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Switching controller synthesis for discrete-time
switched linear systems with average dwell time

WEI HE, WEI XIE, WEILIN WU, LANGWEN ZHAGN

This paper addresses weighted L2 gain performance switching controller design of discrete-
time switched linear systems with average dwell time (ADT) scheme. Two kinds of methods, so
called linearizing change-of-variables based method and controller variable elimination method,
are considered for the output-feedback control with a supervisor enforcing a reset rule at each
switching instant are considered respectively. Furthermore, some comparison between these two
methods are also given.

Key words: discrete-time switched linear systems, L2 performance, average dwell time,
controller state reset, linear matrix inequalities

1. Introduction

There is an increasing interest from the scientific community in the study of
linear switching system which comprises a collection of subsystems described by
linear dynamics (differential/difference equations), together with a switching rule
that specifies the switching among the subsystems; see the survey papers [1–3],
the books [4–6]. Because of its strong engineering backgrounds, such systems
can be used to construct a controller for a wide range of physical and engineering
plants in practice. When the switching law is assumed to be arbitrary, one way to
investigate analysis and synthesis problems of stability or control performance is
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to find a common Lyapunov function (CLF) for all the switching models [7–11].
Compared with results based on multiple Lyapunov functions (MLF) [12–14],
such CLF-based conditions might become too conservative when a particular
switching logic is concerned. Therefore, in the context of switched linear systems
with controlled switching, it is reasonable to constitute the switching logic in
the design and find a suitable one such that stabilization as well as performance
improvement can be achieved. In particular, the ADT switching logic has been an
efficient tool in switched system analysis and control synthesis, and also relevant
to many practical applications in [15–17].

As to the controller synthesis of switched linear systems, many results have
been obtained in the literature; see [12, 17–22] and the references cited in
therein. The authors in [12] have firstly investigated the problems of stability
and L2-gain analysis, and state feedback synthesis for a class of discrete-time
switched systems with ADT scheme. With the min-type, piecewise quadratic
Lyapunov function, the authors in [18] have presented sufficient matrix inequal-
ity conditions expressed in terms of Riccati–Metzler inequalities, which can be
solved by any LMI solver [19] coupled to a line search. Recently, under a re-
laxed min-switching logic perspective, the authors in [20] have used a modified
Lyapunov–Metzler inequality to provide sufficient conditions of stability, L2 gain
performance analysis, and output feedback control synthesis for switched lin-
ear systems. Different from state-feedback control of switched linear systems,
which can be solved with the multiple Lyapunov function (MLF) by LMI optimal
technology, the output-feedback control synthesis for switched linear systems
with the ADT scheme is non-trivial. The main difficulty stems from the fact
that the associated boundary condition that constraints the jump between two
adjacent Lyapunov-like functions always leads to non-convex synthesis condi-
tions, which can be expressed by nonlinear matrix inequalities with coupled
matrix variables. To deal with the problem, a two-step design method has ex-
cluded the boundary condition from the controller synthesis, but may result
in an unacceptable disturbance attenuation level and/or an unreasonably large
dwell time [21]. Different from the method by [21], the work in [22] has in-
corporated the boundary condition into the state feedback controller synthesis,
and the associated BMI problem has been circumvented by using a controller
state reset technique. More recently, with the reset control technique [23-26]
and congruent transformation [27], the authors in [17] have presented a hy-
brid control scheme for the output-feedback control of continuous-time switched
linear systems with ADT scheme. With a reset rule, both full-order and reduced-
order controllers with guaranteed stability and optimal weighted H∞ perfor-
mance can be solved directly by LMI optimizations. However, till now, the
output-feedback dynamic control scheme of discrete-time switched linear sys-
tems with ADT scheme has not yet been fully addressed with the reset control
technique.
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The main idea of this paper is to present switching state feedback and
output-feedback control of discrete-time switched linear systems with the ADT
scheme. Two kinds of methods, so called linearizing change-of-variables based
method and controller variable elimination method, are considered for the output-
feedback control with a supervisor enforcing a reset rule at each switching instant
are considered respectively. First, by the congruent transformation and lineariz-
ing change-of-variables based method, solvability conditions based on linear
matrix inequalities (LMIs) are presented for the existence of such switching
control schemes. Second, by the Finsler’s Lemma and controller variable elim-
ination method, different solvability conditions of LMIs are also presented for
the existence of such switching control schemes. Furthermore, since the solv-
ability conditions decouple the relation between the controller variable matrices
and multiple Lyapunov matrices, compared with linearizing change-of-variables
based method, the number of matrix variables of solvability conditions is sig-
nificantly reduced, which helps numerical efficiency in the design procedure.
With the increasing of the number of subsystems of switching system, the second
method has better numerical efficiency in the design procedure. Finally, a simple
numerical example is given to show the validity of the developed results.

