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The combined effect of fractional filter and Smith
Predictor for enhanced closed-loop performance

of integer order time-delay systems: some investigations

SHAIVAL HEMANT NAGARSHETH and SHAMBHU NATH SHARMA

This paper proposes a generalized fractional controller for integer order systems with time
delay. The fractional controller structure is so adopted to have a combined effect of fractional
filter and Smith predictor. Interestingly, the resulting novel controller can be decomposed into
fractional filter cascaded with an integer order PID controller. The method is applied to two
practical examples i.e. liquid level system and Shell control fractionator system. The closed-
loop responses resulting from the proposed method are compared with that of the available
methods in the literature. For quantitative evaluations of the proposed method, Integral Absolute
Error (IAE) and Integral Square Control Input (ISCI) performance criteria are employed. The
proposed method effectively enhances the closed-loop response by improving the IAE values,
reducing the control effort inputs to achieve the desired output. The disturbance rejection and
robustness tests are also carried out. The robustness test reveals a significant improvement in the
maximum absolute sensitivity measure. That is displayed in numerical simulations of the paper.

Key words: generalized fractional controller, Smith predictor, time delay system, general-
ized inverse, Bode’s ideal transfer function

1. Introduction

Systems with time delay are ubiquitous in industry. As a result, the controller
design becomes more complicated due to the presence of time delays in the
system. The controller action can execute and affect the controlled variable only
after the dead time fades away. Due to the presence of dead-time, there is a
limiting value to the proportional gain of the controller ([24], p. 603). For the
larger dead-time case, the limit to adjust the controller gain will be smaller.
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Thus, if the user tries to achieve a faster response by increasing the controller
gain, it will lead to oscillations in the output. Further, if the controller gain is
increased beyond the allowable limit, it leads to instability in the closed-loop
system ([35], p. 214). This can be considered as poor control, which will have
devastating consequences. For example, oscillations in the output will have an
influence on the performance of industrial combustion systems and industrial
reactors [19]. That causes pressure pulsations with high amplitudes, which lead
to ill-consequences, e.g. violent vibrations damaging the system [15]. To deal with
delay dominant systems, dead time compensator [34] and analytical predictor [22]
were designed. The compensator removes the pernicious effect of the time delay
element in the controlled output. Wong and Seborg [39] explored the relation
between Smith predictor and analytic predictor.

PID controllers are the most commonly used control algorithms in process
control techniques due to their ubiquitous behaviour and realization property.
Tuning of PID parameters in time as well as frequency domain can be found in
Åström and Hägglund [3]. The ubiquity of PID controllers is not just limited to
the integer order but goes further to fractional order. Podlubny [28] pioneered
the concept of Fractional-order PID (FOPID) controllers. The main contribu-
tion towards the world of fractional controllers can be traced back to the work
of H.W. Bode. That is popularly known as Bode’s ideal transfer function [8].
Importantly, the Bode’s ideal transfer function in the closed-loop setting be-
comes the fractional filter transfer function of the equivalent embedded internal
model [5]. Fractional PID controller for reduced order models is carried out by
Yumuk et al. [40]. However, in their work Smith predictor is not accounted for.
Bettayeb et al. [6] designed an IMC based fractional filter-PID controller with-
out the Smith predictor. Auto-tuning of fractional order controllers for several
industrial applications can be found in Monje et al. [21]. A good exposition
regarding the comparison between the two degree of freedom (2DOF) integer
order PID controller and 2DOF fractional order PID is cited in Bingi et al. [7].
The difficulty posed by the time delay element increases more with multi-input,
multi-output (MIMO) systems, where different time delays are present in loops
with their interaction. In the Laplace domain, the MIMO systems are repre-
sented by the transfer function matrix that is square or non-square depending
on the number of inputs and outputs. The measure of these interactions for the
non-square MIMO system was presented by Reeves and Arkun [32]. The con-
cept of dead time compensator was extended to MIMO processes by Alevisakis
and Seborg [1]. For the multi-loop system, it is important to decide the con-
troller pairing based on which the decentralized control can be realized on the
system. The controllers pairing is adjudged using RGA (Relative Gain Array)
techniques [9]. Rao and Chidambaram [30] designed a Smith predictor for a
non-square MIMO fractionator system with multiple time delays. Chen et al. [11]
designed a new control method for the MIMO FOPDT non-square systems, see
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Wang et al. [37, 38] as well for a good source of auto-tuned multivariable PID
controllers.

The prime intent of this paper is to investigate and reveal the combined effect
of the Smith predictor and the fractional filter with the idea of achieving better-
controlled output response in the sense of overshoot, robustness, disturbance
rejection, less IAE, and ISCI values. The uniqueness of the proposed fractional
controller structure lies with the addition of the Smith predictor into the inner
feedback loop. The feedback setup is such that the derivation of the fractional
filter structure of n-th order time delay system accounts for the contribution from
the Smith predictor. Notably, the proposed fractional controller can be interpreted
as a series combination of the fractional filter and industrial controller, e.g. PID
controller. That is the result of adopting the IMC design methodology by replacing
the filter used in conventional IMC with the Bode’s ideal transfer function and
encompassing the Smith predictor in the inner feedback loop. The theoretical
development of this paper is applied to two appealing practical examples. First,
to test the effectiveness of the proposed method, investigations are carried on
a single-input, single-output liquid level system. Then, the investigations are
also carried out for a non-square MIMO Shell control fractionator problem.
In order to unfold insights into the Smith predictor and the fractional filter,
the control configuration of Stephanopoulos ([35], p. 386) is considered for
investigations. The stability of the proposed controller is examined via the notion
of the fractional characteristic polynomial for the fractionator control problem.
The efficacy of the controller of this paper is tested quantitatively by the improved
measure of the Integral Absolute Error (IAE) and the Integral Square Control
Input (ISCI) performance indices. The robustness of the proposed controller is
adjudged through the measure of the maximum absolute sensitivity which reveals
the greater stability margin of the proposed controller.

