,

|SH | = |rS − rH | ,

cR =
ERFR

l
– stiffness coefficient of the rope,

dR – damping coefficient of the rope,
l0, l – initial and current length of the rope, respectively,
ER – Young’s modulus of the rope material,
FR – cross-section of the rope,
dH – diameter of the drum.

MOTION EQUATIONS

The vector of A-frame generalised coordinates can be presented in the
form:

q =


qF

qR

 , (27)

where qF is the vector of generalised coordinates of the discretised frame de-
fined in (16) and vector qR =

[
xL,1 xL,2 xL,3 ϕH

]T
contains generalised

coordinates of the load and the angle of rotation of the drum.
Then the equations of motion of the system can be written as:

Mq̈ + Lq̇ + Kq = Q + DR (28)

where M =


MF 0
0 ML

,

ML = diag{mL,mL,mL, IH},

L =


LF 0
0 0

 , K =


KF 0
0 0

 ,
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Q =



−∂V
F
g

∂qF
− ∂VR

∂qF
− ∂DR

∂q̇F
− eF

−∂V
L
g

∂qR
− ∂VR

∂qR
− ∂DR

∂q̇R
− eL


,

D, R are matrix and vector of reaction forces,
∂VR

∂qF
,

∂VR

∂qR
,

∂DR

∂q̇F
,

∂DR

∂q̇R
can be calculated as in [5] and involve non-

linear terms.
Forces of reactions on the frame are presented in Fig. 6. Vector R of

generalised forces then specifically includes:
reaction RAL =

[
RAL,1 RAL,2 RAL,3

]T
,

reaction RAR =
[

RAR,1 RAR,2 RAR,3

]T

and forces in servomotors SL and SR.
These forces can be written in the vector form:

R =
[

SR SL RT
AR RT

AL

]T
. (29)

Finally, the mathematical model of an A-frame has been written in the
form of a system of differential equations of the second order (28) and
constraint equations in acceleration form:

DT q̈ = W, (30)

whereW = W (q, q̇).

In these equations, there are: nq =

3∑

k=1

6 (1 + n) + 4 (components of vector

q) plus nR = 2+2·3 = 8 (components of vector R) unknowns. So, the number
of unknowns is equal to the sum of number of equations (28) and (30).

In the method presented, the mass matrix M is a diagonal matrix with
constant elements. This enables us to apply algorithms presented in [15] and
reduce the calculation time.

3. Optimisation problem

One of the major problems connected with the design and control of
cranes is the choice of the drive functions which ensure proper motion of
the system. In the A-frame case, a very important problem is the stabilisation
of load position, regardless of motion of the ship caused by sea waves. Using
the drive of the drum of the hoisting winch, we can try to solve this problem.
Time courses of drive functions can be defined in the optimisation process.
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In this paper, the objective function is assumed to be in one of following
forms:

Ω1 =

tk∫

0

[
xL,3 − h

] 2 → min, (31)

Ω2 = max
0≤t≤tk

∣∣∣xL,3 − h
∣∣∣→ min

,

(32)

where xL,3 is load coordinate,
h is required depth.
This means that one expects that as the result of optimisation the course

of function ϕH (t) will be obtained which minimises the average or maximal
value of deviation of load position from the required amount. During the
optimisation process, the parameters of ship hull movement and coordinates
of the winch position have been assumed to be known.

In the paper, we assume that function ϕH describes the rotation angle of
the winch drum has either the form presented in [5]:

ϕH(t) = ait3 + bit2 + cit + di, for t ∈< ti−1, ti >, (33)

where i = 1, . . . ,m,
ai, bi, ci, di are coefficients taken as shown in [1] for spline functions of

the third order,
ti is point in interval < 0, tk > (Fig. 9),

or in [13]:

ϕH(t) = A0 +

n∑

i=1

Ai sin (ωit + αi,0), for t ∈< 0, tk >, (34)

where
Ai – amplitudes,
ωi – frequencies,
αi,0 – phase angles.

As the decisive variables in the optimisation task we can choose:

X =
[
ϕ0

H , ϕ
1
H , . . . , ϕ

m
H

]T
(see Fig.9) (35)

in case (31), i.e. when spline functions are applied, or:

X =
[
A0, A1, ω1, α1,0, . . . , An, ωn, αn,0

]T (36)

in the case when a pseudo-harmonic response is assumed.



LOAD STABILISATION IN AN A-FRAME – A TYPE OF AN OFFSHORE CRANE 51

Fig. 9. The decisive variables

In either case, at every step of the optimisation, the equations of motion
of the system have to be integrated for t ∈ 〈0, tk〉 in order to calculate the
value of the functional Ω1,2 from (24). Such an approach requires high nu-
merical efficiency in solving A-frame equations of motion. For that reason
the optimisation problem has been solved for the simplified model of an
A-frame.

