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An output sensitivity problem for a class
of linear distributed systems
with uncertain initial state

ABDELILAH LARRACHE, MUSTAPHA LHOUS, SOUKAINA BEN RHILA,

MOSTAFA RACHIK and ABDESSAMAD TRIDANE

In this paper, we consider an infinite dimensional linear systems. It is assumed that the initial
state of system is not known throughout all the domain Ω ⊂ Rn, the initial state x0 ∈ L2(Ω)
is supposed known on one part of the domain Ω and uncertain on the rest. That means
Ω = ω1 ∪ ω2 ∪ . . . ∪ ωt with ωi ∩ ω j = ∅, ∀i, j ∈ {1, . . . , t}, i , j where ωi , ∅ and

x0(θ) = αi for θ ∈ ωi , ∀i, i.e., x0(θ) =
t∑

i=1
αi1ωi (θ) where the values α1, . . . , αr are sup-

posed known and αr+1, . . . , αt unknown and 1ωi is the indicator function. The uncertain part
(α1, . . . , αr ) of the initial state x0 is said to be (ε1, . . . , εr )-admissible if the sensitivity of
corresponding output signal (yi )i­0 relatively to uncertainties (αk )1¬k¬r is less to the treshold

εk , i.e.,





 ∂yi∂αk






 ¬ εk , ∀i ­ 0, ∀k ∈ {1, . . . , r }. The main goal of this paper is to determine the

set of all possible gain operators that makes the system insensitive to all uncertainties. The char-
acterization of this set is investigated and an algorithmic determination of each gain operators
is presented. Some examples are given.
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1. Introduction

During the measurement of a system state we are always confronted with the
presence of certain unknown parameters and then we are not able to have a full
access to the state variables. This uncertain parameters that come from the natural
relationship which exists between a system and its environment, data errors and
additives unknown internal and external noise. To better avoid damages being able
to be caused by such uncertainties on the evolution of a system, many research
has focused their work on the determination and characterization the set of this
uncertainties, see [5, 6] and [16].

Output admissible sets have many important applications in the areas of stabil-
ity analysis and design of closed-loop systems with state and control constraints.
Although, the theory of output admissible sets has been appeared in a variety of
contexts see [8, 9, 15]. The case of the disturbances which infect the initial state
for linear system has considered in [2, 7] and [10]. The output admissible set in
this case has determined based on the mathematical programming. However, in
most of the studies available, the problem for infinite dimensional systems is not
considered and hence their applicability is severely limited.

The aim of this work is to present a contribution to the study of the output
admissible set for a class of infinite dimensional discrete systems. A control law is
introduced in order to reduce the effects of these intolerable uncertainties and/or
makes the system insensitive to the effects of all unknown parameters that infect
the initial state.

Without loss of generality, we consider the linear system described by


ẋ(t) = Ax(t), t ­ 0,
x(0) = x0 = α1ω1 + β1ω2 ,

(1)

where x(t) ∈ X = L2(Ω) is the state variable, Ω is an open bounded of Rn,
Ω = ω1 ∪ ω2 and ω1 ∩ ω2 = Ø. A generates a continuous strongly semigroup
(S(t))t­0 on the space X. The initial state x0 is supposed to be known on ω1 but
not on ω2.

The associated output of the system is discrete and is governed by

y(ti) = Cx(ti) + Dvi , ∀i ­ 0, (2)

where (ti)i­0 is a constant step subdivision of [0,+∞[, i.e., [0,+∞[= ∪∞i=0[ti, ti+1[,
t0 = 0, ti = iδ and δ is the step of sampling. The control is assumed closed loop,
i.e., vi = K xi where xi = x(ti) and K ∈ L(X,Rp) with C ∈ L(X,Rk ) and
D ∈ L(Rp,Rk ).

We will propose a technique to determine among these controls law which
makes the system insensitive the effects of these unknown parameters β.
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A uncertainty is said to be admissible if




∂yi

∂ β






 ¬ ε, for ∀i ­ 0. (3)

The constraints may be summarized by a single set inclusion

Yε =
{
yi ∈ Rk/






∂yi

∂ β






 ¬ ε, for ∀i ­ 0
}
. (4)

If these constraints are violated for any i ­ 0, serious damage may happen.
We say that makes the system insensitive the effects of these uncertainties, if the
output of the system never exceed the specified constraints (3). With (1) and (3),
it is desired to determine the setK of all gain operators K that have an admissible
uncertainties, to be explicit:

K =
{

K ∈ L(X,Rp) /





∂yi

∂ β






 ¬ ε, for ∀i ­ 0
}
.