2. Mathematical preliminaries

This section consists of mathematical preliminaries that are useful for carrying
out theoretical development and application of the proposed controller to the
appealing system.

2.1. Bode’s ideal transfer function

The fractional filter used in this study is the ‘Bode’s ideal transfer function’
[5, 8], suggested by Bode. The open loop form is

F (s) =
1

τcsγ+1 , γ ∈ R,

where τc = 1/ωγ+1
c , except γ takes non-negative integers.
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The closed-loop transfer function with unity feedback becomes
1

1 + τcsγ+1 .
The magnitude and phase properties of the fractional filter are direct consequences
of the Bode’s ideal transfer function coupled with unity feedback, see Fig. 1. The
use of τc and γ is discussed in Section 3.

Figure 1: Bode diagrams of amplitude and phase of F (s)

2.2. Gain arrays

The RGA, suggested by Bristol [9], is a methodical approach to measure
the interactions amongst the inputs and outputs of a multi-loop process control
problem. This systematic approach requires only the steady state gain matrix
and provides the measure of the interactions as well as the recommendation
concerning the most effective controller pairing [33]. Suppose Y (s) is an m × 1
output vector and U (s) is an n × 1 input vector of the multivariable process.

Now, G(s) is the transfer matrix, where, Gi j =
ki j e−tdij s

1 + τi j s
with ki j , tdi j , τi j are the

steady-state gain, dead time and time constant respectively of the i-th output with
respect to j-th input. Using the generalized inverse result of Graybill et al. [14],
the non-square RGA [10] becomes

λN = G ◦ (G+)T, (1)
where the notation ‘◦’ denotes the Schur product, i.e. element-wise product of
matrices. The matrix G+ is a generalized inverse, the entries of the steady state
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gain matrix G are obtained by evaluating it at s = 0. Alternatively, the non-square
RGA matrix (1) can also be stated in the component-wise setting as

λN
i j = Gi jG+ji .

Based on the above formula, the effective controller pairing [33] between the
respective output and input can be recommended if λR

i j ­ 0.5.
The RNGA [16] has proven a useful alternative to the RGA. The Relative

Normalized Gain Array (RNGA) includes the dynamics of the system as well [16].
The Normalized Gain Array (NGA) can be formulated as N = K ◦ τ̃ar , where
τ̃ar = (τ̃ar )i j = (τar )−1

i j , K is the steady state gain matrix and τar is average
residence time matrix. The average residence time for the transfer function Gi j
associated with the i-th output and j-th input is the summation of the time constant
τi j and the dead time tdi j , i.e. (τar )i j = τi j + tdi j . Now, the Relative Normalized
Gain Array (RNGA) is defined as

λRN = N ◦ (N+)T . (2)

2.3. A Generalized Internal Model Control

Morari et al. [23], Rivera et al. [31] and Garcia et al. [12] developed a com-
prehensive model-based controller design method, i.e. Internal Model Control
(IMC). This method is based on assumed process models which lead to an in-
quisitive expression for the controller setting. The generalized feedback and its
equivalent IMC block diagrams are shown in Fig. 2 and Fig. 3. The model re-
sponse Ỹp is calculated by the control signal H and the internal process model G̃p.

Figure 2: Classical feedback loop with Smith predictor

The embedded model response is subtracted from the actual response Y and
the difference will become an input signal to the IMC controller GIMC.

G′c(s) =
GIMC(s)

1 − GIMC(s) G̃p(s)
,
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Figure 3: Generalized IMC based feedback loop

where GIMC(s) =
1

G̃−(s)
F (s), see Fig. 3. The IMC controller GIMC(s) consists of

a filter Fc(s) =
1

1 + τcsγ+1 and the reciprocal ofG̃−(s). The term G̃−(s) contains
the non-singular part of the plant transfer function.

Greater detail about the IMC method can be found in Seborg et al. [33]. The
generalized IMC of the paper is attributed to the following two embeddings, i.e.
(i) Smith predictor coupled controller (ii) fractional filter coupled with reciprocal
of the minimum phase part of the plant transfer function in the lieu of integer.

3. Theoretical development

A refined structure of the controller transfer function of control literature is
uniquely developed to combine the benefits of the fractional filter and Smith
predictor. This is achieved by designing a fractional controller comprising a
fractional filter coupled with the integer-order controller and the Smith predictor.
Here, we sketch the main controller transfer function result of the linear feedback
system that accounts for the Smith predictor, fractional filter and the plant transfer
function.

Theorem 1 Suppose the plant transfer function Gp(s) that embeds the properties
of the underlying dynamics of the plant. Consider the predictor transfer function

Dc(s) =
1 − e−td s

e−td s Gp(s). Then, the generalized fractional controller transfer
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function is

Gc(s) =
e−td sG̃+(s)

G̃p(s)
(
(1 + τcsγ+1)e−td s − G̃+(s)

) ,
where Gp(s) = G̃−(s) G̃+(s).