Throughout this paper, ℜ stands for the set of real numbers and ℜ+ for the
positive real numbers. ℜm×n is the set of real m × n matrices. The transpose of
a real matrix M is denoted by MT . The identity matrix of dimension d × d is
denoted by Id . Sn×n and Sn×n

+ are used to denote the set of real symmetric n × n
matrices and positive definite matrices, respectively. For x ∈ ℜn, its norm is
defined as ∥x∥ := (xT x)1/2. The space of square integrable functions is denoted
by L2. For two integers k1 < k2, we denote I[k1, k2] = {k1, k1+1, . . . , k2}.

2. Definition and problem statement

The state space realization of a discrete-time switched linear system P is
expressed as ∑

P

:=


xp(k + 1) = Ap,δxp(k) + Bu,δu(k),

y(k) = Cy,δxp(k) + Dyu,δu(k),
(1)

where the vectors xp(k) ∈ ℜn, u(k) ∈ ℜu, and y(k) ∈ ℜq denote the state,
the control input, the measured output, respectively. δ is a piecewise constant
function of time, called a switching signal, which takes its values in the finite set
I[1, Np], Np > 1 is the number of subsystems.

It is assumed that (A1) The triple (Ap,i, Bu,i, Cy,i) is stabilizable and detectable
for all i ∈ I[1, Np]; (A2) Dyu,i = 0 for all i ∈ I[1, Np]. Note that the first assump-
tion guarantees the existence of a stabilizing dynamic output-feedback controller



8 WEI HE, WEI XIE, WEILIN WU, LANGWEN ZHAGN

for each subsystem, and the second one can be relaxed by loop transformation.
We also assumed that δ is continuous from the right everywhere and obeys an
ADT switching logic [15], whose definition is recalled as following.

Definition 1 For a switching signal δ and any t2 > t1 > t0, let Nδ (t1, t2) be the
switching numbers of δ over the interval [t1, t2). If Nδ (t1, t2) ¬ N0 + (t2 − t1)/τa
holds for N0 ­ 1, τa > 0, then τa and N0 are called the average dwell time and
the chatter bound, respectively.

Problem 1 Given a discrete-time switched linear system (1), under what condi-
tions there exist state feedback and dynamic output-feedback with a supervisor
enforcing a reset rule that make closed-loop switched linear system globally
uniformly asymptotically stable (GUAS) and achieve a weighted L2 gain per-
formance under zero initial condition for every switching signal with the ADT
scheme.

The following lemma is useful to provide a systematic method to find a
switching control scheme which guarantees globally uniformly asymptotically
stability and a weighted L2 gain performance for the switched linear system (1).

Lemma 1 (weighted L2 gain performance with level τ) Consider a switched
linear system given in (1). Given three tunable positive scalars 0 < λ0 < 1,
λ > 1 and µ > 1, if there exist symmetric positive definite matrices Pi such that

*..,
AT

i Pi Ai − λ2
0Pi AT

i Pi Bu,i CT
y,i

BT
u,iPi Ai BT

u,i Pi Bu,i − τI DT
yu,i

Cy,i Dyu,i −τI

+//- < 0 , (2)

Using the solution Pi’s of (2), we define the following piecewise Lyapunov
function candidate V (k) = Vδ(k) (x) = xT (k)Pδ(k) x(k), where Pδ(k) is switched
among the solution Pi’s of (2) in accordance with the piecewise constant switching
signal δ. Moreover, if the following inequalities are satisfied

Vj (x+p ) ¬ µVi (x+i ) (3)

for all i ∈ I[1, Np]. Then, the switched linear system is globally uniformly
asymptotically stable (GUAS) for every switching signal δ with the following
ADT scheme: for any positive integer j > 0,

Nδ (0, j) ¬
j
τ∗a
, τ∗a =

ln(µ)
2 ln(λ)

(4)
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and achieves a weighted L2 gain under zero initial condition, i.e.,

+∞∑
j=0

λ−2 j zT [ j]z[ j] ¬ τ2
+∞∑
j=0

wT [ j]w[ j]. (5)

Proof. The results are easily derived from Theorem 5 in [10].