In this paper, we are interested in studied the output sensitivity for a class
of infinite dimensional linear systems with uncertain initial state. We will show
that, under some hypothesis, the output system will be insensitive to the effects
of unknown parameters in initial state of system under a corresponding control
law. We are interested with the investigation of the set of all gain operators those
makes the system insensitive of the effects of uncertain initial state. Under some
assumptions, we determine that this set cab be described by finite number of
inequalities and an algorithmic procedure is established for computing this set.

This paper is organised as follows: In section 2 the characterization of the gain
operator set is presented. A algorithmic determination for the characterization of
the sets Sε (K ) for each gain operators will presented in section 3. In section 4
we give some assumption to determine the set Sε (K ) by a finite number of
inequalities. In section 5 we give another approach to characterize the set of
output sensitivity and the concluding remarks are given insection 6.

2. Characterization of the gain operators Set

The linear systems considered in this paper have the following form
ẋ(t) = Ax(t), t ­ 0,
x(0) = x0 = α1ω1 + β1ω2

(5)

the corresponding output is

yi = Cxti + Dvi ,
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where (ti)i­0 is a constant step subdivision of [0,+∞[, i.e., [0,+∞[= ∪∞i=0[ti, ti+1[,
t0 = 0, ti = iδ and δ is the step of sampling. x(t) ∈ X = L2(Ω) is the state
variable,Ω is an open bounded of Rn,Ω = ω1∪ω2 andω1∩ω2 = Ø. A generates
a continuous strongly semigroup (S(t))t­0 on the space X. The initial state x0 is
supposed to be known on ω1 defined by α but not on ω2 where β is the uncertain
parameter of the initial state. The control feedback is vi = K xi where xi = x(ti)
and K ∈ L(X,Rp) with C ∈ L(X,Rk ) and D ∈ L(Rp,Rk ).

Definition 1 Output function is insensitive to the effects of the uncertainties, if
the corresponding output satisfies the following condition




∂yi

∂ β






 ¬ ε, for ∀i ­ 0. (6)

The control law
vi = K xi

is introduced in order to reduce the effects of these intolerable uncertainties and/or
makes the system insensitive to the effects of all unknown parameters that infect
the initial state.

As x(t) = S(t)x0 then

yi = α(C + DK )S(ti)1ω1 + β(C + DK )S(ti)1ω2

then
∂yi

∂ β
= (C + DK )S(ti)1ω2 = (C + DK )[S(δ)]i1ω2 .

Our problem is to determine under some assumptions, the gain K such that


(C + DK )[S(δ)]i1ω2



 ¬ ε, for ∀i ­ 0.

Some of the control objectives are to stabilize the system and to maintain
its output trajectory within the domain of constraints. The constraints may be
summarized by a single set inclusion

yi ∈ Yε =
{
yi ∈ Rk/






∂yi

∂ β






 ¬ ε, for ∀i ­ 0
}
.

Our goal is to characterize the set K of control law such that the output of
system never exceed the specified constraints (3)

K =
{

K ∈ L(X,Rp) /





∂yi

∂ β






 ¬ ε, for ∀i ­ 0
}
.
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Let ε > 0 and K ∈ L(X,Rp), we note

Sε (K ) =
{
x ∈ X /




(C + DK )[S(δ)]i x


 ¬ ε, ∀i ­ 0
}

then

K =
{
K ∈ L(X,Rp) / 


(C + DK )[S(δ)]i1ω2




 ¬ ε, ∀i ­ 0
}

=
{
K ∈ L(X,Rp) / 1ω2 ∈ Sε (K )

}
.

We note that the set of all gain operator Sε (K ) is defined by an infinite number
of inequalities. We will establish sufficient conditions which allow us to describe
it by a finite number of inequalities. In order to characterize the set Sε (K ), we
introduce the following notations

Sε (K ) =
{
x ∈ X /




C̃ Ãi x


 ¬ ε, ∀i ­ 0
}

where C̃ = C + DK and Ã = S(δ).
Let consider the Banach space Y =

{
(xi)i­0, xi ∈ Rk / sup

i­0
∥xi∥ < ∞

}
and

we introduced the operator defined by
H : X −→ Y

x −→ (C̃ Ãi x)i­0.
(7)

Remark 1 The operator H is the observability operator of discrete-time linear
system

(S)
{

xi+1 = Ãxi, i ­ 0
x0 ∈ X

and (O)
{
yi = C̃xi, i ­ 0

with xi ∈ X is the state of system (S), X = L2(Ω), yi ∈ Rk is the corresponding
output. The system (S)-(O) is observable if the operator H is injective.

