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Location of generating units most affecting
the angular stability of the power system based on

the analysis of instantaneous power waveforms

PIOTR PRUSKI and STEFAN PASZEK

In the paper, the results of investigations on the location of generating units most affecting
the angular stability of a large power system (PS) are presented. For their location, the eigenvalues
of the PS model state matrix associated with electromechanical phenomena (electromechanical
eigenvalues) were used. The eigenvalues were calculated on the basis of the analysis of the
disturbance waveforms of instantaneous power of the generating units operating in the PS. The
used method of calculating eigenvalues consists in approximation of the disturbance waveforms
of generating units by the waveforms being the superposition of modal components. The pa-
rameters of these components depend on the sought eigenvalues and their participation factors.
The objective function was defined as the mean square error between the approximated and ap-
proximating waveforms. To minimize it, a hybrid algorithm, being a combination of genetic and
gradient algorithms, was used. In the instantaneous power waveforms of generating units most
affecting the PS angular stability, the least damped or undamped modal components dominate.
They are related to eigenvalues with the largest values of real parts. The impact of individual
modal components on the disturbance waveforms of subsequent generating units was deter-
mined with the use of participation factors and correlation coefficients of electromechanical
eigenvalues.

Key words: power system, modal analysis, electromechanical eigenvalues, transient states,
angular stability

1. Introduction

The power system (PS) is a large nonlinear dynamic system for the production,
transmission and distribution of electrical energy. Its stability is associated with
transient states and regulation processes occurring in PS [6, 23]. Generally, the
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PS stability is understood as its ability to maintain a specific operating state after
a disturbance. Taking into account electrical quantities important for the PS state,
one can distinguish angular stability, frequency stability and voltage stability [2,
10]. The angular stability is associated with maintaining the synchronism of all
synchronous generators operating in PS generating units. The loss of synchronism
of synchronous generators is identified with the loss of PS angular stability.

The angular stability is directly related to electromechanical phenomena.
Disturbances occurring during the operation of PS cause the appearance of slow,
oscillatory changes in the angular speed of synchronous generators, i.e. electrome-
chanical swings. These swings also appear in the waveforms of power angles and
instantaneous power of synchronous generators in various places of the system,
including generating units. In some generating units, electromechanical swings,
among others the waveforms of instantaneous power of generators, can be weakly
damped, and they can even increase, which can lead to a loss of the PS angular
stability, and thus to a lack of power supply to loads over a large area.

Due to the above, it is necessary to locate the generating units that are most
at risk. They can be called critical generating units from the point of view of
a possible loss of the PS angular stability. In critical units, particular care must
be taken to ensure that various means to improve angular stability, including
well-made optimization or polyopimization of the parameters of power system
stabilizers operating in voltage control systems of synchronous generators, are
properly used. Other means which may be undertaken include: stabilizers operat-
ing in turbine governors, appropriate FACTS devices located close to the critical
units, use of modern anti-swing automation [1, 5, 8, 10, 20].

This paper presents the method of determining the location of these critical
generating units based on the analysis of transient waveforms of instantaneous
power of synchronous generators. Instantaneous power waveforms can easily
be determined based on the current and voltage waveforms of the synchronous
generator stator expressed in phase coordinates or axial (in the longitudinal axis d
and transverse axis q) components. To link the equations in these two coordinate
systems, Park transformation is used [10, 14].

Investigations leading to the location of PS generating units most affecting the
angular stability were carried out when assuming the occurrence of small steady
state disturbances for which the linearized form of the system state equations
applies.

2. The linearized PS model

The PS mathematical model is obtained by combining the mathematical mod-
els of generating units with the mathematical model of the power network. The
mathematical model of the generating unit includes models of the following
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components: a generator (most often a synchronous generator, together with its
excitation system and power system stabilizer) and a turbine with a governor.

When investigating electromechanical phenomena occurring in PS, it is usu-
ally assumed that the dynamic phenomena are associated with generating units,
and the power network is described by algebraic equations, linking currents and
voltages of generating units.

Assuming that the power system is a large system with lumped constants, its
state equations and output equations can be given by the general relationships
[10, 13]:

dx
dt
= f (x, u, t), (1a)

y = g (x, u, t) , (1b)

where: x, u, y – mPS-, pPS- and nPS-dimensional vectors of state, input and
output, respectively, f , g – mPS- and nPS-dimensional functions of many variables,
respectively, t – time.

In the state vector x, there are fluxes, currents, angular speeds of rotors and
power angles of generators, the quantities associated with the turbine models and
various control systems in generating units.

