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NONLINEAR LONGITUDINAL SHEAR DISTRIBUTION
IN STEEL-CONCRETE COMPOSITE BEAMS

B. GRZESZYKOWSKI', E. SZMIGIERA’

This paper describes a fiber-based model proposed for computing the nonlinear longitudinal shear distribution in
composite steel-concrete beams. The presented method incorporates the accurate stress-strain relationship with strain
softening for concrete and bi-linear constitutive relation for structural steel, both in agreement with Eurocodes, however
any one-dimensional constitutive relation can be used. The numerical solution for a simply supported beams loaded
with the uniform load, concentrated force and both was presented. The results indicate that the highest value of the
shear flow for a beam under an uniform load is at the ends and in the one third of the span length and for the point load,

the maximum shear is in the proximity of the concentrated force.

Keywords: composite beam, steel, concrete, longitudinal shear, shear flow, fiber element method, non-ductile shear
connectors

1. INTRODUCTION

In [1] shear connection in composite steel-concrete beams shall be provided to transmit the
longitudinal shear force between the concrete and the structural steel element, ignoring the effect of
natural bond between both materials and considering an appropriate distribution of design
longitudinal shear force. No additional checks on the adequacy of the shear connection are required
if the number of shear connectors, distributed between a point of maximum sagging bending
moment and an adjacent support, is provided in accordance with the longitudinal shear calculated

by elastic theory. However such design is not economical, because the bending moment resistance
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also has to be calculated using elastic theory. The design of composite beams for the ultimate
ending momentcapacity gives significant savings in materials consumption. In this paper only
beams with full shear connection are considered.

It is possible to apply either an uniform or a non-uniform spacing of shear connectors along
the beam designed for the ultimate bending moment resistance M, zs. To apply the uniform spacing
of shear connectors they shall have sufficient deformation capacity (ductility) to justify any inelastic
redistribution of the longitudinal shear. According to [1], a connector may be taken as ductile if its
characteristic slip capacity is at least 6 mm (Fig. 1a). But in standard [1] only headed studs with an
overall length after welding not less than 4 times the diameter, and with a shank of nominal
diameter not less than 16 mm and not greater than 25 mm may be considered as ductile, provided
that a beam is designed with full shear connection. Where the above rules are not met and an
uniform spacing of shear connectors is to be used nevertheless, the design should be based on tests,
carried out in a way that provides information on the properties of the shear connection required for
design in accordance with standard [1]. Where the shear connectors are used in T-beams with a
concrete slab of uniform thickness, standard push-out tests may be used (Fig. 1a). The slip capacity
of a specimen should be taken as the maximum slip measured at the characteristic load level. The
characteristic slip capacity should be taken as the minimum test value of the slip capacity reduced
by 10 % or determined by statistical evaluation from all the test results. If the deviation from the
mean exceeds 10%, at least three more tests of the same kind should be made. All the above regulations

cause checking whether the shear connectors are ductile enough costly and time consuming.

a) b)

A slip demand = 6 mm
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Fig. 1. a) Typical shear strength — slip characteristics for ductile and non-ductile shear connectors,

b) different types of non-ductile shear connectors [2]
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If shear connectors are not proven to be ductile enough or they are rigid (have insignificant
deformations in the proximity of ultimate strength), spacing of shear connectors should be adjusted
to the nonlinear longitudinal shear distribution computed using non-linear theory [1]. Moreover, for
heavy loaded composite beams with substantial longitudinal shear force on the interface of steel and
concrete, connectors with very high shear capacity are needed. This may be in a direct contradiction
with their ductility and therefore only rigid connectors will have sufficient shear strength (Fig. 1b).
Composite dowels are the example of a high-strength shear connectors in steel-concrete composite
girders [3], [4]. Compared to headed studs they provide an increased strength but not necessarily
(only after meeting certain design conditions) the required deformation capacity. Bending resistance
of composite cross-sections with non-ductile shear connectors was the subject of a study in [5]. This
paper describes a nonlinear fiber-based model proposed for computing the strain and stress state in
composite steel-concrete beams that can be used to determine the nonlinear longitudinal shear
distribution on the interface of both materials. The numerical solution for a simply supported beams

loaded with uniform load, concentrated force and both is presented.

