

Theoretical and Applied Informatics

ISSN 1896-5334

Vol. 25 (2013), no. 3-4

pp. 223 – 238

DOI: 10.2478/thai-2013-0016

Relative and non-relative databases performance with an Android

platform application

PAWEŁ BUCHWALD, MACIEJ ROSTAŃSKI, ARKADIUSZ JURASZ

Wyższa Szkoła Biznesu w Dąbrowie Górniczej

Zygmunta Cieplaka 1c

Dąbrowa Górnicza, Poland

Received 3 April 2013, Revised 27 October 2013, Accepted 2 December 2013

Abstract: This article gives an introduction to NoSQL movement and how it can help in creating modern

application trends of Web 2.0 by its scalability and performance. To achieve the objectives of this work, three

types of databases have been tested to see which of them will be the best to work with mobile devices working

on Android system. All received results were presented and commented.

Keywords: Relative and non-relative databases, android

1. Introduction

Cooperation mechanisms of database systems are an important part of operating

systems for mobile devices. The relationship between mobility solutions and databases

can be seen in the operating system Android. Android and iOS are currently the most

popular operating system for mobile devices such as tablets and smartphones. The

Android operating system uses SQL Lite database as an efficient way to store user’s

data such as text messages, contact list or the list of recent calls. Due to the extensive

use of a relational database, APIs available for Android provide a high level functions

that allow direct manipulation of the data. This approach enables mobile application

developers to implement the business logic layer included in the application and data

access layer in the high-level language such as Java. In simple cases, this allows for the

resignation of the SQL language.

Direct access to the database is characteristic of the client-server model and is used

when the database is placed on the same mobile device as the application. In other cases,

a more useful model for data access is three-layered architecture. This architecture

allows the use of business logic in the server-side application. The concept of using

three-layer architecture to provide access to the remote database is shown in Fig. 1.

224

Fig 1. Three-layer architecture and access to databases.

The goal of this research was to check which type of database would be the best type

for use with mobile devices. In this context, the best means the fastest, because the

waiting time to complete the task by the database will affect the amount of used

resources as for the battery power this plays a significant role. To achieve this goal two

applications were created. The first was the web application and the other was mobile

application working under Android system, which in the third quarter of 2012 had a 75%

market share, that means that application will run on the most popular mobile system.

Communication with the database is implemented using an intermediate web

application installed on a web server. This application via HTTP protocol allows users

to communicate with the database from a mobile application. Designers creating

solutions in Java language often use JSON notation. One can also use SOAP and Web

Services supported by Microsoft. Android has a large set of libraries that allows for

building solutions for network communication. With the availability of a network API

libraries, designers can use the REST model as a way to exchange data between the

mobile application and the intermediate layer. The use of middleware to communicate

with the database allows to change the data storage layer without modifying the mobile

application.

This paper is organized as follows: in order to present relevant research results, the

discussion on relative and non-relative databases is presented; NoSQL models are

described, as well as corresponding examples. Next, the testing application and research

topology and environment is presented, with specific data on devices used for testing.

The research results are then shown, described and analyzed, followed by final

conclusions.

2. Relative and non-relative databases

The research was carried out on three types of databases. The first database is well

known for many years - a relational database, and as its management system has been

selected MS SQL Server 2005, and two quite new types are based on NoSQL model.

225

For the purpose of the research a simple database was developed in the relational model,

called "big" which consisted of only one table, which in turn contained two columns

(Fig. 2).

Fig. 2 Table_1 scheme (Source: SQL Server Management Studio).

Id column was used to identify each row in the table, while the guid column was used

to store a randomly generated string.

2.1. NoSQL models

NoSQL (Not Only SQL) is a term that defines the database management system.

This system however is not based on the traditional relational model. The data in

NoSQL model does not require specific patterns and is lacking any joints. NoSQL

movement is a response to changing needs in terms of speed and scalability of databases.

Those needs are an outcome of beginning of a Web 2.0 trend and the emergence of a

large number of social networking sites (one of them is Facebook with over 700mln

active users [2]). In this kind of web applications even expanded server farm becomes

not sufficient enough to be available to a wider range of users. Once it was realized that

in the near future, the relational model cannot meet the demands posed by the large

amount of data, works started to create independent systems, which are collectively

known as NoSQL. Therefore, contrary to the relational database, there is no single data

model. The following are the most typical models, however the amount of used models

in the current NoSQL is much greater:

• Key-value database: In simple terms this is one table with two columns of

text, key and value. In its simplicity, this model has an incredible advantage

when it comes to reading and writing operations – it is extremely fast.