Equations (1a) and (1b) must be supplemented with the inequalities describing
the operation of limiters in the control systems of generating units operating in PS:

Dmax j ¬ d j (x, u, t) ¬ Dmin j, j = 1, 2, . . . , qPS , (1c)

where: d j – j-th element of a multidimensional function of many variables,
Dmax j , Dmin j – maximum and minimum values in the limiters for generating unit
control, qPS – number of limiters.

Assuming additionally that in the analyzed period of time (about a dozen
or so minutes), the system does not change its properties in time, i.e. it is a
stationary system, the PS model linearized at the steady state operating point can
be presented in the form of the following state equations and output equations [3,
7, 13, 17–19]:

∆ẋ = A∆x + B∆u, (2a)

∆y = C∆x + D∆u, (2b)

where:∆ denotes the deviation from the steady values of the respective quantities,
A, B, C and D – state matrix and other matrices of specific dimensions and constant
coefficients depending on the models and parameters of PS elements [17–19].

The linearized PS model, determined by dependencies (2), is a good approx-
imation of reality in the case of system analysis for relatively small inputs or
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disturbances (e.g. for several percent changes in the value of the voltage regula-
tor reference voltage of synchronous generators, low-current short circuits and
disconnections in transmission lines).

According to the Hartman-Grobman theorem, the nonlinear PS model (1) can
be replaced at a steady operating point by the linearized model (2) only if the
linearized model is a hyperbolic system i.e. all eigenvalues of the state matrix have
non-zero real parts [4, 11, 12, 23]. This assumption was made in the investigations
presented in this paper.

The waveforms of output quantities in PS can be calculated by numerically
solving equations (1) or (2). The solution can also be obtained on the basis of
calculating eigenvalues and eigenvectors of the state matrix A. The waveform of
each output quantity is a superposition of modal components dependent on the
eigenvalues and eigenvectors of matrix A [17–19].

The eigenvalues λh (h = 1, 2, . . . , mPS) are the roots of the characteristic
equation:

det [A − λI] = 0, (3)
where: I – unit matrix.

The right-hand Vh and left-hand eigenvector Wh can be assigned to each
eigenvalue λh. The state matrices of even large power systems have only distinct
eigenvalues in practice. This assumption was made further in this paper. For
distinct eigenvalues, the eigenvectors meet the following relationships:

A V = VΛ, (4a)

WTA = ΛWT, (4b)

where: V, W – right-side and left-side modal matrices, the columns of which are,
respectively, h-th right-side and left-side eigenvectors corresponding to the h-th
eigenvalues, Λ – diagonal matrix [3], whose main diagonal consists of the state
matrix eigenvalues.

After normalization of eigenvectors (WT
hVh = 1) [3], one obtains:

V−1 = WT . (4c)

Then, on the basis of (4), one can write:

A = VΛV−1. (5)

Defining a modal state vector z as:

z = V−1x , (6)

equations (2) can be written in the form [10]:
d∆z
dt
= Λ∆z + V−1B∆u, (7a)
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∆x = V∆z, (7b)
∆y = C V∆z, (7c)

assuming that D = 0 (which is often true for the PS analysis).
Equations (7a) are independent of each other, with each equation having only

one coordinate of the state vector and its first derivative, which makes them easier
to solve.

Assuming the zero initial condition for the state vector ∆x, one obtains a
relationship determining the h-th coordinate of the modal vector in the form
[3, 19]:

∆z =
t∫

t0

eΛ(t−τ)V−1B∆u(τ)dτ, (8)

where: t0 – time instant of occurrence of the input.
Although the expressions (7) and (8) include, among others, the complex

conjugate elements, the coordinates of the state vector ∆x and output vector ∆y
are real.

3. Electromechanical eigenvalues

The real part of eigenvalue is related to the damping or lack of damping
corresponding to its modal component. The modal component is damped when
the real part of the eigenvalue is negative (the larger the module, the greater the
damping). In the case of a positive real part, the modal component is increasing,
which means that the system is unstable. The imaginary part of eigenvalue is
equal to the oscillation pulsation of the associated modal component. The zero
imaginary part corresponds to the aperiodic modal component [17–19].