Fig. 10. Scheme of the simplified model

In the simplified model of an A-frame, ideal stiffness of the frame has
been assumed. The rope as the most flexible part of the system essentially
influences dynamics of the load. Thus, the flexibility of the rope has been
taken into consideration. However, it should be underlined that flexibility of
the frame and servo-motors can be significant. Doctoral thesis [5] presents
problems of stabilization of the load at the given depth where this flexibility
is important. However, in some problems, the flexibility of the frame can
be neglected, which is the case for the model presented in Fig. 10. The
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water damping ratio has not been taken into account. Ship motion has been
assumed to be determined, by known functions:



xC ,1 = xC ,1 (t)
yC ,2 = yC ,2 (t)
zC ,3 = zC ,3 (t)
ϕx ,1 = ϕx ,1 (t)
ϕx ,2 = ϕx ,2 (t)
ϕx ,3 = ϕx ,3 (t)

. (37)

This means that matrix TD from (11) has the form:

TD =



cϕx,3 cϕx,2 cϕx,3 sϕx,2 sϕx,1 − sϕx,3 cϕx,1 cϕx,3 sϕx,2 cϕx,1 + sϕx,3 sϕx,1 xC,1

sϕx,3 cϕx,2 sϕx,3 sϕx,2 sϕx,1 + cϕx,3 cϕx,1 sϕx,3 sϕx,2 cϕx,1 − cϕx,3 sϕx,1 xC,2

−sϕx,2 cϕx,2 sϕx,1 cϕx,2 cϕx,1 xC,3

0 0 0 1


,

(38)

where cϕ=cosϕ and sϕ=sinϕ.
The frame angles are assumed to be constant.
Kinetic and potential energies of the system can be expressed in the

form:

T =
1
2
mL

(
ẋ2

L,1 + ẋ2
L,2 + ẋ2

L,3

)
, (39)

V =
1
2
δRcR∆2

R + mLgxL,3, (40)

D =
1
2
δRdR∆̇R, (41)

where δR, cR, dR are defined in (26),

∆R = |DB| + |BN | − l0 + ϕHrH .

Lagrange’s equations of the second order have been used to determine the
equations of motion of the system. The details are presented in [6]. These
differential equations of the second order have been integrated using the
Runge-Kutta method. The Nelder-Meads method has been applied in order
to solve the optimisation task.
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4. Numerical simulations

It should be mentioned that the numerical model of the A-frame pre-
sented in section 2 has been used in the Norwegian company TTS-Aktro
from Molde for a fast analysis of forces and stresses at the initial stage of
choosing parameters of the system and for cost calculations. In order to
verify the model, the results obtained using our program (RFEM) have been
compared with those obtained using commercial FEM program (NASTRAN
package) [7]. Static analysis has been carried out for a model prepared with
a Hyper Mash package using shell elements TRIA3 and QUAD4. Volume
elements HEXA8 have been used to model a cylindrical eye of the frame
while the connection of the frame with pivoting point has been modelled us-
ing CBEAM elements. Calculations carried out using NASTRAN have been
much more time consuming in comparison with the authors’ programme and
it was due to a large number of elements used in discretisation of the frame.
There have been compared reactions in joints, stresses and deflections of
beams obtained. Some examples are presented in Fig. 11.

Fig. 11. Comparison of FEM and RFEM models

Dynamic analysis has been carried out by ADAMS-ANSYS package.
Primary discretisation of the frame into 1536 SHELL63 elements has been
done using ANSYS. Connections of the frame with the deck and servo-
motors have been modelled using 97 BEAM4 elements. Having performed
the modal analysis the model has been transferred to ADAMS. 30 modes
have been considered in further calculations. A comparison of the results
obtained using RFEM model with those from ADAMS-ANSYS systems in
dynamical conditions can be found in [5] and some of them are presented in
Fig. 12. Small vibrations seen in the graph are due to the fact that damping
has not been taken into account in the numerical model.

Numerical simulations related to the load stabilisation problem have been
carried out for the rectangular A-frame with lifting capacity up to 100 Mg.
The main geometrical parameters of the crane are presented in Fig. 13.



54 IWONA ADAMIEC-WÓJCIK, PAWEŁ FAŁAT, ANDRZEJ MACZYŃSKI, STANISŁAW WOJCIECH

Fig. 12. Comparison of RFEM and Ansys-Adams models: a)vertical reaction in the A-frame leg;

b) force in the servo-motor

Fig. 13. Geometrical parameters of the A-frame

The value of load coordinates xL,3, for which the optimisation process
has been carried out is h=-300 m, mass of load mL=100 Mg, and the motion
of the ship is defined as:



xc,1 (t) = 1 sin
(
2π
6

t
)

xc,2 (t) = 0

xc,3 (t) = 2 sin
(
2π
12

t
)

ϕx,1 = 0
ϕx,2 = 0
ϕx,3 = 0

. (42)
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In the figures, the following denotations are used: Ω1, Ω2 – curves ob-
tained according to (31) and (32), respectively, S, H – curves obtained accord-
ing to (33) and (34). Fig. 14 shows time courses of coordinate xL,3 obtained
according to the full (presented in section 2) and the simplified model. In
this case, the hoisting winch was motionless. The results of simulations are
almost the same.