• Column database: Instead of the traditional storing data in rows data are

saved in columns. Due to the fact that the columns are stored in the same

data type they can be compressed by using more efficient algorithms. An

example of database that applies this column model is Cassandra.

• Document-oriented database: In this model row concept was replaced by a

document that contains the key-value pairs. This approach allows for

accurate reflection of the actual data. Such a model can be found in the

MongoDB system.

• XML Databases: During developing of multiple database systems there was

a need to exchange data between them. For this task perfectly fits XML,

which is one of the standards when it comes to web services. For this reason

were formed database solutions that store data in XML. Examples of such

solutions can be Xindice or Apache XML DB. These solutions are enhanced

with a new mechanism for data querying (XQuery or XPath).

226

• Object-oriented database: Is the answer to the problem which is the object-

relational mapping. The problem is that it is not always easy to move the

relational model to an object model. Through the introduction of skeletal

mapping (object-relational) such as Hibernate, it became possible to hide the

symptoms of the problems associated with object-relational mapping, but it

didn’t not solve the problem in further investigation. Therefore new solution

was created, where instead of the rows, objects are stored in the database.

The biggest downside of this solution is its poor performance. There are

other constraints, such as lack of query optimization and lack of support for

data exchange between different languages. [1]

2.2. Cassandra and MongoDB as NoSQL examples

In this article, focus was made on two databases working on a NoSQL model which

are Cassandra and MongoDB. Cassandra is built on the column database model, the

data are not stored in rows but in columns. This was explained in relation to the database

("big") presented earlier in this article (section 2). Before this, one should be aware of

what elements made up this data model.

At the same beginning there is Column (Fig. 3), which consists of key-value pairs

and timestamp fields, which saves time event (for clarity of diagrams, this field was

omitted):

Fig. 3. Column.

Another element of the aggregator of column is a Super Column (Fig. 4), which is

an array with n columns:

Fig. 4. Super Column.

The next element is the Column Family (Fig. 5), it is a container of columns sorted

by their name, the family and the column is sorted by row key (row_key):

227

Fig. 5. Colum Family

For storing Super Columns there is a Super Column Family (Fig. 6).

Fig. 6. Super Column Family (Source: [6]).

The highest element in this scheme is the keyspace, which is a container for Column

Families. According to the relational database model presented earlier (“big”) in

Column database model looks as follow (Fig. 7)

Fig. 7. Database “big” in Column model

228

Last database researched in this paper is MongoDB database, which is based on

document-oriented model, characterized by a high scalability and performance. This

database does not have a well-defined structure of the supported data because the data

are stored as BSON documents in the form - Binary JSON (Java Script Binary Object

Notation it is a subset of JavaScript [2]). BSON is a binary decoded JSON, the write

operation use smaller memory resources than standard JSON. Example row from “big”

database in JSON notation would look as follows:

{

 "_id": ObjectId("501bcb98076f93723f4a9b3a"),

 "guid": "ce877db0-8b56-4d16-9705-a8581cc64d60"

}

3. Testing environment

The equipment, on which the research was carried out, was built of three cores

(AMD Athlon II X3 455) with clock frequency of 3.2 GHz. As for RAM, there were

two cards, each 2GB size. The hard drive was connected with 3 Gbps SATA II interface

which gives 370 Mbytes/s effective throughput.

Equipment also included smartphone with Android (version of the system is 2.3.3 -

Gingerbread). For this, the HTC Desire was chosen, equipped with a Snapdragon

processor clocked at 1GHz, and 576MB of RAM. Network infrastructure consisted of

three main components, which were Server S, router R and smartphone A. Fig.8 shows

simple topology used in test LAN.

Fig. 8. Topology of the testing network (own work).

The application designed for testing was created in Java language. The solution has

been tested with the use of a smartphone running under the Android operating system.

The goal of the application was to initiate database operations, and to perform

measuring and collecting response times. This approach enabled authors to find the total

time data processing, together with the time of acquisition results to the mobile device.

