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Introduction

With Industry 4.0 in full swing, attempts are be-
ing made to replace human labour with machines
through the transformation of mechanised and au-
tomated production solutions into autonomous, flex-
ible robotic workstations. New machines and mea-
surement systems require a new approach to the ac-
quisition and exploration of data by production con-
trol systems [1]. Integration of robots into state-of-
the-art, flexible manufacturing systems often entails
selecting appropriate statistical methods and artifi-
cial intelligence (AI) tools to ensure high quality of
products in the long term [2–4].

One of the most obvious applications of industrial
robots is the process of product assembly. Works to
design an assembly station operated by an industri-
al robot (robots) may be undertaken to achieve the
following objectives, among others:
• Enhance the production system and meet the re-

quirements concerning efficiency, production flow,
flexibility, and quality of the end product.

• Extend the product assortment.
• Tackle the problem of staff shortages, especially

for monotonous, tedious jobs, as well as reduce
the costs of employment.

• Improve productivity at the workstation (organi-
sation of the process, spatial arrangement).

• Improve the health and safety at work through
complete or partial replacement of human staff
with machines.
Increased interest in industrial robots has been

driving the growth of and competition on the in-
dustrial robotics market, as well as improving cost-
effectiveness of implementation of robotic solutions.
Finding an industrial robot for a particular appli-
cation is no longer a problem. The challenge now
is to compare the available models and select the
one which best meets specific requirements, i.e., con-
duct a complex multi-criteria decision-making pro-
cess. In this paper, the authors compare selected
multi-criteria decision-making (MCDM) methods for
effectiveness, on the basis of an industrial robot se-
lection for a universal, flexible assembly station in

62



Management and Production Engineering Review

a mid-sized manufacturing company with little of au-
tomation or robotisation of processes. Given a large
number of the MCDM methods, varying in charac-
teristics and underlying assumptions [5–7], the au-
thors have applied three of them to list and compare
the obtained results.

Multi-criteria decision making
methods

As discussed in the literature dealing with the
MCDM, the key challenges in the decision making
process are faced when:
• selecting the best variant (a variant in the MCDM

terminology is an object or a subject defined with
a set of criteria) based on predefined criteria.

• establishing the ranking list, i.e. arranging the
variants in a certain order according to the pref-
erences of the decision-maker(s).

• classifying, i.e., assigning the variants to prede-
fined classes.
The classification presented below guides through

the variety of MCDM methods available and ap-
proaches proposed within some of them. Out of the
many classifications available in the literature [5, 8–
13], the groups proposed by [14] seem to classify the
MCDM methods in one of the most perceptible and
comprehensive ways:
• the analytic hierarchy process and derivative

methods (AHP – Analytic Hierarchy Process , F-
AHP – Fuzzy AHP, REMBRANDT – Ratio Esti-
mation in Magnitudes or deciBells to Rate Alter-
natives which are Non-DominaTed, ANP – An-
alytic Network Process, F-ANP – Fuzzy ANP,
MACBETH – Measuring Attractiveness by a Cat-
egorical Based Evaluation Technique).

• methods based on the reference point approach
(TOPSIS – Technique for Order Preference by
Similarity to an Ideal Solution Method, F-TOPSIS
– Fuzzy TOPSIS, VIKOR – in Serbian: Vlse Kri-
terijumska Optimizacija Kompromisno Resenje -
Multicriteria Optimization and Compromise Solu-
tion, DEMATEL+ANP+VIKOR – Decision mak-
ing trial and evaluation laboratory, BIPOLAR).

• additive methods (SAW - Simple Additive Weight-
ing Method, F-SAW – Fuzzy SAW, SMART
– Simple Multi-Attribute Ranking Technique,
SMARTER – Simple Multi-Attribute Ranking
Technique Exploiting Ranks), verbal methods
(ZAPROS – in Russian: ZAmknutye PRoce-
dury u Opornyh Situaci$i – Closed Proce-
dures at Reference Situations, ZAPROS III).

• ELECTRE (ELECTRE I-III – in French: Elimina-
tion Et Choix Traduisant La Realite - Elimination

and Choice Expressing The Reality, ELECTRE
Iv, ELECTRE Is, ELECTRE TRI).