Fig. 14. Time courses of coordinates xL,3

Because the simplified model is much more numerically efficient, the
optimisation process has been solved for this model. Time courses of drive
functions of the drum defined during the optimisation process are presented
in Fig. 15.

Fig. 15. Drive functions of drum after optimisation
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As we can see, insignificant differences occurred between these drive
functions. Drive functions obtained during optimisation have been taken as
inputs of drum motion in the full model, so the simulations presented below
have been carried out according to the model from section 2. Fig. 16 shows
time courses of the coordinate xL,3 obtained when the drum of the hoisting
winch was motionless and when its motion was determined by function after
optimisation (regardless of the type of the objective function and type of the
drive function). The amplitude of load oscillations has been decreased from
2 m to near zero.

Fig. 16. Coordinate xL3 before and after optimisation

Fig. 17. Coordinate xL,3 after optimisation for different type of objective and drive functions
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Fig. 18. Coordinate xL,3 after optimisation for pseudo-harmonic drive function

Time courses of the coordinate xL,3 obtained for different types of objec-
tive functions and drive functions are presented in Fig. 17. Fig. 18 presents in
detail the courses for the pseudo-harmonic drive function (34) and different
types of objective functions.

5. Final remarks

The model of an A-frame based on the rigid finite element method has
proved to be a useful instrument for carrying out dynamic analyses of this
kind of cranes. This model is more numerically-effective than the previous
model presented in [5] – Fig. 3. In the new model, it is not necessary to take
into account 12 reactions and respective equations of constraints.

Numerical simulations presented in the paper confirm the significant
efficiency of the proposed method of optimisation of drive functions of the
drum where the main goal of the optimisation process is the stabilisation of
the load position. Because the optimisation task has been carried out for the
simplified model, the method is sufficiently effective.

The drive functions of the hosting drum calculated for specific wave
systems would be permanently stored in the A-frame control system memory
(forming the so-called “map of basic drive functions”). Functions for other
wave systems would be determined by the control system in real time, based
on approximation. Of course, the wave system is not a single parameter
which has to be taken into account. Mass of the load and length of the
rope are particularly important. During the construction of the „map of basic
drive functions”, the knowledge of sensitivity of load stabilisation to these
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remaining parameters is essential. This problem should be discussed in our
future works.

For the motion of the ship discussed, the pseudo-harmonic drive func-
tions are slightly better than spline functions. Amplitudes of load oscillations
in the xL,3 direction are, for pseudo-harmonic functions, about 8 times smaller
then for the spline function and the objective function Ω1. When the objec-
tive function Ω2 is taken, the results obtained are worst. However, when the
system of waves is more complicated, the spline functions may be more
useful.

Both objective functions, that is the average and the maximal value of
deviation of load position from the demanded level, are acceptable in practice.
There are no significant differences between the results obtained for the two
functions.

In real conditions, there are additional phenomena that can influence the
quality of the stabilisation of the load position. There may be, for example,
inaccurate definition of parameters of the crane. We should also remember
that the rope interacts with the load and the environment mainly at low levels
of depths, where water currents and waves are strong. Especially, in some
conditions, a taut-slack phenomenon of a marine cable-body system can be
significant [9], [10]. Vertical oscillations of the load induced by taut-slack
phenomenon makes it more difficult to stabilise the load. An error-actuated
control system for motion of the drum of the hoisting winch can minimise
the impact of all those phenomena. Those problems will be addressed in our
future research.

Manuscript received by Editorial Board, November 14, 2008;
final version, April 02, 2009.
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Stabilizacja ładunku w żurawiu morskim typu A-rama

S t r e s z c z e n i e

W pracy przedstawiono model dynamiczny żurawia typu A-rama. Do dyskretyzacji podatnej
struktury (ramy) zastosowano metodę sztywnych elementów skończonych (SES). Zaproponowano
zastosowanie metod optymalizacyjnych do określenia przebiegu funkcji napędowej wciągarki. Celem
optymalizacji było zapewnienie stabilizacji położenia ładunku. Aby uzyskać zadowalającą efek-
tywność numeryczną, zadanie optymalizacji rozwiązywano dla uproszczonego modelu A-ramy.
Porównano wyniki obliczeń numerycznych uzyskanych dla różnych funkcji celu i różnych typów
funkcji napędowych.