Communication with the intermediate layer was achieved through the use of

HttpClient class, which allowed the transfer request to the component running in the

business logic layer. Business logic layer has been implemented as a Web Service. The

229

use of an intermediate component allowed researchers to avoid modifying the client

application when it was necessary to use other data storage system.

4. Research results

The main objective of research was to investigate the execution time of basic

operations on databases (retrieve, add, modify, and disposal) with a different number of

records, and all of this was done from an Android application that was used as

a "thin client". The device with the application creates a client that can communicate

with server; this kind of pattern is known as a client-server architecture. The advantage

of this solution is that the server is loaded with all the work that makes the client

hardware requirements very minimal. The disadvantages are all kinds of delays due to

network latency, which was included in these results. Research subjects are access times

and execution times of operations on relational and non-relational databases, working

on the same server and controlled from mobile device. As mentioned in the introduction,

to carry out the research it was required to create two applications. One playing a role

of the server that is taking upon itself the entire cost of the test operations, the second

one provides the way to control these operations. In results there will be two types of

the observed times. The first will determine how long the operation was performed on

the server (server time) and second will determine a total operation time of the request

(End-To-End time). Each measurement consisted of three attempts after which the

results were recorded as the average and base one these results analyze was made.

Research took place in three categories with different number of elements, and in an

additional category, designed to illustrate the performance of the actual databases

through a very large number of elements. The number of items for each category is

shown in Table 1.

Name Number of elements

Category 1 1 000

Category 2 10 000

Category 3 20 000

Category 4 100 000

Tab.1. Category list in which the tests were performed

For the fourth category, the focus was only on database performance times, there

were no attempts to try send such large number element to mobile device.

4.1. Results for relational model (MS SQL Server 2005)

First, the research has been carried out for Microsoft SQL database server. The

following are the results in the form of graphs for each of the four categories.

230

Fig. 9. Request time for SQL Server database in case of others rowset size.

From these results it can be concluded that the operation "Update" is the most time-

consuming and it increases linearly. With the number of elements equal to 1 thousand,

update took about 13 minutes, to 10 000 was already over 2 hours and for 100 000 -

231

more than 21 hours. The time of operation "Update" increased linearly in relation to the

number of elements on which it is made. On the chart trend lines can also be seen, that

show the forecast for the times between 20 and 100 thousand elements. One should also

pay attention to the time of the "Delete" operation, which decrease together with an

increasing number of elements.

Fig. 10. Relation of response time for update operation to elements count in database

4.2. Results for column model (Cassandra)

Next test was made on Cassandra database. Below are the results for the four

categories. In the case of Cassandra database operation "Update" is the most time-

consuming. However the operation "Select" is surprisingly fast, where in the first three

categories we can see the difference between the same operation performed on the

database and the additional time needed for its message to be send and displayed by

mobile application. For the fourth category, you do not see this effect because the server

only sends information about the time of operation without results. Each of the other

operations ("Insert" and "Delete") shows an increase of times together with increasing

number of elements. Results of response times for Cassandra databases are shown on

Fig 11.

232

Fig.11. Response Times for Cassandra Database.

4.3. Results for document-oriented model (MongoDB)

The next section is devoted to the results measured for the last present database -

MongoDB. For the presented results it is worth to notice that the operations "Select"

and "Update" are performed with similar speed.

233

Fig. 12. Response time for MongoDB.

4.4. Results analysis

For the first category the most effective were family of NoSQL databases (Table 2).

Cassandra was the best with the addition of new elements and their reading, but

MongoDB has proven to be unsurpassed when it comes to updates and removing items.

From the above data can also be seen that the difference of End-to-End and Server time

234

for the operation "Insert / Update / Delete" is similar to each other because they are

performing similar task. But the situation is quite different for the operation "Select",

where the difference felt by the user is about 1 sec. The reason could be the increased

network latency, and also some extra time that was needed to receive all selected items.