Proof. Here, we sketch the proof of the Theorem using the notion of equivalence
of two systems. The idea is to replace a closed-loop system with another closed-
loop system embedded with the auxiliary plant. Note that Fig. 2 is equivalent
to Fig. 3. On solving the inner loop, embedding the Smith predictor Dc(s) and
Gc(s), the control block of Fig. 2 reduces to

G′c(s) =
Gc(s)

1 + Dc(s) Gc(s)
. (3)

According to the IMC design procedure, Fig. 3

G′c(s) =
GIMC(s)

1 − GIMC(s) G̃p(s)
. (4)

The IMC controller G′c(s) is an immediate consequence of the algebra of the
closed-loop system of Fig. 2 and its equivalence to Fig. 3. After combining (3),

(4) and utilizing the predictor transfer function Dc(s) =
1 − e−td s

e−td s Gp(s) [35], we
arrive at the controller transfer function

Gc(s) =
1

G̃−(s)
Fc(s)

− G̃p(s) − (1 − e−td s)
e−td s Gp(s)

. (5)

Note that the embedded transfer function, i.e. the internal model transfer func-
tion, can be regarded as G̃p(s) = G̃−(s) G̃+(s), where G̃−(s) has the minimum

phase property. Consider the fractional filter transfer function Fc(s) =
1

1 + τcsγ+1 .

After embedding the internal model transfer functionG̃p(s), Eq. (5) can be further
recast as

Gc(s) =
1

(1 + sγ+1τc)G̃p(s)

G̃+(s)
− G̃p(s) − (1 − e−td s)

e−td s Gp(s)

=
e−td sG̃+(s)

e−td s (1 + sγ+1τc)G̃p(s) − e−td sG̃p(s) G̃+(s) − (1 − e−td s)G̃+(s)Gp(s)
.
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Thus, a convenient form of the controller transfer function is

Gc(s) =
e−td sG̃+(s)

G̃p(s)
(
(1 + τcsγ+1)e−td s − G̃+(s)

) . (6)

The structure of the controller Gc(s) is general and holds for n-th order stable
integer time-delay systems. □

Here, we illustrate two appealing practically useful cases. That demonstrates
the decomposition of the generalized fractional controller of the Theorem of the
paper into fractional filter and integer order controller. The fractional controller
transfer functions for a general class of higher-order time-delay systems are in
Appendix A, see Table A.
Case 1. Consider the first-order plus dead time (FOPDT) transfer function

Gp(s) =
ke−td s

τs + 1
. (7)

We wish to achieve the controller transfer function that accounts for the
controller fractionality and Smith predictor correction term. The controller frac-
tionality is attributed to the filter of the IMC controller. After considering the
Pade-approximate exponential term, we have

e−td s ≈
1 − td s

2
1 +

td s
2

, G̃p(s) = Gp(s) =
ke−td s

τs + 1
≈

k
(
1 − td s

2

)
(τs + 1)

(
1 +

td s
2

) . (8)

Note that
G̃+(s) = G̃p(s) G̃−1

− (s) =
(
1 − td s

2

)
, (9)

where G̃−1
− (s) is the inverse of the non-minimum phase part of the embedded

plant transfer function. After combining (7)–(9) with (6) and simplifying them,
we arrive at the generalized fractional filter-PID controller transfer function, i.e.

Gc(s) =
(τs + 1)

(
1 +

td s
2

)
kτcsγ+1 + k

(
1 − td s

2

)
− k

(
1 +

td s
2

)
=

1
τcsγ − td

*..,
τ +

td

2
k
+

1
k s
+
τtd

2k
s

+//- . (10)
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After considering the generalized controller transfer function of (10) for a FOPDT
system in Fig. 2, we get Fig. 4.

The generalized fractional order controller transfer function of Fig. 4 has two
parts. The first part is the fractional part, which is in series with the second part.
The second part is an integer PID, see Fig. 4. Here, we explain the contribution
of the Smith predictor by introducing the notion of fractional characteristic and
fractional quasi-characteristic polynomials. Fig. 4 displays a specific case of the
proposed method by considering the FOPDT system with the Smith predictor. An
alternative version of Fig. 4(a) is illustrated in Fig. 4(b). Both the Figs. 4(a) and
4(b) describe the equivalent systems. The equivalent feedback loop in Fig. 4(b)
shows that the controller works on the signal coming from a system without
dead-time after embedding the Smith predictor.

(a)

(b)

Figure 4: Feedback loop with Smith predictor and fractional filter

As a result of this, the overall closed-loop transfer function ‘embedding’ the
Smith predictor term becomes

Y (s)
Ysp(s)

=

( Gc(s) G∗p(s)

1 + Gc(s)G∗p(s)

)
e−td s . (11)

where the terms Y (s) and Ysp(s) denote the Laplace transforms of the output and
the setpoint respectively. The term Gc(s) denotes the controller transfer function
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and G∗p(s) is the plant transfer function without dead-time. After embedding

G∗P(s) =
k

τs + 1
,

Gc(s) =
1

τcsγ − td

*..,
τ +

td

2
k
+

1
ks
+
τtd

2k
s

+//- ,
in (11), Eq. (11) reduces to

Y (s)
Ysp(s)

=

(
1 +

td

2
s
)

e−td s

s
(
τcsγ − td

2

)
+ 1

. (12)

After ‘ignoring’ the Smith predictor correction term in Case 1, the generalized
fractional order controller transfer function of (6) reduces to

Gc(s) =
G̃+(s)(

1 + sγ+1τc
)

G̃p(s) − G̃p(s)
=

1
τcsγ

*..,
τ +

td

2
k
+

1
ks
+
τtd

2k
s

+//- .
The overall closed-loop transfer function, without the Smith predictor, is given by

Y (s)
Ysp(s)

=
Gc(s) G∗p(s) e−td s

1 + Gc(s) G∗p(s)e−td s . (13)

Consider G∗P(s) =
k

τs + 1
and Gc(s) =

1
τcsγ

*..,
τ +

td

2
k
+

1
k s
+
τ td

2k
s

+//-, Eq. (13)

reduces to a specific case, i.e.

