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Efficient MPC algorithms with variable trajectories
of parameters weighting predicted control errors

ROBERT NEBELUK and PIOTR MARUSAK

Model predictive control (MPC) algorithms brought increase of the control system per-
formance in many applications thanks to relatively easily solving issues that are hard to solve
without these algorithms. The paper is focused on investigating how to further improve the
control system performance using a trajectory of parameters weighting predicted control errors
in the performance function of the optimization problem. Different shapes of trajectories are
proposed and their influence on control systems is tested. Additionally, experiments checking
the influence of disturbances and of modeling uncertainty on control system performance are
conducted. The case studies were done in control systems of three control plants: a linear non-
minimumphase plant, a nonlinear polymerization reactor and a nonlinear thin film evaporator.
Three types of MPC algorithms were used during research: linear DMC, nonlinear DMC with
successive linearization (NDMC–SL), nonlinear DMC with nonlinear prediction and lineariza-
tion (NDMC–NPL). Results of conducted experiments are presented in greater detail for the
control system of the polymerization reactor, whereas for the other two control systems only the
most interesting results are presented, for the sake of brevity. The experiments in the control
system of the linear plant were done as preliminary experiments with the modified optimization
problem. In the case of control system of the thin film evaporator the researched mechanisms
were used in the control system of a MIMO plant showing possibilities of improving the control
system performance.

Key words: model predictive control, nonlinear systems, nonlinear models, nonlinear con-
trol, simulation, optimization

1. Introduction

Model Predictive Control (MPC) is an approach where process model is used
in order to predict process behavior in the future. For nonlinear plants, with big
delays, and bounded inputs or outputs, the use of MPC usually brings a very good
system performance whereas controllers like PID would struggle. In practice, the
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model used in the MPC algorithm is inaccurate, thus the modeling uncertainty can
influence the designed control system performance. Fortunately, the algorithm can
assess this uncertainty, include it in the prediction, and reduce its influence on the
control system. Usually, all future, predicted control errors have the same weights
in the optimization problem solved in each iteration of these algorithms like in [18]
or e.g. in a control system of a multi-area interconnected power system described
in [4]. The methods of tuning the weights but assuming them constant on the
prediction horizon are described e.g. in [14–16,19] and [20]. The experiments in
which all weighting parameters of predicted control errors have been increased by
the same amount on prediction horizon while the weighting parameter of future
changes of the manipulated variable stays constant were described in [16]. In
this case the control quality changes similarly to when the weighting parameter
of future changes of the manipulated variable has been changed. MPC tuning
strategy for MIMO (Multiple–Input Multiple–Output) control plants described
by first order plus dead time (FOPDT) models is proposed in [15]. (The version
of the method for SISO plants, in which only the weight for manipulated variable
increments is set during the tuning process was proposed in [14].) Another
method of MPC algorithm tuning, based on a static optimization is proposed
in [20]. The weights are chosen depending on the output or manipulated variable
they are related with. A method of tuning the MPC algorithm for MIMO plant is
proposed in [19]. Values of both: weighting parameters of predicted control errors
and the weighting parameters of future changes of the manipulated variables
are appropriately set depending on the output or manipulated variable they are
related with and properties of the linearized model of the control plant. The
appropriate choice of the weights is used in [11] and [12] to design robust MPC
algorithms.

However, the weights of predicted control errors can be different in different
time instants from the prediction horizon. Thus, different trajectories of weighting
parameters of predicted control errors are proposed and researched in this paper
and their influence on the system performance is compared. General benefits
offered by this mechanism and sketchy guidelines are mentioned in [13]. However,
no detailed information about what shape of these trajectories would give the
improved control quality is given. In this article influence of each proposed
shape of trajectory on control system performance is described. The general
suggestions regarding the shape of trajectories from [13] serve as a starting point
for the research described in this paper.

In the field of robotics weighting parameter trajectory is used on a small
scale. The most common problem to be solved is finding a reference trajectory
for moving the robot’s arm from point A to point B that would cost minimum
energy and time [3]. An optimization problem with constraints is introduced to
solve this problem and in weighting parameters trajectory only the last element
has a weighting parameter equal to zero and all the other weighting parameters



EFFICIENT MPC ALGORITHMS WITH VARIABLE TRAJECTORIES
OF PARAMETERS WEIGHTING PREDICTED CONTROL ERRORS 327

are equal to one. This choice of values of weighting parameters is done with
the use of expert knowledge of a designer who knows that it will improve the
control performance. In this paper influence on the control system performance
by assigning values equal to zero to respective weighting parameters is also
presented. However, most of the proposed trajectories have nonzero weighting
parameters, they are of a different shape, and are used in process control to
improve the control system performance, not like in robotics, to improve the set
point trajectory following.