Modal components associated with electromechanical eigenvalues dominate
in the waveforms of electromechanical quantities (instantaneous power P, rotor
angular speedω, generator power angle δ) of individual generating units operating
in PS. They are complex eigenvalues in conjugate pairs with imaginary parts in
the range (0.63÷12.6) rad/s, which corresponds to the oscillation frequency in
the range (0.1÷2) Hz. In Fig. 1, the ranges of real and imaginary parts of the
electromechanical eigenvalues are marked on the plane of complex numbers. It
can be estimated that a satisfactorily fast decay of electromechanical oscillations
in the system is obtained if the real parts of all eigenvalues are less than −0.3 (this
is a conventional, estimated value). This value corresponds to the conventional
time of transition of the system to the steady state tst < 13 s [17–19]. The modal
components associated with these eigenvalues are decisive for maintaining the
PS angular stability.
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Figure 1: Influence of electromechanical eigenvalues on the swing damping in the power
system

4. The classical concepts of control theory

Based on equations (2), it is possible to determine the response to the Dirac
pulse and the system input-output transmittance in the form of Laplace opera-
tor [21]:

y(t) = C eAtB, Y(s) = C (sI − A)−1 B, (9)

Expression (9) can be expanded into a series:

y(t) =
∞∑

k=0
Yk

tk

k!
, Y(s) =

∞∑
k=1

Yk−1s−k, (10)

where
Yk = C AkB (11)

are constant matrices, called Markov parameters in the literature [21].
The system of equations of the linear system (2), which gives specific an-

swers to specific inputs, can be written using infinitely many sets of matrices
{A, B, C}. However, the same Markov parameters Yk , on the basis of which one
can determine the system response to any input, correspond to each of these
sets [21].
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A system is said to be completely state-controllable, if any system state
x(tf) can be achieved from any initial state x(t0), in finite time, by applying the
appropriate input. A system is completely controllable when for some input u(t)
[13, 21]:

x(t0) = eA(t0−tf )x(tf) −
tf∫

t0

eA(t0−τ)B u(τ)dτ. (12)

Since usually not all state variables are available for measurement, it can be
written, according to the Ho-Kalman theorem [21], that the system is said to be
completely output–controllable when the block matrix[

C B C A B C A2B · · · C Am−1B
]

(13)

has the order equal to m.
A system is said to be completely observable if any change in the state

vector x(t) causes a change in the output vector y(t). This occurs if and only if
when [13, 21] [

CT ATCT · · ·
(
AT
)m−1

CT
]

(14)

has the order equal to m.
Therefore, based on the measurement data, a system of minimum order m

that is fully controllable and observable should be created [3, 21, 22]. For this
purpose, one can use the algorithm of Ho and Kalman [21] and determine the
matrices:

Am = Um
[
J P (rSr ) Q J

]
UT

m, (15)

B = Um
[
J P SrET

n

]
, (16)

C =
[
EpSrQ J

]
UT

m, (17)

where: Im – unit matrix of dimensions m×m, Um =
[
Im 0

]
, Sr – Hankel matrix

of dimensions r × r , whose each element of the i-th row and j-th column is
equal to Markov parameter Yi+ j−2, r – degree of the least common polynomial
denominator of Y(s), En =

[
In 0n 0n . . . 0n

]
– block matrix of dimensions

1 × r , Ep – matrix defined in a similar way, P, Q – sought matrices satisfying the
relationship:

PSrQ =
[
Im 0
0 0

]
= J = UT

mUm . (18)

In this paper, the method of reduction of the system model order consisting in
the rejection of eigenvalues associated with the fast decaying modal components,
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not related to electromechanical phenomena, is used. The system obtained in this
way is fully controllable and observable from the point of view of electromechan-
ical phenomena.

The obtained reduced system should have eigenvalues and eigenvectors close
to the eigenvalues and eigenvectors of the original system [3].

Another method of reducing the order of the system model is presented
in [3]. This method uses the projection of the state vector x onto another smaller
vector xe:

xe = Ce x , (19)

where Ce is a properly selected, rectangular matrix.

5. Determination of the generating units most affecting the PS angular stability

In the case of an input in the form of a Dirac pulse of the j-th input variable
∆Uj (t) = ∆Uδ(t), when assuming D = 0 and occurrence of only distinct eigen-
values, the waveform of the i-th output variable for t ­ t0 can be presented in the
form [10]:

∆yi (t) =

t∫
t0

mPS∑
h=1

CiVheλh (t−τ)WT
hB j∆Uδ(τ)dτ =

=

mPS∑
h=1

CiVhWT
hB j∆U

t∫
t0

eλh (t−τ)δ(τ)dτ

=

mPS∑
h=1

CiVhWT
hB j∆Ueλh (t−t0),

(20)

where: B j – j-th column of B matrix, Ci – i-th row of C matrix.
Defining the participation factor of the h-th eigenvalue in the i-th output

quantity waveform as follows [17–19]:

Fih = CiVhWT
hB j∆U, (21)

the waveform of the i-th output quantity can be written in the form:

∆yi (t) =
mPS∑
h=1

Fih eλh (t−t0) . (22)
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The system response to a short rectangular pulse with properly selected height
and width is close to the response of this system to the Dirac pulse given by
equation (20) [17–19].