Y (s)
Ysp(s)

=

(
1 +

td

2
s
)

e−td s

τcsγ+1 +
(
1 +

td

2
s
)

e−td s
. (14)

Eq. (14) tells that the denominator polynomial becomes a fractional-quasi
characteristic polynomial in the absence of the Smith predictor. After careful
observation of (14) and (12), the absence of the dead-time in (12) is clear. This
leads to a fractional characteristic polynomial in the lieu of the fractional-quasi
polynomial. This demonstrates the usefulness of the Smith predictor in the sense
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that the time delay term from the denominator polynomial of the transfer function
of the proposed closed-loop scheme vanishes. As a result of this, the controller
of the equivalent closed-loop will work with a feedback signal from a system
that no longer contains a time delay term, see Fig. 4(b). This effectively removes
the pernicious effect of the time delay term. Notably, for the fractional parameter
γ = 0, we arrive at the IMC based integer PID controller transfer function
[33], i.e.

G(s) =
τ +

td

2
kτc

+
1

kτcs
+

τtd

2kτc
.

□

Case 2. Consider a Second Order Plus Dead Time (SOPDT) transfer function

Gp(s) =
ke−td s

(τ1s + 1)(τ2s + 1)
. (15)

After considering the Pade-approximate exponential term, we have

G̃p(s) = Gp(s) =
ke−td s

(τ1s + 1)(τ2s + 1)

≈
k
(
1 − td s

2

)
(τ1s + 1)(τ2s + 1)

(
1 +

td s
2

) , (16)

where G̃p(s) = G̃+(s) G̃−(s), with G̃−(s) =
k

(τ1s + 1)(τ2s + 1)
(
1 +

td s
2

) .

On combining (16) with developed (6) of the theorem, the generalized frac-
tional order controller transfer function becomes

Gc(s) =
(τ1s + 1)(τ2s + 1)

(
1 +

td s
2

)
(
kτcsγ+1 − k

td s
2

)
=

(
1 +

td s
2

)
(
τcsγ − td

2

) (
τ1 + τ2

k
+

1
k s
+
τ1 τ2

k
s
)
.

Remark 1 The fractional filter parameter τc and the fractionality γ, are adjudged
using the notion of the ideal Bode’s transfer function in open and closed-loop
settings. The ideal Bode transfer function in the closed-loop setting becomes the
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fractional filter transfer function [5]. Calculations suggest that the phase margin
of the fractional filter is approximately equal to the linear feedback system of
Fig. 2. As a result of this, we have

γ =
π − PM
π/2

− 1, τc =
1

ω
γ+1
c

. (17)

The benefit of embedding the fractional filter into the IMC method stems from
the fact that the overshoot has a relationship with the fractionality of the filter
([5], p. 311). Greater detail on the formal proof of arriving at the relationship
between the filter fractionality and the overshoot can be found in Barbosa et al.
([5], p. 311). The Bode’s ideal loop transfer function becomes the closed-loop
reference model. The filter parameters τc and γ are adequately chosen by the
designer [2]. A note on the practical implementation of the fractional filter is
discussed in Appendix B of the paper.

4. Appealing examples

In order to evaluate the efficacy of the generalized fractional controller of the
paper, the proposed controller is effectuated to two appealing practical examples,
i.e. (i) liquid level system (ii) Shell control fractionator problem. The simulation
is carried out for the step setpoint change in the desired value of the output and for
disturbance rejection case as well. The performance of the closed-loop response
for both the examples is evaluated based on improvements in the Integral Abso-
lute Error (IAE), Integral of Square Control Index (ISCI) values and sensitivity
performance indices to test the robustness of the proposed method.

4.1. SISO example

As a first example, a liquid level system which consists of a low pressure
flowing water circuit is considered [6, 21]. This practical example is described
by the transfer function Gp(s) as

Gp(s) =
3.13e−50s

433.3s + 1
. (18)

The controller tuning method proposed in the Theorem of this paper is used to
design the controller for the transfer function in (18). The resulting controller
transfer function Gc(s) is

Gc(s) =
1

136.22s0.111 − 25

(
146.43 +

0.3194
s
+ 3461.1s

)
. (19)
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The PID parameters of the controller transfer functions Gc(s) are achieved
using (18) and (10) of the paper. Here, the PID parameters are directly expressed
as a function of system parameters to make the tuning a tribulation-free, i.e. the
IMC method.

We observe the effect of variations in the two filter parameters γ and τc. It
is worth to mention that fractionality of the filter also contributes to reducing
oscillations in the overshoot sense. For the desired overshoot of the setpoint
response, the value of fractionality γ can be reckoned. After using the “cftool”
function of MATLAB [18] for our system parameters, we arrive at a second-order
polynomial relation between the fractionality γ and the overshoot Mp, i.e.

Mp ≈ 2.921γ2 − 0.6814γ + 0.08602. (20)

The above relation in (20) reveals that the increase in the fractionality of the
filter contributes to the increase in the overshoot of the closed-loop system.
A graphical representation of the above relation between the overshoot Mp and
the fractionality γ is displayed in Fig. 5.