• PROMETHEE (PROMETHEE I-II - Preference
Ranking Organization Methods for Enrichment
Evaluation I-II, EXPROM I-II - EXtension of the
PROMethee method, and versions of the meth-
ods with the veto option), interactive methods
(STEM-DPR - Step Method for Discrete Deci-
sion Making Problems under Risk, INSDECM -
interactive procedure for stochastic multicriteria
decision problems, ATO-DPR - Analysis of Trade-
Offs for Discrete Decision Making Problems under
Risk).
To solve the research problem, i.e., select an in-

dustrial robot for a universal, flexible assembly sta-
tion, the authors have compared results obtained by
three methods which seemed most reliable and de-
rived from different groups of methods:
• Fuzzy Analytic Hierarchy Process (F-AHP).
• Fuzzy TOPSIS method based on the reference

point approach.
• SMART additive method.

Fuzzy versions of the first two methods have
been used, taking into account possible uncertain-
ty of the decision maker resulting from, e.g., insuffi-
cient knowledge, incomplete information, or a com-
plex decision-making environment, i.e., factors which
can be anticipated in the case of a universal, flexible
assembly station.

F-AHP

The Fuzzy Analytic Hierarchy Process (F-AHP)
is a version of the Analytic Hierarchy Process
(AHP) which uses fuzzy numbers. The classical AHP
method, including some basic information about
sets, fuzzy numbers and operations made on them,
as well as the application of the F-AHP and the
algorithm used by the authors, are presented be-
low.

Developed by American scientist Thomas L.
Saaty in 1970, the Analytical Hierarchy Process
(AHP), with its numerous modifications and appli-
cations, supports complex decision making processes
with a predefined number of variants, taking into ac-
count human psychology [15,16]. It is a structured
technique of breaking down a problem into factors
independent of one another.

The AHP consists of seven major steps [17]:
• Describing the problem.
• Selecting criteria and variants, structuring the

problem.
• Selecting a scale of comparison.
• Comparing the criteria and variants in pairs with

the use of comparison matrices.
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• Quantifying relative weights of the criteria and
variants.

• Ensuring consistency of the matrices.
• Obtaining the final relative weights.

The Fuzzy Set Theory (FST), presented by Zadeh
in 1965, represents an extension of the traditional
set to accommodate uncertainty and unclear data. A
fuzzy set is a class of objects with an assigned degree
of membership. The assignment is described by the
function of membership, which takes a value from 0
to 1 [18].

Triangle fuzzy number (TFN – M̃ see Fig. 1) is
represented by M̃ = (l,m, u), where l represents the
minimum possible value, m — the most likely value,
and u – the maximum possible value. This represen-
tation, referred to as the function of membership,
takes the following values (Eq. 1):

µ
M̃

(x) =



0 x < l,

x− l

m− l
l ≤ x ≤ m,

u− x

u−m
m ≤ x ≤ u,

0 x > u.

(1)

Fig. 1. Triangle fuzzy number M̃(l,m, u)
[own work based on [18]].

A fuzzy number can be represented by the left-
hand side M l(y) and the right-hand side Mr(y) part
of the function of membership [18]. Some impor-
tant mathematical operations made on triangle fuzzy
numbers are shown below (Eq. (2)). The follow-
ing relations occur for two fuzzy numbers M̃1 =
(l1,m1, u1) and M̃2 = (l2,m2, u2):

M̃1 ⊗ M̃2 = (l1,m1, u1) ⊗ (l2,m2, u2), (2)

M̃1ΘM̃2 = (l1,m1, u1)Θ(l2,m2, u2)

= (l1 − l2,m1 −m2, u1 − u2),
(3)

M̃1 � M̃2 = (l1,m1, u1) � (l2,m2, u2)

= (l1 × l2,m1 ×m2, u1 × u2),
(4)

M̃1/M̃2 = (l1,m1, u1)/(l2,m2, u2)

= (l1/u2,m1/m2, u1/l2),
(5)

M̃−1
1 = (l1,m1, u1)−1 = (1/u1, 1/m1, 1/l1). (6)

The algorithm used in the F-AHP, similar to the
classical one used in the AHP, is enhanced with oper-
ations on fuzzy numbers. The steps of the algorithm
applied in [18–20] include:
1. Describing the problem.
2. Selecting criteria, variants and decision maker(s).
3. Selecting the scale of comparison – the traditional

scale used in Saaty’s original approach (1, 3, 5, 7,
9, where 1 means that there is no difference be-
tween two criteria/variants, and 9 — that a given
variant/criterion is definitely better) is replaced
with a fuzzy scale, e.g., as shown in Table 1 [19,
21].

4. Building matrices for the comparison of criteria
(variants are compared in the same way, based on
given criteria)

Ãk =

 d̃k11 ... ...
... ... ...

... ... d̃knn

, (7)

where d̃kij – the k-th assessment by the decision
maker, according to the scale (Table 1), used for
a comparison of criteria i and j; if there is more
than one decision maker, the assessment is aver-
aged. Thus, aggregated assessments d̃ij and ma-
trix Ã are obtained:

d̃ij = (lij ,mij , uij), (8)

Ã =

 d̃kij ... ...
... ... ...