The value of the participation factor (21) depends on the place of introducing
the input into PS (the j-th column of matrix B corresponds to the j-th input
variable). The larger the participation factor absolute value |Fih |, the greater the
influence of the modal component associated with the h-th eigenvalue on the
waveform of the i-th output quantity.

Participation factors can also be approximately determined by analyzing the
sensitivity of eigenvalues to a change in elements of the system state matrix
caused by a small disturbance in PS [10]. This change can be included in the state
matrix A instead of in the input vector ∆u. The sensitivity of eigenvalue λh to a
change in any parameter q is expressed by the following equation [10]:

∂λh

∂q
=
∂

∂q

(
WT

hAVh
)
= WT

h
∂A
∂q

Vh . (23)

If a change in parameter q results in a change in only one element akk of the
state matrix A, one obtains:

∂λh

∂q
= (Wih Vih)

∂aii

∂q
= pih

∂aii

∂q
, (24)

where
pih = Wih Vih (25)

determines the influence of the k-th state variable in the h-th modal component.
To distinguish the factor (25) from the participation factor (21), the former

will be referred to as correlation coefficient further in the paper.
The responses to some small disturbances that appear automatically in PS

(without introducing a disturbance), after some time since the occurrence of the
disturbance, are similar in shape to the response to the Dirac pulse and can be
calculated with satisfactory accuracy based on formula (22). In the case of such
disturbances, in formula (22), instead of the participation factors there are the
amplitudes of individual modal components which are approximately propor-
tional to the correlation coefficients. This approximate proportionality between
the respective participation factors and correlation coefficients also applies in the
case of introducing a purposeful disturbance into PS.

The participation factors depend on the place of applying the input and the
place of measuring the instantaneous power. In formula (21), there are submatrices
Ci and B j . Only the elements of eigenvectors affect the correlation coefficients
(25). Accordingly, these quantities are never the same and there are many more
participation factors. However, if the modal component associated with the h-th
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eigenvalue has a significant impact on the power waveform in a specific generating
unit, it is reflected in the relatively large values of the relevant participation factors
and correlation coefficients, and thus these quantities are related to each other.

In the PS model, angular speeds of generating units are often state variables,
and instantaneous powers of these units are output variables. These electrome-
chanical quantities within the same generating unit are closely related. This is due
to the fact that the generator angular speed is primarily influenced by the drive
torque from the turbine and the load torque proportional to the instantaneous
power produced by the generator.

In the case of investigating the PS angular stability and analyzing the wave-
forms of electromechanical quantities, the correlation coefficients pkh between
the angular speeds of generators operating in subsequent generating units (k-th
variable in the state vector) and the individual (h-th) electromechanical eigen-
values are determined. Therefore, in formula (25), there is usually a product
of the k-th components of the left-side and right-side eigenvectors of the h-th
electromechanical eigenvalue.

Knowing the electromechanical eigenvalues of the PS state matrix, as well
as their participation factors and/or correlation coefficients, one can determine
which modal components have the greatest impact on individual waveforms
of electromechanical quantities in PS generating units. It is also possible to
determine the generating units in which the waveforms of electromechanical
quantities containing dominant (with high amplitudes), weakly damped (or not
damped) modal components associated with eigenvalues with the largest real
parts (among others, larger than −0.3) occur. These are the generating units that
have the greatest impact on the PS angular stability.

6. The method of calculations of eigenvalues using an optimization approach

Electromechanical eigenvalues and their participation factors can be calcu-
lated based on the analysis of deviations (from the steady value) of the waveforms
of electromechanical quantities appearing in PS after small disturbances.

In the presented investigations, the calculations were carried out on the basis of
the disturbance waveforms of instantaneous power of generating units appearing
after the introduction of a short pulse disturbance into the voltage regulation
system of one of the generators.

This is an example of conducting experimental modal analysis. It takes into
account the disturbance waveforms occurring after purposeful introduction of a
test disturbance into the system.