Figure 5: Step response with variations in γ

Fig. 5 shows an increase in the overshoot of the closed-loop response with an
increase in γ. Another revelation is that an increase in the filter parameter τc leads
to the sluggish response of the closed-loop, see Fig. 6. The filter parameter τc
and the fractionality γ are adjudged using the notion of the Bode’s ideal transfer
function approach. This is described in Remark of the paper. Here the filter
parameters τc = 136.22 and γ = 0.111 corresponds to the overshoot Mp ≈ 0.04.
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Figure 6: Step response with variation in τc

4.1.1. Stability assessment

The stability analysis of the proposed fractional closed-loop system hinges
on the Riemann surface ([17], p. 200). It is important to note that the stability
of the proposed fractional filter embedded closed-loop system can be rephrased
using the notion of the fractional characteristic polynomial. Here, we explain
briefly the stability of the fractional characteristic polynomial using ‘the change
of variables’ and the graphical assessment is displayed using the FOMCON
toolbox of Matlab [20]. The structure of the fractional characteristic polynomial
associated with the proposed closed-loop setup is

f (s) = τcsγ+1 − td

2
s + 1. (21)

The structure changes for the specific tuning parameters. The specific structure
of the fractional characteristic polynomial associated with the closed-loop of
SISO example is

f (s) = 136.22s1.111 − 25s + 1.
The roots of the fractional characteristic polynomials are located in the s

plane, where s = σ + jω. The calculation of roots of the fractional polynomial
becomes quite intractable, thus, we introduce the mapping of the s plane to a plane
associated with the equivalent characteristic polynomial. Choose λ = s β, we
arrive at the characteristic polynomial. The associated characteristic polynomial is

f
(
λ1/β

)
= f̃ (λ) = 136.22λ1111 − 25λ1000 + 1,
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where s0.001 = λ. For the stability of the proposed fractional closed-loop sys-
tem, the absolute values of the angles of roots of the associated characteristic
polynomials are larger than

βπ

2
, i.e. |∠λi | >

βπ

2
, the system is said to be stable

([20], p. 237). The graphical analysis in Fig. 7 confirms the stability of the frac-
tional system of the paper, i.e. the condition |∠λi | >

βπ

2
holds for the associated

characteristic polynomial. Fig. 7 displays the stability assessment for closed-loop
system associated with the liquid level system.

Figure 7: Stability assessment for closed-loop liquid level system

It is observed from Fig. 7 that no angles of roots of the associated characteristic
polynomial for the closed-loop lie inside the principal sheet of the Riemann
surface. That is suggestive of the stable closed-loop system. In addition to the
stability, we investigate the following: (i) reference tracking using the IAE and
ISCI indices (ii) disturbance rejection response (iii) robustness test.

4.1.2. Reference tracking response

The step response simulation is carried out to evaluate the superiority and
usefulness of the proposed method. The resulting closed-loop step response of
the proposed method is compared with that of the closed-loop response resulting
from the controller design of Bettayeb and Mansouri [6] and Monje et al. [21].
Fig. 8(a) displays the closed-loop response for a unit step setpoint change of three
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methods. It is clear from Fig. 8(a) that closed-loop response associated with the
proposed method of this paper has a faster response with less overshoot than that
of the other two methods. Fig. 8(b) shows the control law comparison of all the
three methods. A zoomed image of the control law associated with the proposed
method is shown in Fig. 8(c). Fig. 8(b) reveals that the control law of Monje
et al. [21] achieves a maximum value greater than 20, which is more than that
of the other two methods. From Fig. 8(c) one can observe the advantage of the
method proposed in this paper since the control law of the proposed closed-loop
achieves a value of 0.009 only. That is relatively less than the other methods of the
literature. To judge the ability of the linear feedback system, the Integral Square

Control Input (ISCI) is employed, i.e. ISCI =
t∫

o
u2(τ)dτ. The less value of the

ISCI is indicative of the less effort required from the controller to achieve the
desired output ([27], p. 535).

(a) (b)

(c)

Figure 8: Closed-loop step response of the liquid level system for a unit step setpoint
change

Table 1 shows comparative closed-loop performance indices for all three
methods. The IAE value associated with the closed-loop of the paper is the least,

Table 1: Performance indices of the liquid level system

Method
The IAE for liquid Control effort in

level system the inputs (ISCI)
Proposed method 66.27 344.5

Monje et al. (2008) 194.9 402.7
Bettayeb and Mansouri (2014) 143.8 351.2
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indicating better performance of the proposed fractional controller. The values
in Table 1 reveal the advantage, usefulness and superior performance of the
proposed method.

4.1.3. Disturbance rejection response

To achieve the superiority of the controller under a variety of conditions,
we consider a disturbance transfer function [6] Gd (s) = 1/(100s + 1) to study
the effectiveness of three methods for disturbance rejection scenario. Fig. 9(a)
shows the response when the disturbance Gd (s) with a step input of magnitude
0.1 is acting on the controlled output. Whereas, Fig. 9(b) displays the efforts
put by all the three controllers to reject the given disturbance. The black line in
Fig. 9(a) denotes the disturbance rejection response associated with the fractional
controller of the paper. The disturbance response of the proposed method has the
least overshoot in comparison to the other available controllers in the literature.
The red line in Fig. 9(a) represents the disturbance rejection for Monje et al. [21]
closed-loop. Bettayeb and Mansouri [6] disturbance rejection graph is denoted
by blue line.