... ... d̃nn

. (9)

5. Working out the geometric mean for each cri-
terion:

r̃l =

 n∏
j=1

d̃ij

1/n =(li,mi, ui), i, j=1, 2, ..., n, (10)

li = (li1⊗li2⊗...⊗lin)1/n, i, j = 1, 2, ..., n, (11)

mi =(mi1⊗mi2⊗...⊗min)1/n, i, j=1, 2, ..., n, (12)

ui =(ui1 ⊗ ui2 ⊗ ...⊗ uin)1/n, i, j=1, 2, ..., n, (13)

6. Working out fuzzy weights of the criteria, in three
steps:

(a) finding the vector, being the sum r̃l − r̃ltotal

r̃ltotal =

(
n∑

i=1

li,

n∑
i=1

mi,

n∑
i=1

ui

)
, (14)
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Table 1
Fuzzy scale used in the FAHP (own work based on [19, 20]).

Assessment of criteria/
variants

Assessment in words
Numerical rating

FAHP
(triangle fuzzy scale)

AHP – scale

Equality
Both elements (variants, criteria)

equally contribute to the achievement
of an objective

(both elements are equally important)

(1, 1, 1) (1, 1, 1) 1 1

Slight or moderate
Slight prevalence of one element

over the other (one element is slightly
more important than the other)

(1, 3, 5) (1/5, 1/3.1) 3 1/3

Strong, fundamental

Fundamental or strong prevalence
of one element over the other
(one element is significantly

more important than the other)

(3, 5, 7) (1/7, 1/5, 1/3) 5 1/5

Definite or very strong

Definite or very strong prevalence
of one element over the other

(one element is definitely
more important than the other)

(5, 7, 9) (1/9, 1/7, 1/5) 7 1/7

Absolute Absolute prevalence
of one element over the other

(7, 9, 9) (1/9, 1/9, 1/7) 9 1/9

For comparisons
where results

do not match any
of the above values

In case there is a need of numerical
interpolation of opinions due

to the fact that no words
can describe them, intermediate

values are used

(1, 2, 4)
(2, 4, 6)
(4, 6, 8)
(6, 8, 9)

(1/4, 1/2, 1/1)
(1/6, 1/4, 1/2)
(1/8, 1/6, 1/4)
(1/9, 1/8, 1/6)

2, 4, 6, 8 1/2; 1/4; 1/6; 1/8

(b) working out (r̃ltotal)
−1 and rearranging ele-

ments of the fuzzy number in the ascending
order,

(c) working out the fuzzy weight for each crite-
rion with the following formula:

w̃l = r̃l ⊗ (r̃ltotal)
−1

=

 li
n∑

i=1

ui

,
mi
n∑

i=1

mi

,
ui
n∑

i=1

li

,
i, j = 1, 2, ..., n,

(15)

w̃l = (lwi
,mwi

, uwi
). (16)

7. Defuzzifying – determining non-fuzzified weight
for each criterion, with the following formula:

Mi =
lwi

+mwi
+ uwi

3
. (17)

8. Determining the normalised weight for each crite-
rion, with the following formula:

wi =
Mi
n∑

i=1

Mi

. (18)

9. Repeating steps 3–7 in order to determine nor-
malised weights for particular variants relative to
the criteria.

10. Calculating the aggregate assessment for each
variant through multiplication of the normalised
weights of criteria and variants.

11. Selecting the variant with the highest aggregate
assessment as the one which best reflects the pref-
erences of the decision-maker(s).

F-TOPSIS

The procedure which the authors followed using
the F-TOPSIS (22,23,24) method consists of the fol-
lowing steps:
1. Describing the problem.
2. Selecting criteria, variants and decision maker(s).
3. Selecting scales for the assessment of criteria and

variants – the F-TOPSIS method uses linguistic
scales, different for the assessment of criteria and
variants (Table 2).

4. Assessing all the criteria and variants relative to
particular criteria, using the scales; unlike the
F-AHP, rather than the criteria and variants be-
ing compared with one another, they are assessed
using a predefined scale (Sec. 3); in the event of
several experts, weights of criteria and assessments
of variants are averaged.

5. Building a fuzzy decision matrix and fuzzy weight
matrix:

D̃k =

 d̃k11 ... ...
... ... ...

... ... d̃knm

, (19)

where (i = 1, 2, ..., n; j = 1, 2, ...,m) – assessment
Ai of the i-th variant by the k-th decision mak-
er relative to the j-th criterion to the predefined
scale of comparison (Table 2) of criteria i and j.
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Table 2
Scales for the assessment of criteria and variants relative to given criteria.

