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The actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in 

particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite 

element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in 

determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern 

computational complexes do not include a functional for calculating the load-bearing capacity of an element 

according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software 

tools for automating the computation process. The article presents the method for calculating flexural stiffness 

and moment of inertia of a beam construction system by its own frequencies. The method includes calculation 

algorithm realizing the finite element method.  

Keywords: Dynamics, building system, frequency of natural oscillations, flexural stiffness, finite-element 
method

1. INTRODUCTION

Non-destructive methods for monitoring the operational reliability of building objects are promising 

[19], one of which is the control of dynamic parameters of building systems. High-precision seismic 

and vibration digital equipment requisite for registration of oscillatory processes allows obtaining 

reliable information on the dynamics of structures [5,7,8,11]. This information is used to survey the 
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technical condition [4,7,8]. The idea of monitoring dynamic parameters of a building system for 

analysing its internal structure is not new. For example, V. Volkovas [4,18] explore structural 

defects in buildings using frequency-time analysis and determine in detail the dependence of 

resonant oscillation frequencies of damaged building frame on the type and direction of the defect. 

In works [3,10,15] the response to seismic action of various structures with the purpose of their 

diagnostics is researched. 

It’s known, that defects and damages of building constructions appearing at an assembling and 

exploitation stage lead to changes in the resonant frequencies of natural oscillations and damping 

properties of constructional material of buildings or structures [7,11,14]. In particular, the majority 

of defects reduce the actual values of flexural stiffness as compared with its design value. Natural 

oscillations of a building system always occur along the most damaged section [5], which makes it 

possible to estimate the current resource of carrying capacity.  

To make the method of stiffness analysis applicable to a wider range of design construction 

solutions, a study is needed on the application of Finite Element Method (FEM) to calculating 

stiffness from known frequencies of natural oscillations. For this, it is necessary to calculate the 

flexural stiffness and the moment of inertia of the cross section of system elements working on 

flexural under oscillations. That is, the solution of the problem of calculating the resonant 

frequencies in inverse form. The complexity of such calculations is determined by the need to 

consider the dynamic work of the entire construction system as a whole and is analogous to direct 

modelling and calculation of structures with load-bearing capacity. Therefore, the application of 

FEM method for solving such problems becomes more relevant, because it creates the base for 

software development for automation of calculations [9]. However, in modern literature there are no 

studies and recommendations for solving the inverse problem, taking into account the specificity of 

FEM method. In modern design complexes, such as SCAD Office, ANSYS, LIRA SAPR, etc., 

there is no suitable functionality that allows ignoring the specification of the cross-section 

characteristics and introducing the eigenvalue of resonant frequencies for the simulated element. 

Thus, the objective of the study is to develop the algorithm for calculating flexural stiffness of 

building systems by finite element method using natural oscillation frequencies. To achieve this 

objective it’s necessary to solve following tasks:

1. To consider FEM for calculation flexural stiffness from resonant frequencies. 

2. To determine an interrelation of compliance in finite elements (FE) of the design scheme of a 

building system with resonant frequencies. 

3. To develop an algorithm for calculating the stiffness at fundamental frequency and at higher 
frequencies. 

90 A. NESTERENKO, G. STOLPOVSKIY, M. NESTERENKO



4. To verify the method over numerical experiment with finite element model of beam on two 

supports. 

2. THE DESCRIPTION OF THE METHOD

Currently, frequencies of natural oscillations can be determined by finite element displacement 

analysis [6,12], less often used mixed methods [17] or analytical methods [2]. But for solving 

problem of calculating flexural stiffness over dynamic tests of structures, it’s necessary to get more 

simple method, which connects frequencies of natural oscillations with stiffness at the point of a

system.  

Finite element modelling allows considering every mass of a mechanic system as a system with a 

single degree of freedom but with specific boundary conditions defined by adjacent finite elements. 

Differential equations of oscillations for a system with a single degree of freedom: 

,

where: 

— Acceleration of displacement of a mass m; — displacement of a mass m; — angular 

frequency of natural oscillations. is determined as:

(2.1) ,

where:  

— mass displacement under single force. Parameter can also be called as compliance and is 

connected with stiffness of whole multimass system over boundary conditions. 

As it’s known fundamental frequency of mechanic system is the lowest one, so in respect with Eq. 

(2.1) it’s necessary to determine mass with maximum value of compliance .