2. DESCRIPTION OF THE NUMERICAL ANALYSIS

2.1. FIBER ELEMENT METHOD

Nonlinear fiber based methods have been widely described in the literature in the past. For example
in [6] this method was used to analyse the strength of reinforced concrete columns, in [7] and [8]
the ultimate bearing capacity of composite steel-concrete columns and in [9] to analyse the
behaviour of composite beams. In the fiber element method a composite cross section is discretized
into a cluster of fiber elements as shown in Fig. 2. Each fiber element is assigned with material
properties appropriate for a given material and represents a theoretical fiber that can deform
longitudinally along the beam. It is assumed in this analysis that the slip between steel and concrete
does not occur (infinitely rigid connectors) and plane cross-sections remain plane and perpendicular
to the centroidal axis after the deformation occurs. Material fibers within the cross sections are
subjected to uniaxial stress states and uplift forces are resisted by shear connectors without
separation, so the concrete slab and the steel beam deflect equally at every cross section of a beam.

Equilibrium of the composite cross section is dependent upon the following equations

2.0 N=[odi+[odi=0
A, A,
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(22) M= [zo.dd+| zo,dA

% o
where N is the resultant axial force equal to 0 in beams under bending only; Mg, is the global
bending moment resistance of the composite profile; a;, o, are respectively the normal stresses in
steel and concrete parts of the cross section and A, 4. are respectively the area of the steel profile
and the concrete slab. The discretised version of the force equilibrium equation for the cross section

depicted in Fig. 2 can be written as follows

(23) N= bCAhciad + iAy.av =0

i=1 j=1

and the moment equilibrium equation is equal

24 M= b(.Ah(.iO'dz[ + iAstijj =0

i=1 Jj=1
where b, is the width of the concrete flange, Ak, is the thickness of single layer of concrete; Ay is
the area of the j-th layer of steel; oy, o.; denote respectively the normal stresses in j-th steel and i-th
concrete part of the cross section and z;, z; are respectively the distance of the j-th steel and i-th
concrete layer from the top of the cross section.

The distribution of the strain in the cross section that satisfies the force equilibrium given by
the Eq. (2.3) can be evaluated using as control parameter the strain of the top concrete fibre ... Next
the depth of the compression zone x for a given strain and stress distribution in the cross section can
be calculated. This step requires an iterative process to solve the non-linear equation (2.3).
Subsequently from the Eq. (2.4) the bending moment resistance, as a resultant of the computed
stress distribution, can be calculated. Then the calculations should be repeated until the full
spectrum of solutions is obtained and the strain in the top fibre reaches the maximum value ¢, <
eau1- For €., = €., the bending moment resistance is equal to the ultimate bending moment resistance

My, ra.
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Fig. 2. Distribution of a) strain and b) stress in composite steel-concrete cross section

2.2. MATERIAL MODELS

Where the bending resistance of a composite cross section is determined by non-linear theory,
according to [1] the stresses in the concrete should be derived from the stress-strain curves given in
standard [10]. The stresses in structural steel should be derived from the bi-linear constitutive
relationship given in [11] and should take account of the effects of the method of construction (e.g.
propped or unpropped beams). It is assumed in this analysis that all beams under consideration are
propped. For concrete the nonlinear stress-strain relation with strain softening from standard [10],

described by Egs. (2.5 — 2,7), was used (Fig. 3a).

2
k( C ) [ C ]
‘Ecl er.‘l

(2.5) o.(&)=/.
1+(k—z)[ 2 ]
(2.6 £,=07£""<28
E
@7 k=105, 2

where f. is a cylinder compressive strength of the concrete; €. is a concrete strain at a given load
level; g is the compressive strain at peak stress; &, is the crushing strain and E. is the secant
modulus of elasticity of concrete. For structural steel the symmetric elastic-perfectly plastic stress-

strain relationship without any strain limit indicated in Fig. 3b was used [11].
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Fig. 3. Assumed in the analysis constitutive relations for a) concrete and b) structural steel

3. NUMERICAL EXAMPLES

In Fig. 4a assumed in the analysis composite steel-concrete cross section is presented. The steel
beam is made of IPE400 profile and the 150 x 1750 mm concrete slab. The total height of the
composite beam is 550 mm and the span length is 10 m. Yield stress of steel is £, = 355 MPa, and
compressive strength of concrete is f. =30 MPa. The maximum compressive strain for concrete
equals to &q,1 = 3,5%o [10]. The analysis was carried out for a simply supported beam under uniform
(Fig. 4b) and point (Fig. 4c) loading. The maximum load for which the ultimate bending moment
resistance of the middle cross section is reached (M(0) = M,;rs) equals to g, in case of uniform

loading (Eq. 2.8) and P,; (Eq. 2.9) in case of point loading.