(a)

(b)

Figure 9: Disturbance rejection response for liquid level system

IAE values for all the three methods are noted in Fig. 9(a). The IAE value
associated with the proposed method is 5.874, see Fig. 9(a) That is relatively less
than the other methods, which is indicative of the better response generating from
the proposed fractional controller of the paper.
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4.1.4. Robustness test

The qualitative characteristics of the linear feedback system vary with process
parameter variations and input disturbances [4]. The sensitivity analysis is an
efficient tool to measure the robustness of a system under process parameter
variations and input disturbances. The variation in the process parameters affects
the stability margin as well as the robustness ([4], p. 323). Here, we explain the
robustness test of the fractional control of the paper by introducing the notion of
the sensitivity function, maximum absolute sensitivity and the stability margin
([13], p. 141). Fig. 10 shows a graphical representation of the absolute sensitivity.
The black line in Fig. 10 denotes the absolute sensitivity associated with the
fractional controller of the paper, the red and blue line denotes absolute sensitivity
associated with Monje et al. [21] and Bettayeb and Mansouri [6] respectively.
The maximum absolute sensitivity Smax is a good measure of the robustness.
The maximum absolute sensitivity is the reciprocal of the stability margin [4].
The maximum absolute sensitivity Smax of the proposed closed-loop is 1.33, see
Fig. 10. That is an improvement by 3.7% from the maximum sensitivity of Monje
et al. [21] closed-loop and by 8% from that of the Bettayeb and Mansouri [6]
closed-loop.

Figure 10: A graphical representation of the absolute sensitivity for liquid level system

The relatively less value of Smax, associated with the proposed controller,
suggests the less amplification of the disturbances occurring at frequencies such
that |g( jω) | > 1, where |g( jω) | is the absolute sensitivity ([4], p. 323). The less
value of Smax for the proposed controller also confirms greater stability margin
of the proposed closed-loop.
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4.2. MIMO example

After a successful demonstration of the proposed fractional controller on
single-input, single-output example, consider second example of a ‘Shell control
fractionator problem’ listed by the company in the First Shell Process Control
workshop [29, 36]. This Shell control problem, available in Ogunnaike and Ray
[24], is considered to be a benchmark problem for providing a standard and
realistic test bed for assessment of fresh control theories and technologies.

Here, we revisit the Shell control fractionator with two outputs and three
inputs. The problem received attention in the literature [11, 30]. The transfer
matrix representing the dynamic behaviour of the mentioned problem is given as

Gp(s) =
*....,

4.05 e−81s

50s + 1
1.77 e−89s

60s + 1
5.88 e−81s

50s + 1
5.39 e−54s

50s + 1
5.72 e−42s

60s + 1
6.9 e−45s

40s + 1

+////-
. (22)

Now as there are unequal number of inputs and outputs in the system matrix,
the proper controller pairing becomes imperative. The controller pairing allows
the decentralized control of MIMO processes [33]. Since the fractionator problem
has a non-square matrix description, we utilize the non-square RGA mentioned
in Section 2.2. The steady state gain matrix Gp(0) is obtained by evaluating
the transfer matrix Gp(s) at s = 0. After using (1) and (22), the non-square
fractionator RGA matrix λN can be found as

λN =

( 0.3203 −0.5946 1.2744
−0.017 1.5733 −0.5563

)
. (23a)

The matrix λN of (23a) suggests the (y1 − u3/y2 − u2) pairing for the de-
centralized control configuration, since λ13 > 0.5, λ22 > 0.5. Alternatively, the
non-square fractionator RNGA matrix λRN resulting from (2) and (22) is found as

λRN =

( 0.6492 −0.5916 0.9424
−0.3018 1.5825 −0.2807

)
. (23b)

On observing the non-square fractionator RNGA of (23b), it can be confirmed
that (23b) also suggests the (y1−u3/y2−u2) pairing. Now, the next step is to design
two controller transfer functions. The first controller output is the third fractionator
input and the second controller output becomes the second fractionator input.
Thus, the fractionator controller transfer functions based on the same procedure
as adopted in example 4.1 are given by

Gc1 (s) =
1

88.2 s0.0205 − 81

(
15.391 +

0.17
s
+ 344.39 s

)
, (24)
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Gc2 (s) =
1

48.56 s0.015 − 42

(
14.16 +

0.1748
s
+ 220.28 s

)
. (25)

Here, the filter fractionality γ = 0.0205 and γ = 0.015 corresponds to over-
shoot 0.013 and 0.003 for the controlled output Y1 and Y2 respectively. Note that,
the decentralized control method adopted in this paper is applicable for multi-
input, multi-output (MIMO) systems with moderate time delay. For larger time
delay MIMO systems, interactions strengthen out. In such scenarios dedicated
multivariable decoupling control strategy may be employed in addition to the
proposed method to deal with such systems [33, p. 477].

Similar to the SISO example the stability analysis of the fractionator example
also hinges to the Riemann surface. The structure of the fractional characteristic
polynomial associated with the fractionator closed-loop setup for both inputs-
outputs would be the same, see (21). The specific structure of the fractional
characteristic polynomial associated with the closed-loop of both the outputs Y1
and Y2 are

f1(s) = 88.2s1.0205 − 40.5s + 1, f2(s) = 48.56s1.015 − 22s + 1,

respectively. Choosing λ = s β, the associated characteristic polynomials becomes

f1(λ1/β) = f̃1(λ) = 88.2λ2041 − 40.5λ2000 + 1,

f2(λ1/β) = f̃2(λ) = 48.5λ203 − 22λ200 + 1,
(26)

where s0.0005 = λ and s0.005 = λ for the first and second polynomials respectively.
Fig. 11(a) and Fig. 11(b) display the stability assessment for two closed-loop
systems associated with the controlled outputs Y1 and Y2 respectively. The asso-
ciated characteristic polynomials of (26) are displayed on the Riemann surface,
see Fig. 11.