Let’s consider the solution of inverse problem, considering conclusion above. Inverse problem 

involves calculation flexural stiffness of a structure system over frequencies of natural oscillations 

with the use of FEM. In building constructions with a three-dimensional coordinate system, one 

linear dimension — length, significantly exceeds the other two. Transverse deformations far exceed 

longitudinal ones, therefore, when describing oscillatory processes in building constructions, axial 

compression (extension) is often neglected. Linear stiffness is replaced by a flexural stiffness, 
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which is determined as , where E — material module of elasticity; J — moment of inertia of 

cross-section of flexural element.

The main expression of FEM method is written as follows [1]: 

(2.2) ,

where the finite element stiffness matrix [K] connects the joint displacements {q} and joint loads of 

the element {R}. The physical meaning of elements of stiffness matrix [K] is as follows [1]. The 

element is numerically equal to the reactive force in the i-th direction with a unit displacement 

along the j-th direction qj = 1 ( ; p — is the quantity of possible deformations in FE 

system). Each element includes a factor (EJ)G, which characterizes the flexural stiffness Bi of 

the finite element G in the i-th direction. For all directions, flexural stiffness (EJ)G of the finite 

element is the same, and in the inverse problem it is not known. Then, Eq. (2.2) in the expanded 

form for the case of one FE can be written as [1]:

(2.3) ,

where:  

G — number of finite element.

When analyzing the natural oscillations of rod structure systems, the most optimal is the use of 

beam FE, since it takes into account transverse and angular deformations, and longitudinal ones are 

not. Filling of local stiffness matrices occurs with force values from the corresponding unit 

displacements (Fig. 1.a). These values are determined in advance by the force method and are 

referential (Fig. 1.b).  

For each FE flexural stiffness (EJ)G will be different, so each new FE of the system will add one 

variable while formation of global stiffness matrix (GSM) D x D (D = 2xS, where S — is the 

number of joints in calculation scheme, 2 — accepted number of degrees of freedom in the joint).

Thus stiffness values in the common joints (for two adjacent FE) consist of two summands, which 

are unknown. When solving the inverse problem, the number of values of resonant frequencies 

exceeds the number of variable stiffness values, thus it is not possible to solve a system of linear 

algebraic equations. For solution, it is possible to replace the unknown factors (EJ)G by a unit factor 

for all local matrices (EJ)AV, which will reflect the average flexural stiffness for the whole FE 

system. After the replacement, we get the global stiffness matrix in a general form (Fig. 2).
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Fig. 1. Calculation scheme of beam FE ([1] with clarifications): a) depiction of unit displacement; b) reaction 
values at the joints of the FE. Designation: l — length of FE; qi — unit displacement in direction i; kij — joint 
force in direction i because of unit displacement j; — flexural moment diagram from a unit displacement 

qj

Fig. 2. Global stiffness matrix with average stiffness for all FE in a general form. Designations: (EJ)AV —
average flexural stiffness 

In the works of many specialists compliance is defined as the inverse of system stiffness and equal 

to displacement of system point from the unit applied loads [5,14]. Then, to determine the 

compliance in all directions of deformations of FE system, it is necessary in Eq. (2.2) to take joint 

loads equal to 1, and to solve the resulting Eq. (2.4).
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(2.4)

After deriving displacement-vector from FEM expression we get compliance in i-th direction of a 

system:

(2.5)

Considering Eq. (2.1), Eq. (2.5) and assumption of interrelation resonant frequency with 
maximum compliance, the general formula for resonant frequency of natural oscillations for FE
system [16]:

(2.6) ,

where:  

— Compliance in i-th direction of a system with maximum value; — mass of 

corresponding G-th FE. Mass can be replaced by moment of inertia in case of anguar 

deformations.

Consequently, from the Eq. (2.6) it is possible to derive the compliance value qi,max: 

(2.7) .

Having replaced by (as in Eq. (2.5)), average flexural stiffness of a system for 

the adopted simplification will be:

(2.8) ,

(2.9) .

Here Eq. (2.8) — formula for determining average flexural stiffness (EJ)AV for the case of linear 

deformations with mass m as an inertial characteristic; Eq. (2.9) — for the case of angular 

deformations with axial moment of inertia Jm with the center in the joint i. 

3. VERIFICATION OF THE METHOD

Verification of the method is carried out over numerical experiment with example of the beam on 

two supports (Fig. 3). The cross section is rectangular; the beam has a uniform stiffness along the 

length and 5 joints with concentrated masses in them. Degree of freedom of the whole system is 3 
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since masses 1, 5 are situated on supports, so the number of resonant frequencies is also 3. The 

parameters of the structure under study are shown in Table 1. It's necessary to calculate the values 

of flexural stiffness and moment of inertia of the beam by FE method. Then compare the obtained 

values with the characteristics indicated in Table 1.