Remark 1 Using Schur complementary Lemma, according to [20, 29], LMIs (2)
are equivalent with the following conditions:

i) there exists symmetric positive matrices Pi such that

*.....,
−P−1

i Ai Bu,i 0
AT

i −λ2
0Pi 0 CT

y,i
BT

u,i 0 −τI DT
yu,i

0 Cy,i Dyu,i −τI

+/////-
< 0; (6)

ii) there exists symmetric positive matrices Qi such that

*.....,
−Qi AiQi Bu,i 0

Qi AT
i −λ2

0Qi 0 QiCT
y,i

BT
u,i 0 −τI DT

yu,i
0 Cy,iQi Dyu,i −τI

+/////-
> 0. (7)

3. Main results

In this section, a switching output feedback controller with the ADT scheme
is considered to achieve the weighted L2 gain performance (5) for a generalized
switched linear system as

∑
P

:=


xp(k + 1) = Ap,δxp(k) + Bw,δw(k) + Bu,δu(k)

z(k) = Cz,δxp(k) + Dzw,δw(k) + Dzu,δu(k)

y(k) = Cy,δxp(k) + Dyw,δw(k).

(8)

Now, we seek to design a controller (Ak,δ ∈ ℜnk×nk ) of fixed order nk as[
xc(k + 1)

u(k)

]
=

[
Ak,δ Bk,δ
Ck,δ Dk,δ

] [
xc(k)
y(k)

]
,

x+c (k) = ∆i j xc(k), when switching occurs,
(9)
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where xc(k) ∈ ℜnk is the controller state. Just as introduced in [17], an important
characteristic for (9) is that no plant state information is required for controller
state reset.

Connecting the system (8) and controller (9), eliminating the variables u, y,
we obtain the closed-loop switching system as[

x̃(k + 1)
z(k)

]
=

[
Āδ B̄w,δ

C̄z,δ D̄zw,δ

] [
x̃(k)
w(k)

]
, (10)

and x̃+(k) = Ti j x̃(k), where

Āδ =
[

Ap,δ + Bk,δDk,δCy,δ Bk,δCk,δ

Ck,δCy,δ Ak,δ

]
, B̄w,δ =

[
Bw,δ + Bk,δDk,δDyw,δ

Bk,δDyw,δ

]
,

C̄z,δ =
[
Cz,δ + Dzu,δDk,δCy,δ Dzu,δCk,δ

]
, D̄zw,δ =

[
Dzw,δ + Dzu,δDk,δDyw,δ

]
,

and
Ti j =

[
In 0
0 ∆i j

]
. (11)

Furthermore, when controller gain matrices containing all the unknown con-
troller parameters are defined as

Jδ =
[

Ak,δ Bk,δ

Ck,δ Dk,δ

]
, (12)

if we augment the open-loop switched system (8) with states corresponding to
the controller (9), the augmented system will be obtained as


x̃(k + 1)

z(k)
ỹ(k)

 =


xp(k + 1)
xc(k + 1)

z(k)
xc(k)
y(k)


=



Ap,δ 0 Bw,δ 0 Bu,δ

0 0 0 Ink 0
Cz,δ 0 Dzw,δ 0 Dzu,δ

0 Ink 0 0 0
Cy,δ 0 Dyw,δ 0 0





xp(k)
xc(k)
w(k)

xc(k + 1)
u(k)


=


Ãp,δ B̃w,δ B̃u,δ

C̃z,δ D̃zw,δ D̃zu,δ

C̃y,δ D̃yw,δ 0




x̃(k)
w(k)
ũ(k)

 .

(13)
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We have introduced the abbreviations as

x̃(k) =
[

xp(k)
xc(k)

]
, ỹ(k) =

[
xc(k)
y(k)

]
and ũ(k) =

[
xc(k + 1)

u(k)

]
,

which allow us to write the control law as ũ = Jδ ỹ with constraint condition
x+k = ∆i j xk .