Proposition 1 If ( Ã, C̃) is observable and ∥ Ã∥ < 1 then Sε (K ) is bounded, i.e.,
there exist γ > 0 such that Sε (K ) ⊂ B(0, γ).

Proof. If ∥ Ã∥ < 1 then the operaor H is bounded and if H is injective then
H−1 : ImH −→ X is bounded because the graph of H−1 is closed. Let consider
x ∈ Sε (K ) and z = (zi)i = H x = (C̃ Ãi x)i ∈ Y then zi ∈ B(0, ε), ∀i ­ 0. Then
with the norm of the Banach space Y , z ∈ B(0, ε) and x ∈ H−1B(0, ε) which
impliesSε (K ) ⊂ H−1B(0, ε) then there exist γ > 0 such thatSε (K ) ⊂ B(0, γ).□

In order to characterize Sε (K ) we introduce for each integer i the set Sγε,i (K )
defined by

Sγε,i (K ) =
{
x ∈ X ∩ B(0, γ) / 


C̃ Ã j x


 ¬ ε, ∀ j = 0, 1, . . . , i

}
,

where γ is a real positive such that Sε (K ) ⊂ B(0, γ).
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Proposition 2 Sγε,i (K ) is a closed, convex and symmetric set.

Proof. The results are easily checked from the definition of Sγε,i (K ). □

Remark 2 For every integer i ­ 0 we have

Sε (K ) ⊂ Sγ
ε,i+1(K ) ⊂ Sγε,i (K ).

Definition 2 Sε (K ) is finitely determined if there exists an integer i such that
Sε (K ) = Sγε,i (K ).

The finite determination of Sε (K ) is characterized by the following theorem.

Theorem 1 Sε (K ) is finitely determined if and only if there exists an integer i
such that Sγε,i (K ) = Sγ

ε,i+1(K ).

Proof. If we suppose that exist an integer i ­ 0 such that

Sγε,i (K ) = Sγ
ε,i+1(K )

then
x ∈ Sγε,i (K ) ⇒ x ∈ Sγ

ε,i+1(K ) ⇒ Ãx ∈ Sγε,i (K )

and by iteration we have

x ∈ Sγε,i (K ) ⇒ Ã j x ∈ Sγε,i (K ),∀ j ­ 0,

then
x ∈ Sε (K )

that implies
Sγε,i (K ) ⊂ Sε (K ).

And we know that Sε (K ) ⊂ Sγε,i (K ) for every i ­ 0, hence Sε (K ) = Sγε,i (K ).
Conversely, if Sε (K ) = Sγε,i (K ) for some i ­ 0, then obviously Sγε,i (K ) =

Sγ
ε,i+1(K ). Which complete the proof. □

Remark 3 Suppose that Sε (K ) is finitely determined and let i∗ be the smallest i
such that Sγε,i (K ) = Sγ

ε,i+1(K ), then Sε (K ) = Sγε,i (K ) = Sγε,i∗ (K ) for all i ­ i∗.
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3. Algorithmic determination

As a natural consequence of the previous proposition, we shall give the
following conceptual algorithm for determining the index i∗ such that Sε (K ) =
Sγε,i∗ (K ) and consequently the characterization of the set Sε (K ).
Algorithm I����������

step 1: Set i = 0
step 2: If Sγ

ε,i+1(K ) = Sγε,i (K ) then set i∗ = i and stop,
else continue.

step 3: Replace i by i + 1 and return to step 2.

Clearly, the algorithm I will produce i∗ and Sε (K ) if and only if Sε (K ) is finitely
determined. There appears to be not finite algorithmic procedure for showing that
Sε (K ) is not finitely determined.

Algorithm I is not practical because it does not describe how the testSγε,i (K ) =
Sγ
ε,i+1(K ) is implemented. In order to overcome this difficulty, let Rk be endowed

with the following norm

∥x∥ = max
1¬i¬n

|xi |, ∀x = (x1, x2, . . . , xn) ∈ Rk .