M

I, Rd

2.8) 9 =8—
M l,Rd

2.9) P, = 4”T

The maximum bending moment in the middle of the beam is therefore equal to:

L
(2.10) M =X—=X—— =M,

where y is the load multiplier. The nonlinear equations (Eq. (2.3) and (2.4)) were solved using
Wolfram Mathematica 10.1 software [12].
Table 1 lists the numerical results of the cross section analysis. The table columns contain,

respectively, the load multiplier, y; the uniform load, g; the point load, P; and the bending moment
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resistance Mpg,. The ultimate bending moment resistance of the composite cross section is equal to
M, ra=958.2 kN'm (the load multiplier y = 1,0) and the elastic resistance to bending, computed for
the stress on the bottom of the steel beam being not greater that f,=355MPa, is equal
Mo ra = 699.5 kKN'm. For this value of bending moment the load multiplier is equal to y = 699.5 /
958.2=0.73.

a)
1750
| |
IPE400
b) q c) lP
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Fig. 4. a) Analysed composite cross section; static scheme of a beam subjected to: a) uniform and b) point

loading.

Table 1. Results of the composite cross section analysis

X q P Mrq
elastic solution | 0.73 | g, =56.0 kN/m | P,;=279.8 KN | M, zs=699.5 kKN'-m
plastic solution | 1.0 | g,;=76.7 kN/m | P,;=383.3 kN | M,;z;=958.2 kKN'm

Fig. 5 and 6 shows the normal stress distributions along the half of a beam for both uniform
and point loading respectively for load multipliers y equal to 0.73 and 1,0. The dark orange colour
indicates areas where the steel yields, f, = 355 MPa. On analysing the data presented in Fig. 5 and 6,
it can be concluded that in this example the steel beam is always in tension regardless of the load
multiplier, so the depth of the compression zone never exceeds 150 mm. For the load multiplier
x=0.73 the stresses in the entire steel beam are smaller than £, = 355 MPa. If the load multiplier
increases the plastic zone in the middle bottom part of beams presented in Figs. 5 and 6 starts to

appear (dark orange colour) and is growing along with the load multiplier. If the bending moment in
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the middle of the beam reaches its maximum (y = 1.0, Miax = My s = 958.2 kKN'm), the plastic zone
spreads over a substantial area of the beam and in the mid-section, the steel yields over the entire
height of the profile. For the uniform loading, the shape of the yield zone resembles a parabola and

in the case of a concentrated load, it is shaped like a triangle. In the latter the yield area is

substantially smaller.
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Fig. 5. Normal stress (in MPa) distribution in simply supported beam under uniform loading for load

multipliers: a) y = 0.73; b) y = 1.0; half of the span is shown; in dark orange areas o, = 355 MPa.
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Fig. 6. Normal stress (in MPa) distribution in simply supported beam under point loading for load
multipliers: a) y = 0.73; b) y = 1.0; half of the span is shown; in dark orange areas o, = 355 MPa.

According to [1], the total design longitudinal shear shall be determined in a manner consistent with
the design bending resistance, taking account of the difference in the normal force in concrete or
structural steel over a critical length. Due to sagging bending moment the compressive stress in the
concrete slab arise. The resultant of this stress is the compressive force N. which causes the
delamination of steel and concrete on the interface of both materials. The resultant compressive
force in the concrete slab N, can be computed from the following expression

min(x,h, )

@.11) N.=b, | o.(x)dx
0

where x is the depth of the compression zone calculated using Eq. (2.3). The relation between the
bending moment and the resultant compressive force in the concrete slab computed for the cross-

section shown in Fig. 4 is depicted in Fig. 7.
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Fig. 7. The relationship between bending moment and resultant compressive force in the concrete slab
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The difference between N, forces in two critical cross sections of a beam will be called the
resultant longitudinal shear force ¥4 Shear connectors are designed to counteract this force and
prevent the delamination. The resistance to longitudinal shear should be checked at a critical length
between the two sections, which includes sections of maximum bending moments, supports,
sections subjected to concentrated loads or reactions and places where sudden change of cross
section occurs, other than a change due to cracking of concrete. In case of a simply supported beam
presented in Fig. 4b and c, the critical length is equal to the half of the span length L/2 and the
resultant longitudinal shear force at a cross section at a distance y from the centre of a beam V; g(y)

can be computed as follows:
2.12) Ve =N, (y)-N.(L/2)=N(y)-0=N,(y)