Thus, the closed-loop system matrix is also an affine function of the controller
gain matrix Jδ as[

Āδ B̄w,δ

C̄z,δ D̄zw,δ

]
=

 Ãp,δ B̃w,δ

C̃z,δ D̃zw,δ

 +
 B̃u,δ

D̃zu,δ

 Jδ
[
C̃y,δ D̃yw,δ

]
. (14)

3.1. Linearizing change-of-variables based method

According to LMIs (6) and the state space expression of the closed-loop
system (10), we have

*....,
−Pi Pi Āi Pi B̄w,i 0
ĀT

i Pi −λ2
0Pi 0 C̄T

z,i
B̄T
w,i Pi 0 −τI D̄T

wz,i
0 C̄z,i D̄wz,i −τI

+////-
< 0, (15)

When the Lyapunov-like function Vi ( x̃) is chosen as Vi = x̃T Pi x̃, the inequality
(3) becomes

µPi − TT
i j PjTi j ­ 0 (16)

for all i ∈ I[1, Np].
The above inequalities (15) will be transformed into linear matrix inequal-

ity for dynamic output-feedback synthesis problem with linearizing change-of-
variables based method.

Let us partition the matrices Pi and P−1
i as

Pi :=
[

Yi Ni

NT
i ?

]
and P−1

i :=
[

Xi Mi

MT
i ?

]
, (17)

where matrices Xi ∈ ℜn×n andYi ∈ ℜn×n, ‘?’ denotes block in these matrices with
no importance for the derivations to be presented in the sequel. From PiP−1

i = I

we infer Pi

(
Xi

MT
i

)
=

(
I
0

)
which leads to

Piϑ = ϑ1 with ϑ :=
[

Xi I
MT

i 0

]
, ϑ1 :=

[
I Yi

0 NT
i

]
, (18)
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which has already been used in [4, 6]. Then the non-linear transformation is
shown as

Âi := Ni Ak,i MT
i + Ni Bk,iCy,i Xi + Yi Bu,iCk,i MT

i + Yi (Ai + Bu,i Dk,iCy,i)Xi ,

B̂i := Ni Bk,i + Yi Bu,i Dk,i ,

Ĉi := Ck,i MT
i + Dk,iCy,i Xi ,

D̂i = Dk,i .

Then, appropriate congruence transformations with matrix ϑ can be applied
to (15) so that the resulting constraints only involves the following terms

ϑT Pi Āiϑ =

[
Ai Xi + Bu,iĈi Ai + Bu,i D̂iCy,i

Âi Yi Ai + B̂iCy,i

]
,

ϑT Pi B̄i =

[
Bw,i + Bu,i D̂i Dyw,i

Yi Bw,i + B̂i Dyw,i

]
,

C̄iϑ =
[
Cz,i Xi + Dzu,iĈi Cz,i + Dzu,i D̂iCy,i

]
,

ϑT Piϑ =

[
Xi I
I Yi

]
.

We see that the above terms are affine with respect to Âi, B̂i, Ĉi, D̂i, Xi and Yi.
Thus, the matrix inequalities (15) turn out to LMIs with respect to the variables
Âi, B̂i, Ĉi, D̂i, Xi, Yi and τ.

Theorem 1 Given a discrete-time generalized switched linear system (1) and
three tunable scalars 0 < λ0 < 1, λ > 1 and µ > 1, if there exist n × n
symmetric positive definite matrices Xi, Yi, and rectangular matrices Âi, B̂i, Ĉi,
D̂i, ∆̂i j ∈ ℜn×n for all i ∈ I[1, Np] such that



−Xi −I Ai Xi+Bu,iĈi Ai+Bu,i D̂iCy,i Bw,i+Bu,i D̂i Dyw,i 0
−I −Yi Âi Yi Ai+B̂iCy,i Yi Bw,i+B̂i Dyw,i 0

(∗)T (∗)T −λ2
0Xi −λ2

0I 0 XiCT
z,i+ĈT

i DT
zu,i

(∗)T (∗)T (∗)T −λ2
0Yi 0 CT

z,i+CT
y,i D̂

T
i DT

zu,i

(∗)T (∗)T (∗)T (∗)T −τI DT
zw,i

(∗)T (∗)T (∗)T (∗)T (∗)T −τI


< 0, (19)
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
µXi µIn X j In

µIn µYi ∆̂
T
i j Yi

X j ∆̂i j Xi In

In Yi In Yj


­ 0;

[
Xi ∗
In Yi

]
> 0, (20)

Once the variables Âi, B̂i, Ĉi, D̂i, Xi and Yi satisfying the constraint conditions
above have been found, the output feedback controller matrices can be given as

Ji =

[
Ak,i Bk,i

Ck,i Dk,i

]
=

[
Ni Yi Bu,i

0 I

]−1 [
Âi − Yi Ai Xi B̂i

Ĉi D̂i

] [
MT

i 0
Cy,i Xi I

]
(21)

for all i ∈ I[1, Np].