Fig. 3. Calculation scheme of the beam with finite element approximation and global numbering of 
displacements. Designations: I, II, III, IV — numbers of FE; 1,2,3,4 — joints of FE; * — dimensions in mm; 

X,Y,Z — axis identifications 

Table 1 — Characteristics of the experimental beam* 

No Parameter Units of measurement Value

1 Material - Wood, pine II grade

2 Module of elasticity E MPa 10000

3 Density ρ kg/m3 500

4 Width of cross-section b mm 100

5 Height of cross-section h mm 200

6 Finite element size l mm 1250

6 Moment of inertia of cross-section JY cm4 6666.67

8 Flexural stiffness of cross-section BY Nm 666667

9 First resonant frequency Hz (rad/s) 14.7 (92.3)

10 Second resonant frequency Hz (rad/s) 68.41 (429.63)

11 Third resonant frequency Hz (rad/s) 138.01 (866.72)

* — Values in accordance with GOST 8686-86 and SP 64.13330.2011 (Russian state standards). 

The beam is divided into 4 finite elements and there are 5 joints with masses concentrated in them. 

It is necessary to fill 4 local stiffness matrices. The number of possible displacements in a joint and 

the number of joints determine the size of global stiffness matrix. In this case, the number of joints 

is 5 with transverse and angular displacement in each (Fig. 5). Size of the global stiffness matrix is 

D = 5x2 = 5. Flexural stiffness for each finite element (EJ)G was replaced by one average flexural 

stiffness (EJ)AV, then local stiffness matrices for each finite element will be equal, since in this case 

the lengths l of finite elements are equal. For ease of understanding, designation of the joint 

METHOD OF CALCULATION FLEXURAL STIFFNESS OVER NATURAL... 95



displacements qi is replaced by the linear transverse displacements Vi and the angular displacements 

θi. Next we can write down the basic FEM equation with taking into account boundary conditions 

of V1 = 0 and V5 = 0 (Fig. 4). Force values in the common joints of the system are outlined with 

square in matrix. 

Fig. 4. Equation of the FEM for the considered beam with boundary conditions 

For calculation of flexural stiffness, it is necessary to get inertial characteristics of the system. 

Calculate masses and moments of inertia of each joint and fill the corresponding matrices: 

;

where m1, m2, m3, m4, m5 — masses concentrated at joints 1,2,3,4,5; , , , , —

moments of inertia about masses 1, 2, 3, 4, 5.

3.1. CALCULATION OVER THE FREQUENCIES

Having solved the system of algebraic equations we get compliances in the joints (Table 2). Joint 3 

of the beam has the maximum linear compliance V and joint 1 has maximum angular compliance. 

Then if we plot a graph over linear compliance values for the points 2, 3, 4 (Fig. 5, a), we’ll get a 

curve close to the first form of beam oscillations. Thus, joint compliance allocation can define an 

oscillation form of a system.  

96 A. NESTERENKO, G. STOLPOVSKIY, M. NESTERENKO



The results of calculating the flexural stiffness and the moment of inertia at the first frequency are 

listed in Table 2. In the Table 2 let’s compare columns for every joint: 4-5 (calculated and factual 

flexural stiffness) and 7-8 (calculated and factual moment of inertia). As we can see, the minimum 

difference in % between the calculated and factual values was obtained at joint 3 over linear 

compliance; maximum linear compliance was observed also in this direction. The stiffness and 

moments of inertia at the rest joints and directions are not correct, since the difference with the 

actual values is more than 25%. At the joint 1, despite maximum value of angular compliance 

difference between calculated and factual stiffness is 95.37%. Consequently, the frequency of 

natural oscillations of the structure system element is determined from the joint on the system with 

maximum linear compliance. The values in the remaining joints do not determine the first 

frequency and do not carry information from the point of view of determining the stiffness.

Fig. 5. Natural oscillation forms of the beam: a) First form; b) Second form; c) Third form 

Table 2. Values of flexural stiffness and moment of inertia calculated over the first frequency. 