Assessment of criterion Numerical rating Assessment of a variant relative
to the criterion

Numerical rating

of little importance (0; 0; 0.25) very low (0; 0; 0.25)

of medium importance (0; 0.25; 0.5) low (0; 2.5; 5)

important (0.25; 0.5; 0.75 good (2.5; 5; 7.5

very important (0.5; 0.75; 1) very good (5; 7.5; 10)

absolutely important (0.75; 1, 1) excellent (7.5; 10; 10)

If there is more than one decision maker, the as-
sessment is averaged; thus, aggregated assessment
d̃ij and fuzzy decision matrix D̃ [25] are obtained.
Fuzzy weight matrix W̃ is also built

d̃ij = (lij ,mij , uij), (20)

D̃ =

 d̃kij ... ...
... ... ...

... ... d̃nm

, (21)

W̃ =


w̃1

w̃2

...
w̃m

. (22)

6. Transforming matrix D̃ into normalised R̃
Fuzzy decision matrix D̃ is transformed into nor-
malised R̃, where:

R̃ = [r̃ij ]nxm. (23)

The matrix is normalised for:
– benefit criterion:

r̃ij =

(
lij

u+j
,
mij

u+j
,
uij

u+j

)
, (24)

where u+j = maxi uij−max uij for a given variant
– cost criterion:

r̃ij =

(
l−j
uij

,
l−j
mij

,
l−j
lij

)
, (25)

where l−j = mini lij − min lij for a given variant.
7. Calculating the weighted normalised matrix of

weights Ṽ :
Ṽ = [ṽij ]nxm, (26)

where
ṽij = r̃ij × w̃j . (27)

8. Defining the Fuzzy Positive Ideal Solution (FPIS)
A+ and the Fuzzy Negative Ideal Solution (FNIS)
A−

A+ = (ṽ+1 , ṽ
+
j , ..., ṽ

+
m), (28)

A− = (ṽ−1 , ṽ
−
j , ..., ṽ

−
m), (29)

where
ṽ+j = (1, 1, 1), (30)

ṽ−j = (0, 0, 0). (31)

9. Calculating the distance of each variant from A+

and A−:

d+i =

m∑
j=1

dv(ṽij , ṽ
+
j ), (32)

d−i =

m∑
j=1

dv(ṽij , ṽ
−
j ), (33)

where dv represents the distance between two
fuzzy numbers, expressed by the following formu-
la:

dv(x̃, z̃)=

√
1

3
[(lx−lz)2+(mx−mz)2+(ux−uz)2].

(34)
10. Calculating the closeness coefficient (CC):

CCi =
d−i

d+i + d−i
. (35)

11. Arranging the variants in a descending order in
terms of the CC; the best variant is the one clos-
est to the FPIS and farthest from the FNIS.

SMART

The procedure followed by the authors using the
SMART method [26–28] consists of the following
steps:
1. Describing the problem.
2. Selecting criteria, variants and decision maker(s).
3. Assigning weights to the criteria and assessing

variants relative to the criteria, according to pre-
defined scales (Table 3); the final weight assigned
to a criterion is the average weight assigned by the
experts.

4. Normalising the weights with the following formu-
la:

wj
m∑
j=1

wj

, j = 1, 2, ...,m. (36)
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Table 3
Scales for the assessment of criteria and variants relative to given criteria.

Importance of criterion Assessment of a variant relative
to the criterion

of little importance 0 very low 0

of medium importance 0.25 low 2.5

important 0.5 good 5

very important 0.75 very good 7.5

absolutely important 1 excellent 10

5. Calculating usefulness of variants relative to each
criterion, with the following formula:

uj(ai) =
cj − cminj

cmaxj − cminj

,

i = 1, 2, ..., n; j = 1, 2, ...,m.

(37)

6. Final assessment of each variant through multi-
plying the normalised weights of particular crite-
ria by usefulness of each variant relative a given
criterion.

7. Arranging the variants in an order from the best
to the worst.

Methodology of industrial
robot selection

There is a wide range of industrial robots for spe-
cific industrial applications, which offer various tech-
nical parameters and performance. The key parame-
ters which differentiate particular models are:
• Number of axles.
• Maximum lifting capacity (kN).
• Working volume (mm3).
• Maximum working range (◦) – maximum range of

movement of the axles.
• Maximum velocity (◦/s, ◦/rad) – maximum veloc-

ities of the axles.
• Repeatability (mm) – the range of differences be-

tween positions repeatedly obtained from one di-
rection.