Proof. Just as introduced in Lemma 1, according to the derivation above with
the congruent transformation and linearizing change-of-variables based method
[29], the conditions (2) can be reformulated easily into conditions (19).

For the condition (3), when switching occurs, we have Vj ( x̃+) = x̃+T Pj x̃ =
x̃TTT

i j PjTi j x̃. Then, the boundary condition (3) can be converted to a matrix
inequality, which can be further written by Schur complement Lemma as[

µPi TT
i j Pj

PjTi j Pj

]
­ 0.

Multiplying matrix diag{Zi, Z j } to the right and its transpose from the left

on both sides of above inequality, since Z j PjTi j ZT
i =

[
X j ∆̂i j

In Yi

]
, where ∆̂i j =

X jYi + X2, j∆i jYT
2,i, the condition (19) can be deduced directly. □

3.2. Controller variable elimination method

By inserting (12) into (7), we can obtain the following matrix inequality
formulation for the weighted L2 gain performance problem. Inequality (7) is
equivalent to the following formulation

*.....,
−P−1

i Ãi B̃w,i 0
ÃT

i −λ2
0Pi 0 C̃T

z,i

B̃T
w,i 0 −τI D̃T

zw,i

0 C̃z,i D̃zw,i −τI

+/////-
+


B̃u,i

0
0

D̃zu,i


Ji

[
0 C̃y,i D̃yw,i 0

]

+

*....,


B̃u,i
0
0

D̃zu,i


Ji

[
0 C̃y,i D̃yw,i 0

]+////-
T

< 0.

(22)
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The following theorem gives us existence conditions of the output feedback
controller with order nk that make closed-loop system achieve the weighted L2
gain performance by using MLFs under zero initial condition for every switching
signal δ with the ADT scheme.

Theorem 2 Given a discrete-time generalized switched linear system (8) and
three tunable scalars 0 < λ0 < 1, λ > 1 and µ > 1, if there exist n× n symmetric
positive definite matrices Xi, Yi, and matrices ∆̂i j ∈ ℜn×n such that

*,NR,i 0
0 I

+-
T *...,
λ−2

0 Ai Xi AT
i − Xi λ−2

0 Ai XiCT
z,i Bw,i

λ−2
0 Cz,i Xi AT

i −τI + λ−2
0 Cz,i XiCT

z,i Dzw,i

BT
w,i DT

zw,i −τI

+///-
*,NR,i 0

0 I
+- < 0, (23)

*,Ns,i 0
0 I

+-
T *...,
λ−2

0 AT
i Yi Ai − Yi λ−2

0 AT
i Yi Bw,i CT

z,i

λ−2
0 BT

w,iYi Ai −τI + λ−2
0 BT

w,iYi Bw,i DT
zw,i

Cz,i Dzw,i −τI

+///-
*,Ns,i 0

0 I
+- < 0, (24)

(
Xi I
I Yi

)
­ 0, (25)

and
rank

(
Xi I
I Yi

)
¬ n + nk . (26)

*....,
µXi µIn X j In

µIn µYi ∆̂
T
i j Yi

X j ∆̂i j Xi In

In Yi In Yj

+////-
­ 0, (27)

where NR,i and Ns,i denote bases of the null spaces of (BT
u,i, DT

uz,i) and (Cy,i, Dwy,i)
respectively. Then there exists a controller (9) with order nk that make closed-
loop switching linear system (10) with the condition (11) globally uniformly
asymptotically stable (GUAS) and achieve the weighted L2 gain performance
under zero initial condition for every switching signal δ with the ADT τa ­ τ∗a .

Proof. Consider the Lyapunov-like functions for the closed-loop system (10)
with (11) as

Vi = x̃T Pi x̃ =
[

xp

xc

]T [
Xi X2,i

XT
2,i X3,i

] [
xp

xc

]
.