Let with hl : Rk −→ R is described for all x = (x1, . . . , xk ) ∈ Rk by{
h2r−1(x) = xr − ε, for r ∈ {1, 2, . . . , k},

h2r (x) = −xr − ε, for r ∈ {1, 2, . . . , k}.

In this case, for every integer i, Sγε,i (K )is given by

Sγε,i (K ) = {x ∈ X ∩ B(0, γ); h j (C̃ Ãs x) ¬ 0, j = 1, . . . , 2k; s = 0, . . . , i},

on the other hand

Sγ
ε,i+1(K ) =

{
x ∈ Sγε,i (K ); ∥C̃ Ãi+1(x)∥ ¬ ε

}
=

{
x ∈ Sγε,i (K ); h j (C̃ Ãi+1(x)) ¬ 0, for j = 1, . . . , 2k

}
.

Now, since Sγ
ε,i+1(K ) ⊂ Sγε,i (K ) for every integer i, then

Sγ
ε,i+1(K ) = Sγε,i (K ) ⇐⇒ Sγε,i (K ) ⊂ Sγ

ε,i+1(K )

⇐⇒ x ∈ Sγε,i (K ); h j (C̃ Ãk+1(x)) ¬ 0, for all j = 1, . . . , s
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⇐⇒ sup
x∈Sγε,i (K )

h j (C̃ Ãi+1(x)) ¬ 0, for all j = 1, . . . , s

⇐⇒ sup
h j (C̃ Ãl (x0))¬0︸        ︷︷        ︸

j∈{1,...,2k}, l∈{0,...,i}

h j (C̃ Ãi+1x) ¬ 0, for all j ∈ {1, . . . , 2k}.

Consequently the test Sγε,i (K ) = Sγ
ε,i+1(K ) leads to a set of mathematical

programming problems, and algorithm I can be implemented as follows.
Algorithm II

����������������������

step 1: Let i = 0;
step 2: For j = 1, . . . , s, do :

Maximize Jj (x) = h j (C̃ Ãi+1(x)){
hr (C̃ Ãl x) ¬ 0
j = 1, 2, . . . , 2k, l = 0, . . . , i.

Let J∗j be the maximum value of Jj (x).
If J∗j ¬ 0, for j = 1, . . . , s then set i∗ := i and stop.
Else continue.

step 3: Replace i by i + 1 and return to step 2.

Remark 4 The optimization problem cited in step 2 is a mathematical program-
ming problem and can be solved by standard methods.

4. Sufficient conditions for finite determination of Sε (K )

In order to show that the finite determination property is not so restrictive, we
give the following result.

Theorem 2 If Ã is asymptotically stable (λ < 1 for every λ eigenvalue of Ã),
then there exists an integer i0 such that the output function yi is not sensitive to
uncertainties β for every i > i0.

Proof. Let ε > 0, the asymptotic stability of Ã implies that there exists a certain
i0 such that 


C̃ Ãi


 < ε

M
,∀ i ­ i0

where M > 0 is the bounded of 1ω2 , i.e., ∥1ω2 ∥X < M (Ω is bounded in Rn)
then 


C̃ Ãi1ω2




 ¬ ε, ∀i ­ i0 .
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Then 




∂yi

∂ β






 ¬ ε, for ∀i ­ i0 ,

and the output function yi is not sensitive to the uncertainties β for every i > i0.□

Theorem 3 Suppose the following assumptions to hold:

1. the pair
(
Ã, C̃

)
is observable, i.e., the operator H defined by (7) is injective.

2. Ã is asymptotically stable.

Then the output sensitivity set Sε (K ) is finitely determined.

Proof. By the observability of
(
Ã, C̃

)
and by Proposition 2 there exists a γ > 0

such thatSε (K ) ⊂ B(0, γ). Ã = A+BK is asymptotically stable, then there exists
an integer i0 such that

∥C̃ Ãi∥ ¬ ε

γ
, ∀i ­ i0 .

Let x ∈ Sγε,i0 (K ) then ∥x∥ ¬ γ and ∥C̃ Ãi x∥ ¬ ε, ∀i ¬ i0 and by the asymptoti-
cally stable of Ã = A + BK we have

∥C̃ Ãi∥ ¬ ε, ∀i ­ 0

then Sγε,i0 (K ) ⊂ Sε (K ) and Sε (K ) is finitely determined. □

Example 1. Let consider X = L2(0, 1) and the evolution equation defined by


ẋ(t) = Ax(t), t ­ 0,
x(0) = x0 = α1ω1 + β1ω2 ,

(8)

where x(t) ∈ L2(0, 1), A is the Laplacian operator with

D(A) = {y ∈ X | ∆z ∈ X, and z(0) = z(1) = 0} .