• Positioning accuracy (mm) – the difference be-
tween the predefined position and the average po-
sition obtained, from one direction.

• Ambient temperature (◦C) – the recommended
range of operating temperature.

• Recommended relative ambient humidity (% +◦C).
• Occupied space (m3).
• Additional arm load (kN).
• Total weight (kg).
• Types of drives.
• Presence of mechanical bumper stops.
• Mounting options.

• Additional information by the manufacturer –
a description of accessories or an instruction man-
ual for mounting the base (according to relevant
standards).

• Power consumption.
Further analysis focuses on the parameters rel-

evant for a flexible assembly station in a mid-sized
manufacturing company. The number of axles is not
considered, since the parameter has the same value
for all the robots under analysis. A list of the indus-
trial robots under analysis and their parameters is
shown in Table 4. Price has been added as one of the
criteria. Although it does not fall into the category
of technical or operational parameters, it is always
considered when making investment decisions.

Table 4
Parameters considered in the selection of an industrial robot.

Parameters
– criteria

selected for the
assessment of an
industrial robot

Robot 1 Robot 2 Robot 3 Robot 4 Robot 5

W1 W2 W3 W4 W5

Number of axles 6 6 6 6 6

Lifting
capacity [kN]

0.06 0.12 0.06 0.06 0.08

Weight [kg] 250 98 270 250 180
Working range

[mm]
2006 1385 1373 1450 1598

Repeatability
+/− [mm]

0.1 0.05 0.08 0.005 0.1

Axles – range of movement [◦]

J1 340 340 340 360 340

J2 255 230 250 240 255

J3 375 290 315 310 475

J4 360 320 380 400 540

J5 280 240 280 230 255

J6 720 720 720 800 800

Axles – velocity [◦/s]

J1 165 230 150 180 170

J2 165 172 160 180 170

J3 175 200 170 180 175

J4 350 352 400 320 360

J5 340 375 400 400 350

J6 520 660 500 460 540

Price [EUR] 37,000 37,000 48,000 39,000 34,000
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The selection of an industrial robot using the
F-AHP was conducted according to the procedure
discussed in Subsec. 2.1.

The selected group of experts determined the
most important criteria (parameters) and variants
(specific models of industrial robots) for the defined
decision problem. Next, they compared the criteria
for importance, using fuzzy numbers. The results of
the comparison (being a consensus of the experts’
opinions) are shown in Table 5.

Next, the geometric means of assessments of par-
ticular criteria and their fuzzy weights were calcu-

lated. The fuzzy weights were then defuzzified and
normalised weights were computed, what facilitated
the selection of the most important parameters. The
results of these stages of the procedure are shown in
Table 6.

Working range and repeatability were found to
be the most important criteria. Normalised weights
of all the seven criteria were determined and multi-
plied by the weights of robots relative to the criteria
to obtain the final assessment (Table 7). Robot 1,
with the largest working range, was found to be the
best.

Table 5
Comparison of parameters (criteria) in pairs – matrix Ã.

Criterion
(parameter)

Lifting capacity Weight Working range Repeatability Range
of movement

Price Velocity

Lifting
capacity

(1, 1, 1) (1, 1, 1) (1/5, 1/3, 1) (1/7, 1/5, 1/3) (1, 1, 1) (1, 1, 1) (7, 9, 9)

Weight (1, 1, 1) (1, 1, 1) (1/5, 1/3, 1) (1/7, 1/5, 1/3) (1/5, 1/3, 1) (1, 1, 1) (7, 9, 9)

Working range (1, 3, 5) (1, 3, 5) (1, 1, 1) (1, 3, 5) (1, 3, 5) (3, 5, 7) (3, 5, 7)

Repeatability (3, 5, 7) (3, 5, 7) (1/5, 1/3, 1) (1, 1, 1) (1, 3, 5) (1, 3, 5) (3, 5, 7)

Range
of movement

(1, 1, 1) (1, 3, 5) (1/5, 1/3, 1) (1/5, 1/3, 1) (1, 1, 1) (1/5, 1/3, 1) (1, 3, 5)

Price (1, 1, 1) (1, 1, 1) (1/7, 1/5, 1/3) (1/5, 1/3, 1) (1, 3, 5) (1, 1, 1) (3, 5, 7)

Velocity (1/9, 1/9, 1/7) (1/9, 1/9, 1/7) (1/7, 1/5, 1/3) (1/7, 1/5, 1/3) (1/5, 1/3, 1) (1/7. 1/5, 1/3) (1, 1, 1)

Table 6
Aggregate results obtained in the consecutive steps of the F-AHP.