Knowing the M — N, relation (Fig. 7), bending moment diagram (Fig 4b and c) and using the Eq.
(2.12) the distribution of V;g; along the span of a beam can be computed numerically. The

derivative of V;g; over the length of the beam:

AV, g (y )
2.13 T =
(2.13) vea () dy
is the longitudinal shear force per unit length, otherwise known as the shear flow. The above
equation can be used even for Myax > M, rqa. If it is assumed that the composite beam acts in an

elastic manner (M. < M, rq) then the shear flow can be calculated from the well-known equation:

S
(2.14) ]},Ed(y)zijd(y)

where S stands for the first moment of area of either the concrete slab or the steel section about the
elastic neutral axis of the composite cross section; J is the second moment of area of the composite
cross section, Vz(y) is the vertical shear force distribution along the span of the beam. The results
obtained using Eq. (2.13) and (2.14) for Muax < M., rs Will be identical.

In Figs. 8a and b the distribution of the resultant shear force Vg, and the longitudinal shear
force per unit length 7}z, for a simply supported beam under uniform load for various load
multipliers i is presented. In Figs. 9a and b the V;g; and T; g, distributions for a beam under point
load in the mid-span is presented. On analysing the data presented in Figs. 8 and 9 it can be
concluded that for the load multiplier y the solution coincides with the linear distribution of the
longitudinal shear. With the increase of the load multiplier, the solution starts to deviate from

linearity. In the case of the uniform load (Fig. 8), the deviation occurs approximately in one third of
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the span length and in case of the point load, in the close proximity to the concentrated force. . In
general the solution is nonlinear in areas of the span where M > M, zs. The value of the shear flow
T} pa in the mid-span, due to symmetrical boundary and loading conditions, should be equal to zero.
This is the case for a uniform load (Fig. 8), but directly under the concentrated force a numerical
singularity occurs and in the nearest proximity of the force the shear flow was of its maximum
value. In fact in the real structures the area of the load application is always finite, especially
because the force is usually applied at the top of the slab with a vertical distance to the centroidal
axis of the beam. Therefore in Fig. 9b the shear flow diagrams were slightly adjusted near the point

load, just to intersect at zero in the mid-span.

) b)
3500 g . 1000 4
Vi ra [KN] q 000 | Trea [KN/m] q9
3000 : ' - gm Z
¥ —e 0 BOO f v Y -
2500 [ | i ==y E095 700 - | =
R L
2000 R - =090 600 PR S Z " ’/4"
[ " 3 . 500 ; 3 L o m—y = | ()
o heoad - — - = ().80 = Lt v
1500 -— < v )
: -~ 400 (5 s -y = {).95
-—-ey ()73 i e /'I .
1000 300 o [Ty =090
200 A e —_—Ts
500 . < . 7} oy
fistance ") o 100 -~ A . ———ey=().73
distance from the middle [m] /4~” distance from the middle [m) x=0.12
0 > 0 >

0.0 1.0 20 3.0 4.0 50 00 1.0 20 3.0 4.0 5.0
Fig. 8. Distribution of a) Vg, and b) T, in a simply supported beam under uniform load for various load

multipliers y; half of the span is shown.
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Fig. 9. Distribution of a) Vg, and b) Tg, in a simply supported beam under point load in the mid-span for

various load multipliers y; half of the span is shown.

In Fig. 10 the additional static scheme of a simply supported beam subjected to both the

uniform and point load was presented. A simply supported beam is a statically determinate
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structure, therefore even in the non-linear analysis the maximum bending moment in the middle of
the beam equals to the sum of bending moments from the loads ¢ and P:

r P,L
@.15) M =AM+ (1= 2) M :l%+(l—i)L—M

max max max 4 - pl,Rd

where /1 is the load quotient parameter which determines the participation of the uniform and point

load in the total load; for A =1.0, ¢ =g,;and P=0; for A=0, g =0 and P = P,,.
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Fig. 10. Bending moment diagrams for a simply supported beam subjected to both uniform and point load