The calculation method used consists in approximation of the instantaneous
power waveforms of individual units by the waveforms calculated on the basis of
relationship (22). The latter waveforms are the superposition of modal compo-
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nents determined by the sought eigenvalues and their participation factors. Using
these eigenvalues and their participation factors, one can directly define the pa-
rameters of the objective function (26). These parameters are iteratively selected
to minimize the value of the objective function εi defined as a mean square error
between the approximated and approximating waveforms [17–19]:

εi
(
λ,F
)
= εi
(
Re{λ}, Im {λ}, |Fi | , arg (F)

)
=

=

N∑
l=1

(
∆Pi,l,a − ∆Pi,l,b

(
Re{λ}, Im {λ}, |Fi | , arg(Fi)

))2
=

=

N∑
l=1

*.,∆Pi,l,a −
m/2∑
h=1

2 |Fih | eRe{λh }(t−t0)×

× cos
(
Im {λh}(t − t0) + arg(Fih)

) +/-
2

,

(26)

where: λ =
[
λ1 · · · λm/2

]T
– vector of eigenvalues, Fi =

[
Fi,1 · · · Fi,m/2

]T
–

vector of participation factors (of the i-th generating unit), ∆Pi – analyzed instan-
taneous power deviation waveform (of the i-th generating unit), l, N – waveform
sample number and the number of waveform samples, m/2 – number of the
pairs of electromechanical eigenvalues, the index “a” denotes the approximated
waveform, the index “b” – the approximating waveform.

Only a few dominant modal components (with the highest amplitudes) are
taken into account in the calculations of the approximating waveform. The vectors
which are the arguments of the objective function are real. They consist of the
real Re {λ} and imaginary Im {λ} parts of eigenvalues, as well as the absolute
values |Fi | and arguments arg (Fi) of participation factors.

The objective function εi has numerous local minima. Getting stuck in the
local minimum results in obtaining incorrect calculation results.

The hybrid optimization algorithm (Fig. 2), which is a combination of genetic
and gradient Newton algorithms was used to minimize the objective function

genetic

algorithm

gradient

algorithm

result

starting point

search ranges 

of the objective function parameters

result

Figure 2: Functional diagram of the hybrid algorithm
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[1, 9, 15, 17–19, 24]. The results of calculations of λ and Fi using the genetic
algorithm are the starting point for the gradient algorithm. Serial combination of
these algorithms eliminates their basic disadvantages. The genetic algorithm is
a global optimization algorithm and is hardly susceptible to getting stuck in the
minima of local objective functions. For the genetic algorithm, it is not required
to specify the starting point, but only the search ranges for individual parameters
of the function εi. This algorithm is used in the first stage to approximately
determine the global minimum of the objective function. In the second stage, the
gradient algorithm which converges faster and allows finding the global minimum
of the objective function with greater accuracy is used.

To initially determine which eigenvalues significantly interfere in the instan-
taneous power of the analyzed unit, and to calculate the ranges of searching for
the objective function parameters, the PS model developed on the basis of ap-
proximately known parameters of the generating units can be used. The PS model
is always a simplified model and does not take into account all the phenomena
occurring in it. It often contains only selected generating units of a relatively large
impact on the PS operation.

When calculating the eigenvalues from relationship (26), to eliminate the
effect of fast decaying modal components (not related to electromechanical phe-
nomena), the instantaneous power waveforms are analyzed after some time tp
from the disturbance occurrence t0. The time tp is selected experimentally to
achieve satisfactory calculation accuracy [17–19]. This method is similar to the
method used in [3], but in this case it is not necessary to analyze the matrices in
the linearized system equations (2). By experimental selection of the time tp, it
is possible to eliminate (to a satisfactory degree) the impact of fast disappearing
modal components on the analyzed waveforms. After tp, mainly electromechan-
ical eigenvalues influence the electromechanical quantities of the system. In this
way, the system order is significantly reduced, which makes the calculations of
electromechanical eigenvalues easier.

To further reduce the risk of the optimization algorithm getting stuck in a
local minimum of the objective function, calculations based on each instantaneous
power waveform are performed repeatedly. The results with the objective function
values higher than the specified limit value are rejected. The average values of the
calculation results of the relevant parameters not rejected are assumed to be the
final result of calculations of the individual parameters of the objective function
based on the analyzed waveform [17–19].

Because the calculation accuracy is higher when the number of simultane-
ously optimized parameters is smaller, the calculations of eigenvalues are carried
out in several stages. Initially, the eigenvalues related to the least damped modal
components are calculated. Other eigenvalues do not affect the calculations be-
cause the modal components associated with them are sufficiently damped before
the start of the appropriately selected time of the waveform analysis t0 + tp.
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In subsequent stages, the eigenvalues related to strongly damped modal com-
ponents are calculated, when taking into account the knowledge of the previ-
ously calculated eigenvalues. The participation factors are calculated for all the
eigenvalues and individual instantaneous power waveforms of the generating
units [17–19].