The operator A generate a strongly continuous semigroup S(t)t­0 defined by

S(t)z =
∞∑

n=1
e−n2π2t⟨z, ϕn⟩ϕn ,

where ⟨., .⟩ is the usual inner product on L2(0, 1) and ϕn(s) =
√

2 sin(nπs) is a
basis of L2(0, 1).
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The system (8) is augmented with the output function

yi = Cxi + Dvi, i ­ 0

where 
C : L2(0, 1) −→ R

x −→ ⟨x, g⟩, where g(s) = s2, ∀s ∈]0, 1[
D : R −→ R, Dv = v.

The observability operator is

(H x)i = C̃ Ãi x =
∞∑

n=1
e−n2π2δ⟨x, ϕn⟩(⟨ϕn, g⟩ + Kϕn), ∀i ­ 0

then if Kϕn , −⟨ϕn, g⟩ = −
√

2
nπ

(−1)n +
2
√

2
(nπ)3 [1 − (−1)n], ∀n ­ 1, we deduce

that the operator H is injective. Also we have ∥S(δ)z∥2 =
∞∑

n=1
e−2n2π2δ⟨z, ϕn⟩2,

then we verify that ∥ Ã∥ = ∥S(δ)∥ < 1.
The set K of control law is given by

K =
{
K ∈ L(X,Rp) / 


ÃS(δ)i1ω2




 ¬ ε, ∀i ­ 0
}

=
K ∈ L(X,Rp) /

������
∞∑

m=0

√
2e−i(2m+1)2π2δ

(
−1 + (−1m)
(2m + 1)π

) *,
√

2
(2m + 1)π

+

+
4
√

2
(2m + 1)3π3 + Kϕ2m+1+-+

+

∞∑
m=1

√
2e−i4m2π2δ

(
1 + (−1m)

(2m)π

) *,−
√

2
(2m)π

+ Kϕ2m+-
������ ¬ ε, ∀i ­ 0

 .
For

K : X −→ R

x −→ K x = −
1∫

0

x(s)d s =
∞∑

n=1

√
2

nπ
((−1)n − 1)⟨x, ϕn⟩

the system is observable and the set Sε (K ) is given by

Sε (K ) =
x ∈ X /

��������
∞∑

n=1

(
4

(nπ)3 [1 − (−1)n] − 2
nπ

) 1∫
0

x(s) sin(nπs)d s

�������� ¬ ε, ∀i ­ 0
 .
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5. The output sensitivity problem for parabolic systems

Let consider the system (1) with the corresponding output (2) and we will
to determine the set of all gain operator K , such that vi = K xi where ∥K ∥ ¬ k
with k is a fixed positive real, those makes the system insensitive of the effects of
disturbances, i.e., those verify (3). The operator A generate a continuous strongly
semigroup (S(t)t­0) on the space X = L2(Ω).

S(t)x =
∞∑

n=1
eλnt⟨x, ϕn⟩ϕn ,

where (ϕ)n is a basis of L2(Ω) and λn are the eigenvalues of A which verify

λn < 0, lim
n→+∞

(λn+1 − λn) = −∞, λn and (λn+1 − λn) are decreasing

we have




∂yi

∂ β






 ¬ ε, ∀i ­ 0⇐⇒ 


(C + DK )[S(δ)i]1ω2



 ¬ ε, ∀i ­ 0

⇐⇒







∞∑

n=1

⟨
1ω2, ϕn

⟩
(C + DK )[S(δ)i]ϕn







 ¬ ε, ∀i ­ 0

⇐⇒








N∑
n=1

⟨
1ω2, ϕn

⟩
(C + DK )[S(δ)i]ϕn+

∞∑
n=N+1

⟨
1ω2, ϕn

⟩
(C + DK )[S(δ)i]ϕn







 ¬ ε,
∀i ­ 0, ∀N ­ 1.