Note that each Vi has one-to-one correspondence with the subsystems in (10).
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We define[
Xi X2,i

XT
2,i X3,i

]−1

=

[
Yi Y2,i

YT
2,i Y3,i

]
and Zi =

[
I 0
Yi Y2,i

]
.

It is routine to verify that

0 ¬ Zi ·
[

Xi X2,i
XT

2,i X3,i

]
· ZT

i =

[
Xi I
I Yi

]
.

Also the Schur complement relationship[
Xi I
I Yi

]
=

[
I Y−1

i
0 I

]
·

[
Xi − Y−1

i 0
0 Yi

]
·

[
I 0

Y−1
i I

]
implies that

rank
(

Xi I
I Yi

)
= n + rank

(
Xi − Y−1

i

)
= n + rank (XiYi − I) ¬ n + nk ,

where the last inequality follows from I − XiYi = X2,iYT
2,i and X2,i ∈ ℜn×nk .(

Xi I
I Yi

)
­ 0 and rank

(
Xi I
I Yi

)
¬ n + nk , in turn, Pi > 0 for all i ∈ I[1, Np]. □

Here, we also need to prove these conditions (2) and (3) of Lemma 1 for the
system (10) with (11).

Just as introduced in Theorem 1, according to Schur complementary and
Finsler’s lemmas [29], the existence of n×n symmetric positive definite matrices
Xi, Yi to conditions (23)–(26) is equivalent with the existence of symmetric
positive definite matrices Pi to (22). That is, if there exist Xi, Yi satisfying (23)–
(26), there exist Pi satisfying (22). Furthermore, these matrices Xi, Yi could be
used to construct Pi satisfying (22), and then substituting these Pi into (22), then
local controllers Ji for the subsystems in (10) can be obtained by using standard
LMI optimal techniques. Consequently, the condition (2) of Lemma 1 could be
satisfied.

For the condition (3), the derivation is the same as the introduction in Theo-
rem 1. Then, we arrive at conditions (4).

Consequently, the solvability conditions of a switching controller (9) with
order nk could be obtained with (23)–(27).

Remark 2 Theorem 2 gives us solvability conditions on the existence of a switch-
ing output feedback controller (9) with order nk under which the weighted distur-
bance attenuation level can be attained with the ADT scheme. When the symmetric
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positive definite matrices Xi, Yi satisfying (23)–(27) exist, just as introduced in
[29], we can construct a positive matrix Pi ∈ ℜ(n+nk )×(n+nk ) by finding a matrix

X2,i ∈ ℜn×nk such that Xi − Y−1
i = X2,i XT

2,i. Then Pi =

[
Xi X2,i

XT
2,i I

]
is a proper

Lyapunov matrix for the switching controller design problem. The order nk,i of
corresponding controllers need be no larger than n, and in general can be chosen
to be the rank of Xi − Y−1

i . Substituting this Pi into (22), then controllers Ji for
every local plant of the switched plant can be obtained directly by using standard
LMI techniques.

Theorem 2 states that a matrix Pi in ℜ(n+nk )×(n+nk ) can be constructed from
Xi, Yi exactly when the LMIs (23)–(25) and (27) and rank conditions in (26) are
satisfied. Rank conditions are not in general LMI, but notice that

rank
(

Xi I
I Yi

)
¬ 2n. (28)

Therefore, if the order of controller nk ­ n is chosen, rank conditions become
vacuous and only LMI conditions are left. That is, when a full order controller
is considered, note that with any given pair of the dwell-time parameters (λ, µ),
these conditions besides rank constraint (26) are LMIs. Thus, the determination of
the minimal weighted L2 gain τ, with respect to a given (λ, µ), can be formulated
and solved as an LMI optimization problem:

min τ

S.T . (23)−(25) and (27)
. (29)

3.3. Comparison between linearizing change-of-variables based method
and controller variable elimination method

As to LTI plant, two kind of LMIs based conditions for the existence of
H infinity controller synthesis are equivalent. However, for switched plant or
LPV plant, numerical computation complexity of two methods is not consistent.
Assume that the number of local subsystems is N , the number of LMI matrix
variables is 8N for the first method, that is solved by a one-step procedure. By
comparison, the second method has a two-step procedure, the number of LMI
matrix variables is 3N in the first step; and the second step merely includes N
LMI matrix variables. Even though the solution procedure for the second method
has two steps, the number of LMI matrix variables in each step is much less than
the first method. Consequently, the numerical efficiency in each step is better than
the first method.