In Fig. 11 the distribution of the resultant shear force V; g, and the shear flow 7} g, for a beam
from Fig. 10 for various load quotient parameters 1 is presented. On analysing the data presented
in Fig. 11 it can be concluded that in the areas close to the beam’s end, where the linear solution is
in effect, the superposition rule holds. In other regions, closer to the mid-span, the solution is highly
non-linear. At the beam’s ends, the highest value of 7}z, is obtained for 2 = 1.0 and in the mid-span
for 2 = 0. It seems interesting that the lowest value of the maximum longitudinal shear flow 7z
obtained for A = 0.25 is in one third of the span (Fig. 11b). Introducing a relatively small additional
point load into the beam loaded with the uniform load (as P increases ¢ is being reduced for the
maximum bending moment to remain equal My =M,y rs) can actually reduce the total
longitudinal shear flow.

In Fig. 12 the distribution of the acting shear force per unit length 7z, and the longitudinal
shear capacity per unit length 7}z, (longitudinal shear strength) for a simply supported beam under

both uniform (Fig. 12a) and point loading (Fig. 12b) was presented. The shear flow capacity 74,
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assuming an uniform spacing of shear connectors according to [1], is constant and in this example
equals to 7;rs= 600 kN/m. The resultant longitudinal shear capacity Vs is therefore equal to
Vira= Tira L/2 = 600-5 = 3000 kN. In this work the connection on the interface of steel and
concrete is assumed to be infinitely rigid — the slip between the concrete slab and the steel beam is
therefore equal to zero along the entire beam. Therefore in areas, where 7}z, is greater than 7 g4, the
plastic redistribution of the longitudinal shear flow will occur, provided the ductile shear connectors
are used. Owing to the high deformability (Fig. 1a) ductile shear connectors deform adopting to the
rectangular shear flow capacity 7jgqs. The slip between steel and concrete occurs but has no

significant effect on the bending moment capacity of the composite beam [9].
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Fig. 11. Distribution of a) Vg, and b) Tx, in a simply supported beam under both uniform and point load for

different load quotients A; half of the span is shown.
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On analysing the data presented in Fig. 12b it can be concluded that in the middle of the
beam, the longitudinal shear flow 7;g, is over two times higher than the shear capacity 7;zs. The
difference between 7;z; and T s is almost three times greater in case of the beam subjected to the
point load in comparison to the uniform load. This may prevent the shear redistribution in areas in
close proximity to the substantial concentrated forces and increase the slip demand of shear
connectors in those areas. A confirmation of this observation can be found in [13], where beams
with the different connector rigidities but the same ultimate load capacity have been analysed. Two
types of loading were considered: a central point load P and uniformly distributed load g. For
uniformly distributed loading the value of the maximum load were nearly identical for both rigid
and flexible connections. In case of beams under point loading, there was a 10% loss in the ultimate
bearing capacity of the beams with flexible connectors in comparison to rigid ones. The solution to
this may be to strengthen areas surrounding the substantial concentrated forces. Nevertheless it is
worth noting that such case in which the concentrated force loading is predominant over the

uniform load may rarely occur (e.g. beams supporting columns or high technological load).

4. CONCLUSIONS

The study described in this paper was conducted to simulate the behaviour of composite steel-
concrete beams with non-ductile, rigid shear connectors. An attempt was made to explain the
paradox present in composite steel concrete beams in which for rigid shear connectors the shear
flow computed using vertical shear force distribution (the statics) is not consistent with the
longitudinal shear computed using the cross section resistance. A nonlinear fiber-based model was
used to determine the nonlinear longitudinal shear distribution on the interface of both materials.
The presented model incorporates the elastic-perfectly plastic constitutive relation for structural
steel and the stress-strain relationship with strain softening for concrete, both in the agreement with
Eurocodes. The numerical solution for a simply supported beams loaded with the uniform load,
concentrated force in the mid-span and the combination of both was presented.

The results of this study indicate that the highest value of the shear flow for the uniform load
is at the beam’s ends and in the one third of the span length. For the point load, the maximum shear
is in the mid-span in the direct proximity of the concentrated force. The nonlinear behaviour occurs
in areas of the beam where the bending moments exceeds the elastic elastic resistance to bending of
the composite cross-section. The interesting fact is that introducing additional concentrated force

load of a relatively small value, A = 0.25, in the mid-span of the beam already loaded with the
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uniform load (assuming that the maximum bending moment in the middle of the beam is equal

Munax = My rq) Wwill reduce the total longitudinal shear flow. Moreover in beams loaded with a

substantial point load without any significant uniform loading, the shear flow in close proximity of

the concentrated force can be very high. This may cause an increase in the strength demand of shear

connectors in those areas. The calculation method presented in this article can be used to design

high-strength non-ductile shear connectors in composite steel-concrete beams under heavy loading.