Criterion
(parameter)

Geometric
mean r̃i

Fuzzy weight
w̃i

Defuzzified weight
Mi

Final relative
weight wi

Lifting capacity (0.7946; 0.9296; 1.1699) (0.0579; 0.1021; 0.2144) 0.1248 0.0957

Weight (0.6314; 0.7946; 1.1699) (0.0460; 0.0873; 0.2144) 0.1159 0.0889

Working range (1.3687; 2.9672; 4.3739) (0.0997; 0.3258; 0.8015) 0.4090 0.3136

Repeatability (1.2724; 2.3319; 3.6466) (0.0927; 0.2561; 0.6682) 0.3390 0.2600

Range of movement (0.5017; 0.8548; 1.5838) (0.0366; 0.0939; 0.2902) 0.1402 0.1075

Price (0.7040; 1.0000; 1.4204) (0.0513; 0.1098; 0.2603) 0.1405 0.1077

Velocity (0.1842; 0.2289; 0.3581) (0.0134; 0.0251; 0.0656) 0.0347 0.0266

r̃itotal (5.4571; 9.1070; 13.7228) Total 1.3041

(r̃itotal )
−1 (0.1832; 0.1098; 0.0729

Table 7
Assessment of five industrial robots by the F-AHP.

Robot/
Criterion

(parameter)

Lifting
capacity

Weight Working
range

Repeatability Range
of movement

Price Velocity Final
assessment

Order
of preference,
by the F-AHP

Robot 1 0.0742 0.0720 0.5446 0.0559 0.1468 0.2097 0.1153 0.2403 1

Robot 2 0.5352 0.5687 0.0694 0.1536 0.0970 0.2097 0.3312 0.2053 4

Robot 3 0.0773 0.0451 0.0488 0.1673 0.1599 0.0514 0.1412 0.0967 5

Robot 4 0.0773 0.0758 0.1172 0.5294 0.2082 0.1040 0.2323 0.2283 3

Robot 5 0.2359 0.2384 0.2200 0.0939 0.3881 0.4252 0.1801 0.2295 2
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The F-TOPSIS method was used following the
procedure discussed in Subsec. 2.2. The same experts
were employed, so the criteria and variants had al-
ready been determined. Three experts assessed the
criteria and variants based on the scales presented
above. Averaged results of the assessment are pre-

sented in Table 8 (matrices D̃ and W̃ ). Having trans-
formed matrix D̃ into normalised matrix R̃ (Table 9),
weighted normalised matrix of weights Ṽ was found
(Table 10) through multiplication of the weights of
criteria by assessments of the variants relative to par-
ticular criteria.

Table 8
Matrix D̃ and transposed matrix W̃ – averaged experts’ assessment of criteria and variants.

Robot/
Criterion

(parameter)

Lifting
capacity

Weight Working
range

Repeatability Range
of movement

Price Velocity

Robot 1 (2.5; 5; 7.5) (0.83; 3.33;
5.83)

(7.5; 10; 10) (3.33; 5.83;
8.33)

(3.33; 5.83;
8.33)

(3.33; 5.83;
8.33)

(0.83; 3.33;
5.83)

Robot 2 (5.83; 8.33; 10) (6.67; 9.17; 10) (0; 2.5; 5) (5; 7.5; 10) (3.33; 5.83;
8.33)

(3.33; 5.83;
8.33)

(5.83; 8.33;
10)

Robot 3 (2.5; 5; 7.5) (0.83; 3.33;
5.83)

(0; 2.5; 5) (3.33; 5.83;
8.33)

(4.17; 6.67;
9.17)

(0; 2.5; 5) (2.5; 5; 7.5)

Robot 4 (2.5; 5; 7.5) (0.83; 3.33;
5.83)

(2.5; 5; 7.5) (7.5; 10; 10) (4.17; 6.67;
9.17)

(3.33; 5.83;
8.33)

(3.33; 5.83;
8.33)

Robot 5 (4.17; 6.67;
9.17)

(2.5; 5; 7.5) (4.17; 6.67;
9.17)

(3.33; 5.83;
8.33)

(7.5; 10; 10) (6.67; 9.17;
10)

(2.5; 5; 7.5)

Criterion’s
weight

– transposed
matrix

(0; 0.25; 0.5) (0; 0.25; 0.5) (0.75; 1; 1) (0.5; 0.75; 1) (0.25; 0.5;
0.75)

(0.25; 0.5;
0.75)

(0; 0; 0.25)

Table 9
Normalised matrix R̃ and transposed matrix W̃ .