From the derivation above, when the number of subsystems is Np, besides
the matrices ∆̂i j ∈ ℜn×n, linearizing change-of-variables based method has 6Np
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LMI variables, which is much larger than the method presented here merely
including 2Np.

In general, if the number of subsystems is quite large, with the increasing of the
number of the LMI variables, the solutions of output feedback controller matrices
for LMI conditions (21) may not be feasible. In comparison, since the method
proposed here decouples the relation between the controller variable matrices
and multiple Lyapunov matrices, the number of matrix variables is significantly
reduced, which helps numerical efficiency in the design procedure.

4. Example

To show the effectiveness of the proposed method, a simple numerical example
is illustrated with two vertices in [30] as

ẋ =
[

0 1
−2 + γ −0.01

]
x +

[
0
1

]
u(t),

y =
[
1 0

]
x.

(30)

Denote by A1 and A2 the values of the state matrix for γ = −1 and 1,
respectively.

Assume two subsystems of the continuous-time switched plant above are
discretized with sampling time 0.1, respectively, as

A1 =

[
0.985 9.95e − 2
−0.298 0.984

]
, B1 =

[
4.98e − 3
9.94e − 2

]
, C1 =

[
1 0

]
and

A2 =

[
0.995 9.98e − 2

−9.98e − 2 0.994

]
, B2 =

[
4.99e − 3
9.97e − 2

]
, C2 =

[
1 0

]
.

As shown in Fig. 1, external disturbance rejection problem is considered here,

where we choose the weighting function as W1(s) =
50

s + 1
, which is discreteized

with sampling time 0.1 as W1(z) =
4.758

z − 0.905
. This weight has bandwidth 1 rad/s,

so it might be used to get good tracking. The weighting L2 performance optimal
constrained problem is considered here as (5).

Suppose that the switched plant (10) is required to operate over the time
interval t ∈ [0, 7]sec with the following switching signal

δ(k) =


1, 20l ¬ k ¬ (2l + 1) · 10, and k ∈ [3, 50]
2, otherwise

,
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w

u  y  

z
_ 

P  

K  

1W  

Figure 1: Block diagram for design

where l = 0, 1, 2, 3. The ADT of this switching signal can be calculated by τ∗a =
7/6 = 1.17, where 6 is the number of switches occurred during the time interval
[0, 7] sec. As such, we specify the dwell-time parameters (λ, µ) = (1.062, 4)
for the controller synthesis, such that the ADT τ∗a satisfies the requirement.
Meanwhile the positive number λ0 is chosen as λ0 = 0.998.

Solving the optimization problem (19), (20) with LMI toolbox [29], a state
feedback controller is designed in the form of (8) with the optimal value τ = 20.01.
And solving the optimization problem (23)–(27), we obtain a full-order output
feedback controller in the form of (9) with the optimal value τ = 25.49. As
expected, the resulting value of τ appears to be 5.48 larger than that derived by
using the state feedback control strategy. When the switching signal with the
average dwell time τ∗a is given as Fig. 2, time-domain simulation results of the
state feedback and full-order output feedback control are obtained as Fig. 3 using
the external disturbance signal: w(k) = −1, k ­ 5.

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

Time

Figure 2: The switching signal

As seen in Fig. 3, from (a) the controlled output response of the state feedback
has a quicker transient process and better static properties than that of the output
feedback. Meanwhile, from (b) the control force of the state feedback is much
larger than that of the output feedback.
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(a) Controlled output
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Figure 3: Simulation results using state feedback and output feedback

5. Conclusions

This paper has presented solvability conditions of switching control schemes
for state-feedback control and output-feedback control of discrete-time switched
linear systems with ADT scheme respectively. Based on these conditions, the
design procedure is separated into two sequential steps. First, multiple Lyapunov
functions for each closed-loop system have been obtained to guarantee globally
uniformly asymptotically stability as well as the weighted L2-gain performance.
Second, by these multiple Lyapunov functions, each controller for each plant
subsystem could be solved directly by LMI optimal technology. Furthermore,
since these conditions decouple the relation between the controller matrices
and multiple Lyapunov matrices, the number of matrix variables of LMI based
solvability conditions is significantly reduced, which helps numerical efficiency.
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