11.

12.
13.
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Fig. 1. a) Typical shear strength — slip characteristics for ductile and non-ductile shear connectors, b)
different types of no-ductile shear connectors [2]

Rys. 1. a) Typowa zalezno$¢ nosno$¢ na $cinanie — poslizg dla ciaggliwych i nieciagliwych tacznikéw na
$cinanie, b) rdzne typy nieciagliwych tacznikow na $cinanie

Fig. 2. Distribution of a) strain and b) stress in composite steel-concrete cross section

Rys. 2. Rozktad a) odksztalcen i b) naprezen w stalowo-betonowym przekroju zespolonym

Fig. 3. Assumed in the analysis constitutive relations for a) concrete and b) structural steel

Rys. 3. Przyjete w analizie relacje konstytutywne dla a) betonu i b) stali ksztattownika

Fig. 4. a) Analysed composite cross section; static scheme of a beam subjected to: a) uniform and b) point
loading.

Rys. 4. a) Analizowany przekroj zespolony; schemat statyczny belki obcigzanej: a) rownomiernie i b) sita
skupiona

Fig. 5. Normal stress (in MPa) distribution in simply supported beam under uniform loading for load
multipliers: a) y = 0.73; b) y = 1.0; half of the span is shown; in dark orange areas g, = 355 MPa.

Rys. 5. Rozktad naprezen normalnych (w MPa) w belce swobodnie podpartej obcigzonej rownomiernie dla
roéznych mnoznikéw obciazenia: a) y = 0.73; b) y = 1.0; pokazano potowe¢ przgsta; w obszarach
ciemnopomaranczowych g, = 355 MPa.

Fig. 6. Normal stress distribution (in MPa) in simply supported beam under point loading for load
multipliers: a) y = 0.73; b) y = 1.0; half of the span is shown; in dark orange areas o, = 355 MPa.

Rys. 6. Rozktad napre¢zen normalnych (w MPa) w belce swobodnie podpartej obciazone;j sita skupiong dla
r6éznych mnoznikéw obciazenia: a) y = 0.73; b) y = 1.0; pokazano potowe przgsta; w obszarach
ciemnopomaranczowych g, = 355 MPa.

Fig. 7. The relationship between bending moment and resultant compressive force in the concrete slab
Rys. 7. Zalezno$¢ migdzy momentem zginajacym a wypadkowa sita Sciskajaca w plycie betonowej

Fig. 8. Distribution of a) Vg, and b) Tg, in a simply supported beam under uniform load for various load
multipliers y; half of the span is shown.

Rys. 8.Rozktad a) Vg, 1b) Trs w belce swobodnie podpartej obcigzonej rownomiernie dla réznych
mnoznikéw obcigzenia y, pokazano potowe przesta.

Fig. 9. Distribution of a) V', and b) Tg, in a simply supported beam under point load in the mid-span for
various load multipliers y; half of the span is shown.

Rys. 9. Rozktad a) Vi, 1b) Tk, w belce swobodnie podpartej obcigzone;j sita skupiong dla réznych
mnoznikéw obcigzenia y, pokazano polowe przesta.

Fig. 10 Bending moment diagrams for a simply supported beam subjected to both uniform and point load.
Rys. 10.Wykresy momentdw zginajacych w belce swobodnie podpartej obcigzonej rownomiernie i sitg

skupiona.
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Fig. 11. Distribution of a) Vz, and b) Tx, in a simply supported beam under both uniform and point load for
different load quotients A; half of the span is shown.

Rys. 11. Rozktad a) Vg, 1b) Tr, w belce swobodnie podpartej obcigzonej rOwnomiernie i sita skupiona, dla
roéznych stosunkow obciazenia A, pokazano potowe przesta.

Fig. 12. Redistribution of the longitudinal shear flow for uniform spacing of ductile connectors for the
simply supported beam under a) uniform and b) point loading.