Robot/
Criterion

(parameter)

Lifting
capacity

Weight Working
range

Repeatability Range
of movement

Price Velocity

Robot 1 (0.25; 0.5;
0.75)

(0.08; 0.33;
0.58)

(0.75; 1; 1) (0.33; 0.58;
0.83)

(0.33; 0.58;
0.83)

(0.33; 0.58;
0.83)

(0.08; 0.33;
0.58)

Robot 2 (0.58; 0.83; 1) (0.67; 0.92; 1) (0; 0.25; 0.5) (0.5; 0.75; 1) (0.33; 0.58;
0.83)

(0.33; 0.58;
0.83)

(0.58; 0.83; 1)

Robot 3 (0.25; 0.5;
0.75)

(0.08; 0.33;
0.58)

(0; 0.25; 0.5) (0.33; 0.58;
0.83)

(0.42; 0.67;
0.92)

(0; 0.25; 0.5) (0.25; 0.5; 0.75)

Robot 4 (0.25; 0.5;
0.75)

(0.08; 0.33;
0.58)

(0.25; 0.5;
0.75)

(0.75; 1; 1) (0.42; 0.67;
0.92)

(0.33; 0.58;
0.83)

(0.33; 0.58;
0.83)

Robot 5 (0.42; 0.67;
0.92)

(0.25; 0.5;
0.75)

(0.42; 0.67;
0.92)

(0.33; 0.58;
0.83)

(0.75; 1; 1) (0.67; 0.92; 1) (0.25; 0.5;
0.75)

Criterion’s
weight

– transposed
matrix

(0; 0.25; 0.5) (0; 0.25; 0.5) (0.75; 1; 1) (0.5; 0.75; 1) (0.25; 0.5;
0.75)

(0.25; 0.5;
0.75)

(0; 0; 0.25)

Table 10
Weighted normalised matrix of weights Ṽ .

Robot/
Criterion

(parameter)

Lifting
capacity

Weight Working
range

Repeatability Range
of movement

Price Velocity

Robot 1 (0; 0.125;
0.375)

(0; 0.083;
0.292)

(0.563; 1; 1) (0.167; 0.438;
0.833)

(0.083; 0.292;
0.625)

(0.083; 0.292;
0.625)

(0; 0; 0.146)

Robot 2 (0; 0.208; 0.5) (0; 0.229; 0.5) (0; 0.25; 0.5) (0.25; 0.563; 1) (0.083; 0.292;
0.625)

(0.083; 0.292;
0.625)

(0; 0; 0.25)

Robot 3 (0; 0.125;
0.375)

(0; 0.083;
0.292)

(0; 0.25; 0.5) (0.167; 0.438;
0.833)

(0.104; 0.333;
0.688)

(0; 0.125;
0.375)

(0; 0; 0.188)

Robot 4 (0; 0.125;
0.375)

(0; 0.083;
0.292)

(0.188; 0.5;
0.75)

(0.375; 0.75; 1) (0.104; 0.333;
0.688)

(0.083; 0.292;
0.625)

(0; 0; 0.208)

Robot 5 (0; 0.167;
0.458)

(0; 0.125;
0.375)

(0.313; 0.667;
0.917)

(0.167; 0.438;
0.833)

(0.188; 0;5 0.75) (0.167; 0.458;
0.75)

(0; 0; 0.188)
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Table 11
Distances of robots to ideal solutions A+.

Robot/
Criterion

(parameter)
Lifting capacity Weight Working

range
Repeatability Range

of movement
Price Velocity Total di+

Robot 1 0.848 0.884 0.253 0.588 0.703 0.703 0.954 4.932

Robot 2 0.791 0.784 0.777 0.501 0.703 0.703 0.924 5.184

Robot 3 0.848 0.884 0.777 0.588 0.669 0.848 0.942 5.556

Robot 4 0.848 0.884 0.569 0.389 0.669 0.703 0.936 4.998

Robot 5 0.814 0.848 0.444 0.588 0.569 0.592 0.942 4.797

Table 12
Distances of robots to ideal solutions A−.

Robot/
Criterion

(parameter)
Lifting capacity Weight Working

range
Repeatability Range

of movement
Price Velocity Total di−

Robot 1 0.228 0.175 0.879 0.552 0.401 0.662 0.084 2.982

Robot 2 0.313 0.318 0.323 0.678 0.401 0.662 0.144 2.839

Robot 3 0.228 0.175 0.323 0.552 0.445 0.621 0.108 2.452

Robot 4 0.228 0.175 0.532 0.753 0.445 0.662 0.120 2.916

Robot 5 0.282 0.228 0.679 0.552 0.532 0.699 0.108 3.080

In the next step of the methodology, ideal ma-
trices and were defined and distances of particular
robots to the ideal solutions were found (Tables 11
and 12). Having calculated the closeness coefficients
(Table 13), a ranking list of robots was developed.