The second class consisted of ten thousand elements and the results (Table 4.3) of

this section are included in the following table:

Server’s response

time [s]

End-to-End

response time [s]

Ms SQL Server

Insert 0,74 1,14

Select 0,84 1,16

Update 815,61 816,62

Delete 0,96 1,09

Cassandra

Insert 0,08 0,12

Select 0,05 0,22

Update 2,65 2,7

Delete 1,08 1,11

MongoDB

Insert 0,21 0,88

Select 0,14 1,55

Update 0,38 0,42

Delete 0,01 0,05

Tab. 2. Set of results for 1 000 elements

Server’s response

time [s]
End-to-End

response time [s]

Ms SQL Server

Insert 6,31 6,35

Select 0,76 1,99

Update 7907,02 7918,77

Delete 0,77 0,86

Cassandra

Insert 0,42 0,46

Select 0,18 1,09

Update 28,64 28,69

Delete 1,16 1,2

MongoDB

Insert 1,87 1,96

Select 0,24 2,03

Update 1,87 1,9

Delete 0,13 0,15

Tab. 3. Set of results for 10 000 elements

235

In the second category scheme remains unchanged, the best times for data read and

written are done by Cassandra, and removed and updated by MongoDB. Ms SQL Server

can boast a better result in the removal of items than Cassandra, and that the operation

"Select" on a larger number of components was faster. However, the biggest drawback

is the update operation. Update of 10 thousand elements took over two hours while in

MongoDB the same operation performed in 1.87 sec., which is a huge difference.

The third category which consists of twenty thousand elements, shows some

changes. Looking at the results in the table below you can see that the operation "Select"

for MS Server is done faster than any other, but “Update” operation still increases

almost linearly. With twenty thousand items it took about four and a half hours to update

them all. The fastest update and delete items is done using MongoDB.

The fourth category was created to examine the time required to perform an

operation ordered by a much larger number of elements, which is one hundred thousand.

As mentioned earlier, for this category transmission of elements was abandoned.

Additional test allowed to show that the greater number of elements has significant

acceleration in MS Server database for “Select” and “Delete” operations. Unfortunately,

the update operation does not continue to change its ratio in comparison to the number

of elements.

Server’s response

time [s]
End-to-End

response time [s]

Ms SQL Server

Insert 13,51 13,65

Select 0,23 1,71

Update 16095,94 16097,69

Delete 0,48 0,58

Cassandra

Insert 1,18 1,21

Select 0,29 1,95

Update 50,12 50,18

Delete 1,49 1,52

MongoDB

Insert 3,71 3,74

Select 0,36 3,65

Update 3,79 4,09

Delete 0,28 0,3

Tab. 4. Set of results for 20 000 elements

The fourth category was created to examine the time required to perform an

operation ordered by a much larger number of elements, which is one hundred thousand.

As mentioned earlier, for this category transmission of elements was abandoned.

236

Server’s response

time [s]
End-to-End

response time [s]

Ms SQL Server

Insert 63,37 63,8

Select 0,39 0,49

Update 77561,66 77562,99

Delete 0,4 0,49

Cassandra

Insert 3,96 4

Select 1,84 1,87

Update 223,68 224,01

Delete 1,66 1,74

MongoDB

Insert 18,16 18,19

Select 1,48 1,54

Update 19,33 19,38

Delete 1,05 1,01

Tab. 5. Set of results for 100 000 elements

Fig. 13. Maximum Times of operations for tested databases

The Fig. 13 shows summary information about the maximum time of the select,

insert, update and delete operations. Maximum response time was recorded for the SQL

Server database during the update operation. SQL Server database is the only one

among the tested solutions, providing transactional operations.

237

5. Conclusions

The research helped to show a significant difference in the performance of basic

database operations for databases running on different models. The biggest surprise was

the MongoDB database, which in most cases is characterized by the fastest times at

renovation and disposal of records. The remaining operations were performed very

close to the border with the best times in each category. The disadvantage of a NoSQL

database is very weak support for the transaction. However, this is the result of one of

the assumptions of non-relational databases, which says that work on the basis of the

ACID (atomicity, consistency, isolation, durability) [2] is too restrictive. This problem

does not occur in relational databases, which are based on this assumption.

References

[1] F. Chang et al, BigTable: A Distributed Storage System for Structured Data, Seventh

Symposium on Operating System Design and Implementation, November 2006.

[2] M. Stonebraker and R. Cattell, Ten Rules for Scalable Performance in Simple Operation

datastores, Communications of the ACM, June 2011.

[3] Hewitt, Eben. Cassandra: The Definitive Guide (1st ed.). O'Reilly Media. 2010.

[4] Capriolo, E., Cassandra High Performance Cookbook (1st ed.). Packt Publishing. 2011

[5] Skalski D., NoSQL – nierelacyjne systemy baz danych, Software Deweloper’s Journal, 2011,

nr 8

[6] http://www.javageneration.com

238