It is observed from Fig. 11 that no angles of roots of the associated charac-
teristic polynomials for both the closed-loops associated with the outputs Y1 and
Y2 lie inside the principal sheet of the Riemann surface. That is suggestive of the
stable closed-loop system. The graphical analysis in Fig. 11 confirms the stability
of the fractional system of MIMO example, i.e. the condition |∠λi | >

βπ

2
holds

for the associated characteristic polynomial.
To show the superiority of the designed fractionator controllers of this paper,

a unit step setpoint change in the reference Yr1 of the output Y1 is given. Note
that the second output Y2 is setpoint change-free. The results of this step change,
which influence both the closed-loop fractionator outputs, are compared with the
multivariable PI controlled fractionator outputs of Rao and Chidambaram [30]
and Chen et al. [11], see Fig. 12. Here, to evaluate the performance of three pairs
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(a) (b)

Figure 11: Stability assessment for closed-loop systems of MIMO fractionator example

of controllers, Integral Absolute Error (IAE) and Integral Square Control Input
(ISCI) performance criteria are adopted.

Figs. 12(a) and 12(b) show the efficacy of the controllers Gc1 and Gc2 of this
paper in the sense that the IAE and ISCI [39] resulting from the proposed method

(a) (c)

(b) (d)

Figure 12: Closed-loop step response with a unit step change in Yr1 and Yr2
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are less than that of the IAE and ISCI resulting from the other two methods. It
is clear from the representation in Fig. 12 that the proposed controller achieves
quicker settling of the response with a reduced overshoot. This achievement is
attributed to the combined effect of the fractional filter and the Smith predictor
adopted in this paper. Fig. 12(b) shows the response of controlled output Y2 for
interactions from the first loop. The peak is higher for the proposed method in con-
trast to Chen et al. [11] and lesser in comparison to Rao and Chidambaram [30].
However, on the contrary, the settling is quite faster for the proposed method in
comparison to the other methods.

Now, we consider a unit step setpoint change Yr2 of the second output Y2 and
the first output is setpoint change-free. It can be observed from Fig. 12(c) that the
interactions occurring in the controlled output Y1 have quite less overshoot and
even faster settling resulting from the proposed method in contrast to the other
available methods. The same revelations are achieved about the IAE and ISCI
values, see Figs. 12(c) and 12(d).

In addition to graphical illustrations, the IAE and ISCI values of the fraction-
ator controlled outputs using three methods are listed in Table 2. The first part of
Table 2 discusses the IAE performance indices and the second part is about the
control efforts indices (ISCI).

Table 2: Performance indices of the fractionator controlled outputs

The IAE for fractionator outputs Control effort in the inputs (ISCI)

Proposed
method

Rao and
Chidam-

baram [30]
Chen

et al. [11]
Proposed
method

Rao and
Chidam-

baram [30]
Chen

et al. [11]

Step change
in Yr1

Y1 − Yr1 3.063 18.78 16.59 33.47 35.72 34.62
Y2 − Yr1 0.4172 3.541 1.905 1.195 1.3 1.19

Step change
in Yr2

Y1 − Yr2 0.3447 4.809 3.45 0.419 1.434 1.314
Y2 − Yr2 2.414 19.12 10.07 37.9 41.65 40.1

For example, the ISCI value for the step change in Yr1 associated with the
proposed controller is 33.47 compared to 35.72 and 34.62 for the Rao and Chi-
dambaram [30] and Chen et al. [11] method respectively, see Table 2. A similar
interpretation can be made for the ISCI values for the step change in Yr2. The
IAE and ISCI values of Table 2 are indicative of the effective improvement in
the performance of the proposed method compared to the methods available in
literature.

Fig. 13 shows the disturbance rejection response of the proposed method as
compared to that of the appealing methods available in the literature [11, 30].
Fig. 13(a) and Fig. 13(c) display the disturbance rejection response for the outputs
Y1 and Y2 respectively. Fig. 13(b) and Fig. 13(d) display the control effort graphs
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(a) (c)

(b) (d)

Figure 13: Disturbance rejection response for outputs Y1 and Y2

associated with the controlled outputs Y1 and Y2 respectively. The disturbance
transfer functions for both controlled outputs Y1 and Y2 are

Y1(s)
D1(s)

=
357.21s1.0205 − 328.05

(88.2s1.0205 − 40.5s + 1)(50s + 1)
e−81s, (27)

Y2(s)
D2(s)

=
261.74s1.015 − 226.38

(48.56s1.015 − 21s + 1)(50s + 1)
e−54s . (28)

respectively. Numerical simulations demonstrated in Fig. 13 are the consequence
of a set of two disturbance transfer functions, see (27) and (28). Note that D1(s)
and D2(s) are the Laplace transforms of the disturbance input signals associated
with the outputs Y1 and Y2 respectively. Fig. 13 reveals the following: (i) relatively
less value of the overshoot arising from the proposed method in contrast to
the other two methods. (ii) The control effort graphs show quick settling of
the control actions for the proposed method indicating fewer efforts put by the
proposed controller in lieu of the other methods available in the literature, see
Fig. 13(c) and Fig. 13(d). The disturbance rejection response clearly explains the
relatively enhanced response of the proposed controller.

Here, we analyze the disturbance rejection responses using IAE values for
the nominal and mismatch cases. The IAE values for the disturbance rejection
response associated with the controlled fractionator resulting from the three
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methods are listed in Table 3. Table 3 also depicts the IAE values for the 5%
mismatch case as well.