(9)

Let consider the integer

N = E
(

1
2δ(λ2 − λ1)

ln
(
ε

2
(1 − e2(λ2−λ1)δ)

e2λ1δ

1
(∥C∥ + k ∥D∥)∥1ω2 ∥

))
+ 1

where E is the whole party, then

N ­
1

2δ(λ2 − λ1)
ln

(
ε

2
(1 − e2(λ2−λ1)δ)

e2λ1δ

1
(∥C∥ + k ∥D∥)∥1ω2 ∥

)
witch implies that

(∥C∥ + k ∥D∥)∥1ω2 ∥
e2λ1δ

(1 − e2(λ2−λ1)δ)

(
e2δ(λ2−λ1)

)N
¬
ε

2
(10)
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and






∞∑

n=N+1
⟨1ω2, ϕn⟩(C + DK )[S(δ)i]ϕn







 ¬







∞∑

n=N+1
⟨1ω2, ϕn⟩(C + DK )eiλnδϕn








¬ (∥C∥ + k ∥D∥)

∞∑
n=N+1

��⟨1ω2, ϕn⟩�� eiλnδ

¬ (∥C∥ + k ∥D∥)∥1ω2 ∥ *,
∞∑

n=N+1
e2iλnδ+-

¬ (∥C∥ + k ∥D∥)∥1ω2 ∥
∞∑

n=N+1
e2λnδ

If we put un = e2λnδ then
un+1
un
= e2(λn+1−λn)δ ¬ e2(λ2−λ1)δ < 1.

And with λ = e2(λ2−λ1)δ we have |un | ¬ λ |un−1 | and |un | ¬ λn−1 |u1 |, then
∞∑

n=N+1
¬
λN |u1 |
1 − λ .

Thus

(∥C∥ + k ∥D∥) ∥1ω2 ∥
∞∑

n=N+1
e2λnδ ¬ (∥C∥ + k ∥D∥) ∥1ω2 ∥

e2(λ2−λ1)δN e2λ1δ

1 − e2(λ2−λ1)δ

and by (10) we deduce that






∞∑

n=N+1
⟨1ω2, ϕn⟩(C + DK )[S(δ)i]ϕn







 ¬ ε

2
.

Then to have (6) it enough that

1ω2 ∈ T N (K , ε) =
x ∈ L2(Ω) |








∞∑

n=N+1
⟨1ω2, ϕn⟩(C+DK )[S(δ)i]ϕn







 ¬ ε

2
, ∀i ­ 0


=

x ∈ L2(Ω) |








C̄ Ā

*..,
⟨x, ϕ1⟩
...

⟨x, ϕN⟩

+//-








 ¬

ε

2
, ∀i ­ 0


where the matrices C̄ and Ā are given by

C̄ : RN −→ Rp

*..,
x1
...

xN

+//- −→ (C + DK )
N∑

i=1
xiϕi
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then
C̄i j = ⟨(C + DK )ϕ j, ei⟩, i ∈ {1, . . . , p} and j ∈ {1, . . . , N }

and

Ā =
*.....,

eλ1δ 0 . . . 0
0 . . .

. . .
...

...
. . .

. . . 0
0 . . . . . . eλN δ

+/////-
.

If we pose ξ =
*..,
⟨1ω2, ϕ1⟩

...
⟨1ω2, ϕN⟩

+//- and SN (K, ε) =
{

x ∈ RN | ∥C̄ Āi x∥ ¬ ε

2
, ∀i ­ 0

}
,

then
1ω2 ∈ T N (K , ε) ⇐⇒ ξ ∈ SN (K, ε).

We note that the set SN (K, ε) is defined by an infinite number of inequalities.
We will establish sufficient conditions which allow us to describe it by a finite
number of inequalities. In order to characterize the set SN (K, ε), we introduce
for each integer k the set SN

k (K, ε) defined by

SN
k (K, ε) =

{
x ∈ RN | ∥C̄ Āi x∥ ¬ ε

2
, ∀i ∈ {0, . . . , k}

}
.

Definition 3 The set SN (K, ε) is said to be finitely determined, if there exists an
integer k such that SN (K, ε) = SN

k (K, ε).

The finite determination of T is characterized by the following theorem

Theorem 4 SN (K, ε) is finitely determined if and only if there exists an integer
k such that SN

k (K, ε) = SN
k+1(K, ε).

Proof. The proof of the theorem is similar to that of Theorem 1. □
For the characterization of SN (K, ε) we give the following algorithm.