7. Exemplary calculations

Exemplary calculations were carried out for the Polish Power System model.
It is a nonlinear model developed in the Matlab/Simulink program environment,
including 49 selected generating units operating in high and highest voltage
networks and 8 equivalent generating units representing the impact of power
systems of the neighboring countries. The PS model consists of 57 models of
generating units, 519 load nodes and 1043 elements (transmission lines and
transformers) in the transmission network model. The dimension of the state
vector x for the analyzed PS is 843. The apparent powers of the generating units
(the number of the generators in the unit multiplied by the power of a single
generator is given in brackets) and the rated voltages of the PS nodes to which
they are connected are listed in Table 1. The equivalent generating units are
marked with an asterisk.

The following models of the generating unit components were taken into ac-
count in the PS model: the GENROU model of a synchronous generator [14, 16],
the model of a static [14] or electromachine [14, 16] excitation system operating
in the Polish Power System, the model of a steam turbine IEEEG1 [14, 16] or
a water turbine HYGOV [14, 16] and, optionally, the model of a power system
stabilizer PSS3B [14, 16]. The equivalent generating units were described by the
simplified model of a synchronous generator GENCLS [16], neglecting influence
of the excitation system, turbine, and power system stabilizer.

The eigenvalues of the state matrix of the PS model linearized at the oper-
ating point can be calculated directly in the Matlab/Simulink environment. The
eigenvalues calculated in this way are called original eigenvalues in the paper.

In the calculations presented in this paper, the instantaneous power waveforms
obtained from the simulations with the use of the nonlinear PS model are used as
the input data, approximated during optimization calculations.

The comparison of the eigenvalues calculated on the basis of instantaneous
power waveforms and the original eigenvalues was assumed to be a measure of the
accuracy of calculations. The PS model state matrix has 56 electromechanical
eigenvalues that were sorted descending by the real parts and numbered from
λ1 to λ56. The original electromechanical eigenvalues of the PS state matrix
associated with the least damped modal components and the absolute errors ∆λ
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Table 1: Generating units included in the PS model

Node S, MVA U, kV Node S, MVA U, kV
ADA214 450 (3 · 150) 220 OST111 235 (1 · 235) 110
ADA124 150 (1 · 150) 110 PAT224 235 (1 · 235) 220
BLA123 275 (4 · 68.75) 110 PAT214 705 (3 · 235) 220
ZAP213 300 (2 · 150) 220 PAT114 470 (2 · 235) 110
ZAP223 300 (2 · 150) 220 PEL412 940 (4 · 235) 400
BYC233 300 (2 · 150) 220 PEL212 758.4 (3 · 252.8) 220
BYC223 505.6 (2 · 252.8) 220 PEL112 235 (1 · 235) 110
DBN113 426 (1 · 426) 110 ROG411 2556 (6 · 426) 400
DBN133 426 (1 · 426) 110 ROG211 852 (2 · 426) 220
HAL113 68.75 (1 · 68.75) 110 ROG221 1278 (3 · 426) 220
KRA414 705 (3 · 235) 400 SIE133 150 (1 · 150) 110
KRA214 505.6 (2 · 252.8) 220 SKA253 150 (1 · 150) 220
KON214 137.5 (2 · 68.75) 220 SKA113 206.25 (3 · 68.75) 110
KON224 150 (1 · 150) 220 STW112 150 (1 · 150) 110
KON114 68.75 (1 · 68.75) 110 STW122 300 (2 · 150) 110
KON124 300 (2 · 150) 110 WIE413 470 (2 · 235) 400
KOP213 470 (2 · 235) 220 WIE213 758.4 (3 · 252.8) 220
KOP123 235 (1 · 235) 110 WIE113 235 (1 · 235) 110
KOZ212 1410 (6 · 235) 220 WIE133 235 (1 · 235) 110
KOZ112 470 (2 · 235) 110 ZRC415 836 (4 · 209) 400
LAG213 300 (2 · 150) 220 PAK41W * 9450 (15 · 630) 400
LAG113 150 (1 · 150) 110 VIE21G * 6300 (10 · 630) 220
LAG133 300 (2 · 150) 110 HAG21G * 3780 (6 · 630) 220
LAZ123 150 (1 · 150) 110 HAG22G * 5040 (8 · 630) 220
MIK214 705 (3 · 235) 220 KIS41G * 11970 (19 · 630) 400
MIK224 705 (3 · 235) 220 NOS41C * 11970 (19 · 630) 400
MIK124 235 (1 · 235) 110 ALB41C * 6930 (11 · 630) 400
MIK414 235 (1 · 235) 400 LIS21C * 7560 (12 · 630) 220
OST211 470 (2 · 235) 220