Table 3: IAE values for disturbance rejection response

Output Y1 Output Y2

Method
Nominal case 5% mismatch

case Nominal case 5% mismatch
case

Proposed method 0.8797 0.9102 0.9576 0.9717
Rao and Chidambaram [30] 2.645 2.76 3.36 3.432
Chen et al. [11] 6.447 6.78 5.204 5.474

For example, the IAE values for the disturbance rejection associated with the
output Y1 are 0.8797 and 0.9102 for the nominal and mismatch cases respectively.
That are relatively less than the IAE values of the other two methods, see Table 3.
A similar interpretation for the output Y2 can be made. The IAE values in Table 3
are indicative of better performance resulting from the proposed method com-
pared to the available methods in the literature under two cases, i.e. the nominal
and mismatch cases.

Fig. 14 displays the graphical representation of the sensitivity functions for
three control methods. Here the sensitivity function associated with the proposed
method is compared to that of the other two methods [11, 30]. Fig. 14(a) and
Fig. 14(b) show the sensitivity plots for the outputs Y1 and Y2 respectively. Table 4
lists the maximum absolute sensitivity for the closed-loop system associated with

(a)

(b)

Figure 14: A graphical representation of the absolute sensitivity for both the control loops
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both the outputs. The Smax values in Table 4 reveal that there is a substantial
improvement in the absolute maximum sensitivity measure associated with the
proposed method. This confirms a notable improvement in the stability margin
of the closed-loop resulting from the proposed controller. Hence, the proposed
method shows a notable performance for the multi-input multi-output system
as well.

Table 4: Robustness performance index

Smax

Proposed method Rao and Chidambaram [30] Chen et al. [11]
Output Y1 2.56 3.72 5.15
Output Y2 2.5 2.83 2.557

5. Conclusion

This paper develops a generalized theory of the fractional order controller
transfer function for integer order time-delay systems. That can be regarded as
an extension of the fractional control to a dead time compensator problem. Then,
generalized fractional-filter PID order controller transfer functions for several
other systems with dead time were achieved, illustrated in Table A. Investigations
for the combined effect of the fractional filter and the Smith predictor in the
feedback setup are carried out. This paper reveals how the combination of Smith
predictor and fractional filter contributes to restrict the overshoot and improving
the overall response. We have demonstrated the ability of the generalized frac-
tional control of this paper using the disturbance rejection, robustness analysis,
IAE as well as ISCI indices. Investigations carried out on the developed fractional
controller of the paper reveals enhanced closed-loop results. The paper also dis-
cusses the stability of the proposed closed-loop using the notion of fractional
characteristics polynomial. Thus, the universality of the findings of the paper will
be useful to attempt practical control problems that possess time delays.

Appendix A

Here, we list the fractional filter transfer function that accounts for the Smith
predictor correction term and the PID controller parameters for the several other
time-delay systems. That is a consequence of the Theorem of the paper. The paper
abandons the claim for the completeness of the controller transfer function table.
A similar procedure can be adopted to achieve the generalized fractional-filter
PID controller for n-th order time-delay systems.
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Table A: PID parameters and fractional filter transfer functions for dead time processes

Sr. No. Gp (s) Fractional filter kp ki kd

1.
ke−td s

τs + 1
1

τcsγ − td
2

τ +
td
2

k
1
k

τtd
2k

2.
ke−td s

(τ1s + 1)(τ2s + 1)

1 +
tds
2

τcsγ − td
2

τ1 + τ2
k

1
k

τ1 τ2
k

3.
k (τ3s + 1)e−td s

(τ1s + 1)(τ2s + 1)

1 +
tds
2

(τ3s + 1)(τcsγ − td)
τ1 + τ2

k
1
k

τ1τ2
k

4.
ke−td s

s
1

τcsγ − td
2

1
k

–
td
2k

5.
ke−td s

s(τs + 1)

1 +
tds
2

τcsγ − td
2

1
k

–
τ

k

6.
ke−td s

T2s2 + 2ξT s + 1

1 +
tds
2

τcsγ − td
2

2ξT
k

1
k

T2

k

7.
k (1 − Bs)e−td s

τs + 1
1

τcsγ +
Btds

2
+ B − td

2

τ +
td
2

k
1
k

τ td
2k

8.
k (1 − Bs)e−td s

T2s2 + 2ξT s + 1

1 +
tds
2

τcsγ +
Btds

2
+ B − td

2

2ξT
k

1
k

T2

k

9.
k (1 − Bs)e−td s

s(τs + 1)

1 +
tds
2

τcsγ +
Btds

2
+ B − td

2

1
k

–
τ

k

Appendix B

The proposed controller embeds a fractional filter cascaded with a PID con-
troller for the specific plant setup. The PID controller implementation is straight-
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forward. However, the fractional filter can be implemented using the notion of
equivalent systems. In practice, considering a band limit with a proper range of
frequencies, implementation of the fractional order filter can be achieved ([41],
p. 58). Here, we explain a method, an equivalent integer-order Oustaloup filter
transfer function Ff (s) to a fractional filter with the fractionality γ, which can be
designed as

Ff (s) = K
∏

1¬κ¬N

s + ψ′κ
s + ψκ

,

where ψ′κ = ψlψ
(2κ−1−γ)/N
a , ψκ = ψlψ

(2κ−1+γ)/N
a , K = ψγh with ψa =

√
ψh

ψl
.

Here, N is the order of the integer filter, ψh and ψl are the upper and the lower
operating frequencies. To demonstrate the method, we explain the procedure to
get the integer order filter. Suppose N = 2, γ = 0.5 with 1000 rad/s and 0.01 rad/s
as the upper ψh and the lower ψl frequency band limit respectively. Then, the
Oustaloup filter transfer function becomes

Ff (s) =
31.62s2 + 423.7s + 17.7

s2 + 237.9s + 177.86
.

For the brevity of presentations, we have demonstrated a simple case. The detail
can be found in [25, 41].
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