Table 13
Closeness coefficients and ranking list of robots.

Closeness
coefficient

Ranking list
of the assessed

industrial robots
Robot 1 0.377 2

Robot 2 0.354 4

Robot 3 0.306 5

Robot 4 0.368 3

Robot 5 0.391 1

The SMART method was used following the pro-
cedure discussed in Subsec. 2.3. The same experts
were employed to assess the robots, so the criteria
(parameters) and variants (robots compared) had al-
ready been determined. Three experts assessed the
criteria and variants based on the scales presented

above. Weights assigned to the criteria as well as
their normalised values are shown in Table 14.

Next, the robots were assessed relative to the cri-
teria. Averaged assessments are shown in Table 15.

After that, usefulness of each industrial robot rel-
ative to each criterion was determined (Table 16).

Assessments of particular robots were obtained
through multiplication of normalised weights by use-
fulness relative to particular criteria (Table 17).

Table 14
Normalised weights of criteria.

Criterion (parameter) Weight Normalised weight

Lifting capacity 0.25 0.08

Weight 0.25 0.08

Working range 0.75 0.25

Repeatability 0.75 0.25

Range of movement 0.5 0.17

Price 0.5 0.17

Velocity 0 0.00

Total 3

Table 15
Averaged assessments of industrial robots relative to decision criteria.

Robot/Criterion (parameter) Lifting capacity Weight Working range Repeatability Range of movement Price Velocity

Robot 1 5.00 3.33 10.00 5.83 5.83 5.83 3.33

Robot 2 8.33 9.17 2.50 7.50 5.83 5.83 8.33

Robot 3 5.00 3.33 2.50 5.83 6.67 2.50 5.00

Robot 4 5.00 3.33 5.00 10.00 6.67 5.83 5.83

Robot 5 6.67 5.00 6.67 5.83 10.00 9.17 5.00
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Table 16
Usefulness of industrial robots relative to parameters.

Robot/Criterion (parameter) Lifting capacity Weight Working range Repeatability Range of movement Price Velocity

Robot 1 0.00 0.00 1.00 0.00 0.00 0.50 0.00

Robot 2 1.00 1.00 0.00 0.40 0.00 0.50 1.00

Robot 3 0.00 0.00 0.00 0.00 0.20 0.00 0.33

Robot 4 0.00 0.00 0.33 1.00 0.20 0.50 0.50

Robot 5 0.50 0.29 0.56 0.00 1.00 1.00 0.33

Table 17
Final assessments of industrial robots by the SMART method.

Robot/Criterion
(parameter)

Lifting
capacity

Weight Working
range

Repeatability Range
of movement

Price Velocity Final
assessment

Ranking
list

Robot 1 0.00 0.00 1.00 0.00 0.00 0.50 0.00 0.33 3

Robot 2 1.00 1.00 0.00 0.40 0.00 0.50 1.00 0.35 4

Robot 3 0.00 0.00 0.00 0.00 0.20 0.00 0.33 0.03 5

Robot 4 0.00 0.00 0.33 1.00 0.20 0.50 0.50 0.45 2

Robot 5 0.50 0.29 0.56 0.00 1.00 1.00 0.33 0.54 1

Weight 0.08 0.08 0.25 0.25 0.17 0.17 0.00

The SMART method gave the same result as
F-TOPSIS – robot 5 was found to be the best.

Summary

The paper looks at three multi-criteria decision-
making (MCDM) methods applied for the selec-
tion of an industrial robot for an assembly station
in a medium-sized manufacturing company. Each
method has its own advantages and downsides, and
involves subjective decisions made by the decision
maker. In order to minimise the impact of the
MCDM method on the selection, results of the anal-
yses conducted by the three methods and the final
classification resulting from the experts’ preferences
have been listed in Table 18.

Table 18
Assessments using F-AHP, F-TOPSIS and SMART.

Robot/
Method

a∗ b∗ c∗ Averaged
assessment

Final
classification

Robot 1 1 2 3 2 2

Robot 2 4 4 4 4 4

Robot 3 5 5 5 5 5

Robot 4 3 3 2 2.67 3

Robot 5 2 1 1 1.33 1

a∗ – F-AHP, b∗ – F-TOPSIS, c∗ – SMART

Taking into consideration the technical and op-
erational parameters, robot 5 was found to be the
best. All the three methods yielded similar results.
The approach discussed in the paper can find a wide
range of applications in machine operation and main-
tenance.
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