of calculating these eigenvalues based on the instantaneous power waveforms are
presented in Table 2.
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Table 2: Original eigenvalues of the PS state matrix and the absolute errors of their
calculation based on the instantaneous power waveforms

h 1 2 3 4
λh , 1/s −0.0835 ± j 5.6278 −0.1710 ± j 4.9780 −0.4165 ± j 8.0932 −0.4488 ± j 6.6540
∆λh , 1/s −0.0745 ± j 0.4093 −0.0340 ± j 0.1444 0.0138 ± j 0.0976 −0.0277 ± j 0.0088

h 5 6 7 8
λh , 1/s −0.4788 ± j 7.6653 −0.4955 ± j 7.3005 −0.5713 ± j 8.5011 −0.5910 ± j 8.5763
∆λh , 1/s 0.0691 ± j 0.1107 0.0293 ∓ j 0.2115 −0.0818 ∓ j 0.0409 −0.0595 ∓ j 0.8201

h 9 10 11 12
λh , 1/s −0.6372 ± j 8.3382 −0.6417 ± j 8.8039 −0.6723 ± j 8.6222 −0.7368 ± j 9.6011
∆λh , 1/s 0.0646 ± j 0.0754 −0.1158 ∓ j 0.0635 0.0731 ∓ j 0.0028 −0.0383 ± j 0.2604

For example, Fig. 3 shows the waveforms of the instantaneous power deviation
and the band of the approximating waveforms corresponding to the non-rejected
calculation results. This band defines the range of changes in the instantaneous
power, in which all the approximation waveforms corresponding to the individual
calculation results are included.
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Figure 3: The instantaneous power deviation of: unit ZRC415 for the disturbance in unit
PEL412 (a), unit ROG411 for the disturbance in unit ROG411 (b)

To find the generating units critical for the PS angular stability, the partici-
pation factors and correlation coefficients of the eigenvalues with the real parts
greater than −0.3 and having a significant impact on the waveforms of the gener-
ating units physically occurring in PS were analyzed. These are the eigenvalues
λ1 and λ2. Analyzing the participation factors of eigenvalues λ1 and λ2, the
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waveforms in which the modal components associated with these eigenvalues
dominated were selected. The components whose absolute values of the partici-
pation factors were at least 70% of the largest absolute value of the participation
factor of the electromechanical eigenvalue in the analyzed waveform were as-
sumed as dominant. The equivalent generating units were not included in the
investigations.

The relative absolute values of the correlation coefficients |p|rel for the gener-
ating units selected as described above are listed in Table 3.

These relative modules of the correlation coefficients of the eigenvalues and
the generating units physically existing in the PS are determined as follows:

|pkh |rel =
|pkh |

max
k

( |pkh |
) . (27)

In formula (27), when calculating the correlation coefficients, the elements of
eigenvectors related to the angular speed of the k-th generating unit of the h-th
eigenvalue are used.

In order to locate the generating units critical for the angular stability of the
analyzed PS (i.e. the generating units most influencing the angular stability) the
following criteria were assumed:

1. The generating units having the largest absolute values of the correlation
coefficients are successively selected (it was assumed that |p|rel was to be
greater than 0.2) for the eigenvalues with the largest real parts (e.g. greater
than −0.3).

2. The repeating of the same generating units for several eigenvalues in the
above criterion increases its importance for the angular stability of PS.

3. The generating units for which at least one of the cases occurs:

• a significant modal (dominant) component associated with the eigen-
value with the largest real parts for at least two other places of intro-
ducing the disturbance occurred in the instantaneous power waveforms
of these units,

• introduction of a disturbance in this unit caused the occurrence of
significant components associated with the eigenvalue with the largest
real parts in the instantaneous power waveforms of at least two other
generating units,

are successively selected.
The generating units meeting criterion 3 are marked with an asterisk in Ta-

ble 3. They have the largest absolute values of the participation factors for the
eigenvalues from Table 3.
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Table 3: Correlation coefficients of eigenvalues λ1 and λ2

λ1
Unit |p|rel Unit |p|rel

KRA214 1.0 ROG411 0.5862

λ2

Unit |p|rel Unit |p|rel

ZRC415 * 1.0 KOZ112 0.1641
KOZ212 * 0.4245 PEL412 * 0.1586
ROG411 * 0.3769 OST211 0.1536
ROG221 * 0.2748 PEL212 0.1351
PAT214 0.2262 KON124 * 0.0949
PAT114 0.1900 PAT224 0.0719

ADA214 * 0.1825 ADA124 0.0681
ROG211 * 0.1682 KON114 * 0.0275

On the basis of the conducted analyzes and specific criteria, the generating
units were finally selected and ordered according to their significance for the
angular stability of the analyzed PS. They are presented in Table 4.