Algorithm III����������������������

step 1 : Let i = 0;
step 2 : For j = 1, . . . , s, do :

Maximize Jj (x) = h j (C̄ Āi+1(x)){
hr (C̄ Āl x) ¬ 0
j = 1, 2, . . . , 2k, l = 0, . . . , i.

Let J∗j be the maximum value of Jj (x).
If J∗j ¬ 0, for j = 1, . . . , s then set i∗ := i and stop.
Else continue.

step 3 : Replace i by i + 1 and return to step 2.
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In order to show that the finite determination property is not so restrictive, we
give the following result.

Theorem 5 Suppose the following assumptions to hold:

1. The pair
(
Ā, C̄

)
is observable, i.e.,

[
C̄⊤ ���Ā⊤C̄⊤��� . . . ����( Ā⊤

)N−1
C̄⊤

]
has

rank N .

2. Ā is asymptotically stable ( |λ | < 1 for every λ eigenvalue of Ā).

Then the set SN (K, ε) is finitely determined.

Proof. By the observability of
(
Ā, C̄

)
, the rank of the matrix H is N , where

H =



C̄
C̄ Ā
C̄ Ā2

...
C̄ ĀN−1


which implies that HT H is invertible, so there exists c = infλ∈σ(HT H) λ > 0 such
that

c ∥x∥2 ¬
⟨
HT H x, x

⟩
, ∀x ∈ RN

which implies that

c ∥x∥2 ¬ 


H⊤


 ∥H x∥ ∥x∥ , ∀x ∈ RN .

We have

H x ∈

N-time︷                                          ︸︸                                          ︷
B

(
0,
ε

2

)
× B

(
0,
ε

2

)
× . . . × B

(
0,
ε

2

)
, ∀x ∈ SN

N−1(K, ε)

where B
(
0,
ε

2

)
=

{
∀x ∈ RN/ ∥x∥ ¬ ε

2

}
, since

N-time︷                                          ︸︸                                          ︷
B

(
0,
ε

2

)
× B

(
0,
ε

2

)
× . . . × B

(
0,
ε

2

)
is bounded, then ∃ϵ0 such that ∥H x∥ ¬ ϵ0

and
c ∥x∥2 ¬ ε0




H⊤


 ∥x∥ , ∀x ∈ SN
N−1(K, ε).

then there exists γ > 0 such that

∥x∥ ¬ γ = ε0 

H⊤


c

, ∀x ∈ SN
N−1(K, ε). (11)
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Hence
SN

N−1(K, ε) ⊂ B
(
0, γ

)
=

{
∀x ∈ RN/ ∥x∥ ¬ γ

}
.

The asymptotic stability of Ā implies that ∃i0 ­ N − 1 such that




C̄ Āi0+1


 ¬ ε

2γ
,

then since SN
i0

(K, ε) ⊂ SN
N−1(K, ε) ⊂ B(0, γ) and C̄ Āi0+1B(0, γ) ⊂ B

(
0, ε2

)
then for x ∈ SN

i0
(K, ε) we have ∥C̄ Āi0+1x∥ ¬ ε and then x ∈ SN

i0+1(K, ε) which
implies that SN

i0
(K, ε) = SN

i0+1(K, ε). Then SN (K, ε) is finitely determined. □

Example 2. Let consider the Example 1, with the operators

A = ∆, Cx = ⟨x, g⟩ with g(s) = s2, and Dx = v.

If we take

K x = −
1∫

0

x(s)d s, ε = 0.01 and δ = 0.005

then, we have N = 2, Ā =
(

e−π
2δ 0

0 e−4π2δ

)
and C̄ =


√

2
π
+

4
√

2
π3 , −

√
2

2π

 .

Using the Algorithm III, we find that k∗ = 0 and

SN (K, ε) =

(

x
y

)
∈ R2 ��� ������*,

√
2
π
+

4
√

2
π3

+- x −
√

2
2π

y

������ ¬ 0.01
 .

6. Conclusion

In this paper the output sensitivity problem for infinite dimensional linear
system with uncertain initial state is considered. A control law is introduced in
order to reduce the effet of these intolerable incertainties and which makes the
system insensitive to the effects of all unknown parameters. Necessary conditions
are given to described the set of all gain operators by a finite number of inequalities
and some examples are given. In a future work, we plan to extend the approach
developed in section 5 for the parabolic case to another type of system, as the
hyperbolic systems or generally the distributed systems whose state space is
separable, i.e., proceeds a countable basis.
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