Comparison with initial data values 

No
joint Direction Compliance, 

m/N (rad/sec)

Calculated 
flexural 

stiffness BY,
Nm2

Factual 
flexural 
stiffness 
BY,0, Nm2

Difference,
%

Calculated 
moment of 

inertia JY, cm4

Factual 
moment of 

inertia
JY,0, cm4

Difference,
%

1 2 3 4 5 6 7 8 9

1 30880

666667

95.37 308.8

6666.67

95.37

2
494119 25.89 4941.19 25.89

39160 94.13 391.6 94.13

3 666634 <0,01 6666.34 <0,01
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1458 >99 14.58 >99

4
452587 32.11 4525.87 32.11

37716 94.34 377.16 94.34

5 23683 96.45 236.83 96.45

As a result, we get average value of flexural stiffness of the all system by the first resonant 

frequency of natural oscillations . To calculate the stiffness with respect to the second natural 

frequency , consider the total energy of the elastic oscillations in the joints 2, 3, 4 at the first 

frequency . In this case, we replace the oscillation amplitude by the compliance V for the case of 

unit loads: ; ; . The masses of joints 2, 3, 4 are equal, but the 

compliances are different, therefore, depending on the compliance values at these points, the 

following will be true: Emax>Emax-1>Emax-2. Here Emax — the oscillation energy at the point with the 

maximum compliance from the three points considered 2,3,4; Emax-1 — the energy of oscillations at 

the point with the following in the direction of decrease by the compliance value; Emax-2 — the 

oscillation energy at the point with the minimum compliance from the three points considered 2,3,4.

To appearance the second form of oscillations, the following conditions must be met: 

.

This condition can only be fulfilled if the point with Emax is immovable. Therefore, at a vibration 

frequency , the linear displacements of the V point with Emax will be zero. Thus, to calculate the 

maximum compliance for oscillations at the second frequency and the second form, it is 

necessary to assign boundary conditions for which the point with Emax has zero linear 

displacements. To this end, in accordance with FEM, it is necessary to remove from the global 

stiffness matrix of construction rows and columns with numbers of vertical displacement at the 

point with Emax.

To perform the second cycle of calculations for , we assign boundary conditions with allowance 

for linear immobility of joint with maximum energy (in this case that is joint 3 with linear 

deformations). The results of calculating flexural stiffness over the second frequency are 

presented in Table 3.

Table 3. Values of flexural stiffness and moment of inertia calculated over the second frequency. 

Comparison with initial data values 
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No
joint Direction

Corresponding 
linear compliance, 

m/N

Calculated 
flexural 

stiffness BY,
Nm2

Factual 
flexural 
stiffness 
BY,0, Nm2

Difference,
%

Calculated 
moment of 
inertia JY,

cm4

Factual 
moment of 

inertia
JY,0, cm4

Difference,
%

1 2 3 4 5 6 7 8 9

1 99425

666667

85.09 994

6666.67

85.09

2
666805 <0.01 6668 <0.01

3009 >99 31 >99

3 17150 97.43 172 97.43

4
71526 89.27 715 89.27

28583 95.71 286 95.71

5 45152 93.23 451 93.23

The maximum linear compliance at this stage of calculation is observed at the joint 2 of the beam; 

the maximum angular compliance is observed at joint 1. At the same time the minimum difference 

in % between calculated and actual values was obtained only at the joint 2 over linear direction. To 

construct forms of natural oscillations at the second frequency , we must take into account their 

orthogonality property which performs as follows [13]: 

(3.2.1) ,

where:  

— first resonant frequency; — second resonant frequency; — system mass in point 1; 

— system mass in the point 2; — amplitude in point 1 with frequency ; — amplitude 

in point 1 with frequency ; — amplitude in point 2 with frequency ; — amplitude in 

point 2 with frequency . If (basic case), and if to replace amplitude A to displacement 

from single load (compliance ), then we get: 

(3.2.2) .

After clarification of compliance V in joints 3, 4, we get a second form of natural oscillations (Fig. 

5, b).  

To get flexural stiffness from the third frequency , we repeat algorithm: complement boundary 

conditions from second cycle of calculation with allowance for the linear immobility of joint with

maximum energy (joint 2 over linear deformations). Joints 2, 3 now have a nominal supports. 

Table 4. Values of flexural stiffness and moment of inertia calculated over the third frequency. 

Comparison with initial data values 
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No 
joint Direction

Corresponding 
linear compliance, 

m/N

Calculated 
flexural 

stiffness BY,
Nm2

Factual 
flexural 
stiffness 
BY,0, Nm2

Difference,
%

Calculated 
moment of 
inertia JY,

cm4

Factual 
moment of 

inertia
JY,0, cm4

Difference,
%

1 2 3 4 5 6 7 8 9

1 163071

666667

75.54 1631

6666.67

75.54

2 108977 83.65 1090 83.65

3 196689 70.5 1967 70.5

4
666693 <0.1 6666.93 <0.1

82263 87.66 823 87.66

5 118044 89.29 1180 89.29

The maximum linear compliance at this stage of calculation is observed at the joint 4 of the beam;

maximum angular compliance — at the joint 1. At the same time the minimum difference in %

between calculated and actual values was obtained only at the joint 4 over linear direction. Having 

used orthogonality property, we get third form of natural oscillations (Fig. 5, c). 