Table 4: Generating units critical for the PS angular stability

No. Unit Reason
1 ROG411 large absolute values of the correlation coefficients for the eigenvalues λ1 and

λ2 (equal to 0.5862 and 0.3769, respectively), meeting criterion 3 for λ2

2 KRA214 the largest absolute value of the correlation coefficient (1.0) for the eigenvalue
λ1 associated with the least damped modes

3 ZRC415 the largest absolute value of the correlation coefficient (1.0) for the eigenvalue
λ2, meeting criterion 3 for λ2

4 KOZ212 large absolute value of the correlation coefficient (0.4245) for the eigenvalue
λ2, meeting criterion 3 for λ2

5 ROG221 large absolute value of correlation coefficient (0.2748) for eigenvalue λ2,
meeting criterion 3 for λ2

6 PAT214 large absolute value of the correlation coefficient (0.2262) for the eigen-
value λ2

7 ADA214 meeting criterion 3 for λ2

8 ROG211 meeting criterion 3 for λ2

9 PEL412 meeting criterion 3 for λ2

10 KON124 meeting criterion 3 for λ2

11 KON114 meeting criterion 3 for λ2
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8. Conclusions

Based on the performed investigations one can draw the following conclu-
sions:

• It is possible to find generating units critical for the PS angular stability
on the basis of electromechanical calculations of the eigenvalues of the
PS state matrix and determination in which waveforms of the generating
units these eigenvalues significantly interfere. The criteria for selection of
these generating units have been presented in this paper. These criteria are
influenced by the participation factors and correlation coefficients of the
electromechanical eigenvalues with the largest real parts.

• The applied method of calculating electromechanical eigenvalues assumes
a reduction of the order of the model to eliminate satisfactorily the impact
of eigenvalues not related to electromechanical phenomena. This reduction
consists in proper selection of the initial time of the waveform analysis, on
the basis of which the eigenvalues are calculated. The system thus obtained,
described by a set of the calculated electromechanical eigenvalues and the
participation factors associated with them, is completely controllable and
observable from the point of view of electromechanical phenomena.

• Based on the analysis of the actual instantaneous power waveforms of
generating units, it is possible to calculate the electromechanical eigenvalues
and their participation factors with satisfactory accuracy. The calculation
accuracy is usually best for the eigenvalues with the largest real parts,
associated with the least damped modal components. This is advantageous
for assessing the PS angular stability.

• Having got the PS model, it is possible to calculate the correlation coeffi-
cients for individual eigenvalues in the waveforms of subsequent generating
units based on the eigenvectors of the state matrix of this model.

• The conducted investigations show that the results of determining the loca-
tion of the units critical for the PS angular stability based on the analysis of
the participation factors and correlation coefficients are partly the same. The
agreement occurs primarily for the units in which individual eigenvalues
have large correlation coefficient values.

• The advantage of the proposed method of location of generating units
critical for the angular stability of PS is the use of the real measurement
waveforms to calculate electromechanical eigenvalues and their participa-
tion factors. These waveforms can be measured relatively easily in power
plants when introducing a simple test disturbance. One may also use the
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waveforms measured during small disturbances occurring naturally during
PS operation. An additional advantage is the possibility to use the cor-
relation coefficients calculated on the basis of the eigenvectors of the PS
model state matrix. It is therefore possible to compare the location results
obtained based on the measurements with those obtained on the basis of the
PS model. The disadvantage of the proposed method is the lack of strictly
defined criteria for the location of generating units critical for the angular
stability of PS. However, these criteria may be specified in further investi-
gations, which will also enable the accurate classification of the generating
units most affecting the PS angular stability.

• In general, the greater the power of the unit into which the disturbance has
been introduced, the greater the number of units in which power swings
with significant amplitudes and different absolute values of participation
factors of individual eigenvalues occur.

The location of critical generating units in PS and the calculations of elec-
tromechanical eigenvalues and their participation factors can also be carried out
using the presented method based on the waveforms of other electromechanical
quantities of generating units, namely: angular speed and power angle of syn-
chronous generators. One can use electromechanical waveforms that appear after
purposeful introduction of a disturbance in the form of a rectangular pulse (as in
this paper) or a unit step, but also after occurring random disturbances such as
short circuits and load changes on the load nodes.
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