Rys. 12. Redystrybucja $cinania podtuznego przy réwnomiernym rozmieszczeniu ciagliwych facznikéw na
$cinanie dla belki swobodnie podpartej obciazonej a) rOwnomiernie oraz b) sita skupiona.

Table 1. Results of the composite cross section analysis; ~ Table 1. Wyniki analizy przekroju zespolonego
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NIELINIOWY ROZKEAD SCINANIA PODEUZNEGO W STALOWO-BETONOWYCH BELKACH ZESPOLONYCH

Stowa kluczowe: belka zespolona, stal, beton, podtuzne $cinanie, fiber element method, nieciagliwe taczniki na $cinanie

STRESZCZENIE:

Roéwnomierny rozstaw facznikow na $cinanie w stalowo-betonowych belkach zespolonych wedtug Eurokodu
4 mozna zastosowac tylko dla ciagliwych tacznikéw Scinanych, w ktérych charakterystyczna zdolnos¢ do
poslizgu wynosi co najmniej 6 mm. Wedtug normy EC4 tylko taczniki sworzniowe z tbami o catkowitej
dhugosci po przyspawaniu nie mniejszej niz 4-krotna $rednica iz trzpieniem o nominalnej $rednicy nie
mniejszej niz 16 mm i nie wigkszej niz 25 mm mozna uznaé, ze spehniaja powyzszy warunek. W zwiazku z
tym stosowanie innych typoéw lacznikdéw rozmieszczonych réwnomiernie na diugosci krytycznej belki jest
mozliwe tylko na podstawie badan eksperymentalnych. Dodatkowo, w belkach poddanych duzym
obcigzeniom, w ktorych podluzna sita $cinajaca osiaga duze wartosci, nalezy stosowaé taczniki Scinane
charakteryzujace si¢ znaczna nosnosciag. W tego typu lacznikach trudne moze by¢ spelnienie warunku
ciagliwosci, przy jednoczesnym zachowaniu wymaganej no$nosci na $cinanie.

Wedtug Eurokodu 4 taczniki $cinane mozna rozmiesci¢ na diugosci krytycznej belki zgodnie z
rozktadem $cinania obliczonym za pomoca teorii sprezystosci. Jednakze nos$no$¢ sprezysta przekroju
zespolonego (klasy 1 i 2) jest znacznie mniejsza od jego no$nosci granicznej, co powoduje zwigkszenie
zuzycia materiatow. Aby tego uniknaé i wykorzystaé plastyczne rezerwy nosnosci przekroju zespolonego,
rozktad podtuzne;j sity $cinajacej nalezy obliczy¢ za pomocg teorii nieliniowe;j.

W artykule przedstawiono procedur¢ wyznaczania nieliniowego rozktadu $cinania podhuznego w
belkach zespolonych za pomoca ,Fiber Element Method’. Podano rozwigzania numeryczne dla belki
swobodnie podpartej obcigzonej réwnomiernie, sita skupiong w srodku rozpigtosci oraz obydwoma
obcigzeniami jednoczesnie.

W wyniku przeprowadzonych analiz stwierdzono, ze dla momentoéw zginajacych wigkszych od
sprezystej nosnosci na zginanie przekroju zespolonego, wystepuje nieliniowy wzrost jednostkowej podtuzne;j
sity $cinajacej. W przypadku belki obciazonej rownomiernie $cinanie podtuzne wzrasta nieliniowo w ok. 1/3
rozpigtosci belki, a w przypadku belki obcigzonej sita skupiong bezposrednio pod sifa skupiona. Interesujacy
wydaje si¢ fakt, ze wprowadzenie punktowego obciazenia o niewielkiej wartosci do belki poddanej
obciazeniu rownomiernemu (przy zatozeniu nieprzekroczenia nosnosci plastycznej belki w srodku przgsta)
moze spowodowaé spadek jednostkowej sily Scinajacej w okolicy $rodka belki. Ponadto w belkach
obcigzonych znacznymi sitami skupionymi, w ktdrych obcigzenie punktowe stanowi przewazajaca czgsé
catkowitego obciazenia, jednostkowa sita scinajaca w okolicy punktu przytozenia sity skupionej, otrzymana
z analizy nieliniowej, moze by¢ znaczna. Moze to powodowaé potrzebe dozbrojenia polaczenia na $cinanie

dodatkowymi tacznikami w bezposrednim sasiedztwie duzych sit skupionych.