So, over the known frequencies, it is possible to determine only average flexural stiffness, since in 

calculating at different frequencies the same equations are considered, but with different boundary 

conditions. As we see from paragraph 3, quantity of unknowns in the global stiffness matrix is 

always G (where G is the number of finite elements), while the input value of the natural frequency 

is one. Thus, it is not possible to determine the stiffness in each FE.

However, if we take the values of compliances as the input data for solving such a problem, then 

the number of unknowns will be less than the number of elements in the column by G/D times (D

is the number of displacements in the model, the number of rows in the GSM), and the problem will 

be possible to solve. Compliances at key points of a structure can be determined by the method of 

forced oscillations [16], which implies the use of a digital harmonic oscillator. This method is time 

consuming and requires further research in the application of it to solve the problem considered. 

Nevertheless, obtaining information about the flexural stiffness (and, in fact, bearing capacity) at 

any desired point of the structure gives a significant reserve for the development of vibration 

methods for diagnosing the technical condition of construction projects.

4. CONCLUSIONS

The method for calculation flexural stiffness and moment of inertia of the cross section according to 

the given values of resonant frequencies is considered. The algorithm for estimation of these 

parameters by the FEM is developed, in particular, the algorithm for calculating stiffness and 
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moment of inertia at basic and higher frequencies. Verification of the method is conducted on 

example of the beam on two supports. Forms of natural oscillations are verified with results in the 

LIRA CAD software package.

The results of the work lead to the following conclusions. 

1. Calculation of resonant frequency and, conversely, flexural stiffness and moment of inertia is 

possible only for the joint with maximum compliance of a system. 

2. At resonance frequency, it is possible to determine only the average stiffness in the direction in 

question. 

3. In order to calculate stiffness at second and higher frequencies, it is required to fix the linear 

movements of the previous point with maximum compliance. To do this, the boundary conditions 

for a system are supplemented; rows and columns with the number of the given point are deleted 

additionally from the global stiffness matrix. 

4. For getting natural oscillation forms, it is necessary to clarify compliance values, which is gained 

in every stage of calculation, by orthogonality property.  

The considered algorithm is the basis of software for analysis actual stiffness and residual life of 

building and structures. The evolution prospect of this algorithm lies in the development of 

instrumental diagnosis of buildings and structures. One of directions in development is an 

experimental determination of compliance in required joints of a surveyed structure and 

introduction of values into the calculation of actual stiffness. This makes it possible to analyze 

flexural stiffness in more detail. Analysis of defects and damages, as well as comparison of the 

actual flexural stiffness and moment of inertia with their design values, allows analyzing the 

operational reliability of construction object with sufficient accuracy, which will significantly 

increase the safety of its operation and reduce the material costs for reinforcement or reconstruction. 
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METHOD OF CALCULATION FLEXURAL STIFFNESS OVER NATURAL OSCILLATIONS

FREQUENCIES 
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SUMMARY: 

The actual load-bearing capacity of elements of a building system, including flexural stiffness and moment of inertia of 

the cross section, can be calculated by dynamic parameters, in particular the resonant (natural) frequency and 

compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the 

article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects 

reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating 

the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the 

basis for development of software tools for automating the computation process. The article presents the method for 

calculating flexural stiffness and moment of inertia of a beam construction system at its own frequencies. The method 

includes calculation algorithm realizing the finite element method. The performed studies revealed the dependence of 

the value of the natural frequency, flexural stiffness and moment of inertia from the joint of a beam with maximum 

linear compliance. It is proved that it is possible to determine the average stiffness in the considered direction at the 

resonant frequency, and the number of resonant frequencies is not related to the number of points of the system where it 

is possible to determine flexural stiffness. The algorithm for calculating stiffness at the second and higher frequencies is 

obtained. In order to calculate stiffness at the second and higher frequencies, it is required to fix linear movements of 

the previous point with maximum compliance. To do this, the boundary conditions for the system are supplemented and 

rows and columns with the number of the given point are deleted additionally from the global stiffness matrix. The 

approach for constructing vibration modes is obtained from the compliance values. For getting natural oscillation forms, 

it is necessary to clarify compliance values, which is gained in every stage of calculation, by orthogonality property.  

Verification of the method is made by numerical experiment with beam on two supports. There is comparison of the 

vibration modes constructed from compliance values with the ones gained from modelling in calculation complex. The 

evolution prospect of this algorithm lies in the development of instrumental diagnosis of buildings and structures. One 

of directions in development is an experimental determination of compliance in required joints of the surveyed structure 

and introduction of the values into the calculation of actual stiffness.  
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