The experiments with tuning model predictive controllers by changing the
weighting parameter trajectory through an optimization method (e.g. particle
swarm optimization) are described in [6] and [9]. The control performance ob-
tained in the experiments described in [6] with weights variable on the prediction
horizon (applied to an analytic algorithm) gave results suggesting that it is not
necessary to use such an approach in the numerical algorithm. Note that it would
complicate the optimization problem solved in order to tune the algorithm com-
paring to the case with weighting parameters constant on the prediction horizon.
It is worth to also notice that in [9] the general formulation of the optimization
problem contains weights variable on the prediction horizon. However, in the ex-
ample it is assumed that they are constant on the prediction horizon and depend
only on the output or manipulated variable they are related with. It is a very rea-
sonable approach, because allowing weights variable on the prediction horizon
causes the optimization problem to be much more difficult to solve (number of
decision variables grows significantly). Therefore in this paper the optimization
method is not used as not too practical.

This paper describes the advanced investigation of the topic. It is also checked
in the paper, how different shapes of trajectory influence the control quality. It
contains recommendations what kind of trajectory shape should be used in a given
situation to improve control system performance. This article introduces also a
new and easy-to-follow methodology of obtaining the best weighting parameter
trajectory for a given problem, improving the control system performance the
most.

In the next section the MPC algorithms used during experiments are described.
Section 3 contains introductory research done in the control system of the linear,
nonminimumphase plant presenting first experiments with the use of the proposed
mechanism and showing possibilities offered by it. Section 4 presents detailed
results obtained in the control systems of the nonlinear polymerization reactor; it
contains many experiments with different shapes of weighting parameters; influ-
ence of disturbances and of modeling uncertainty on control system performance
is also checked. Section 5 covers the research done in the control system of the
nonlinear MIMO thin film evaporator showing how the shapes of weighting pa-
rameters trajectory can be used to improve control quality of the control system
of a MIMO control plant. The last section summarizes all the obtained results.
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2. Model predictive control algorithms

MPC approach was created in 1970s. The advantages such as: achieving
great system performance for processes with difficult dynamics or with large
number of manipulated and controlled variables, and allowing taking process
constraints into consideration are the reason why this approach is used today in
many industrial applications. Moreover, measured disturbances and information
about model uncertainty can also be used by MPC algorithms to improve control
system performance.

In current sampling instant k the MPC algorithms predict the outputs of the
given process many sampling instants in the future, using a dynamic process
model. The number of these instants is called the prediction horizon and denoted
by N . Number of future changes of manipulated variables is called the control
horizon and is denoted by Nu. The future changes of manipulated variables are
calculated by finding a solution to an optimization problem of minimizing the
following cost function [17]:

min
∆u


N∑

i=1

(
yref

k+i |k − yk+i |k
)T
Ψi

(
yref

k+i |k − yk+i |k
)

+

Nu−1∑
i=0

(
∆uk+i |k

)T
Λi

(
∆uk+i |k

) ,
(1)

where vectors yref
k+i |k and yk+i |k are of dimension ny (ny is the number of controlled

outputs), while the vector of input increments ∆uk+i |k and matrix of weighting
parameters Λi is of dimension nu (nu is the number of manipulated variables).
Therefore, minimizing the cost function (1) consists in minimizing two quadratic
sums where the first is of predicted control errors, which is calculated as dif-
ference between reference trajectories and future process outputs predicted on
the prediction horizon, and the second one is of weighted future changes of the
manipulated variables on the control horizon. The vectors in (1) are as follows:

yref
k+i |k =



yref_1
k+i |k

yref_2
k+i |k
...

y
ref_ny
k+i |k


, yk+i |k =



y1
k+i |k
y2

k+i |k
...

y
ny
k+i |k


, ∆uk+i |k =



∆u1
k+i |k

∆u2
k+i |k
...

∆unu
k+i |k


,

where yref_j
k+i |k is the reference value for i-th time instant from the prediction horizon,

for j-th output, y j
k+i |k is the j-th output value predicted for the i-th time instant
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from the prediction horizon, ∆u j
k+i |k is the increment of the j-th control in the

i-th time instant from the control horizon. The matrix Λi presented in (1) is as
follows:

Λi =



λ1
i 0 0 0

0 λ2
i 0

...
... 0 . . . 0
0 0 0 λnu

i


. (2)

The matrix Ψi weights all predicted control errors. It enables to choose which
predicted control errors will be the most important and which the least important
for the control system performance. This matrix is as follows:

Ψi =



ψ1
i 0 0 0

0 ψ2
i 0

...
... 0 . . . 0
0 0 0 ψ

ny
i


, (3)

where each (ψ1
i , ψ

2
i , . . . , ψ

ny
i ) is a weighting parameter, their values are, in general,

different on the prediction horizon.
For the experiments in the next sections system performance is evaluated

by comparing overshoot and rise time of system outputs with the use of differ-
ent weighting parameter trajectories variable or constant on prediction horizon.
Overshoot is defined by the following equation [1]:

yo =
y(tm) − y(∞)

y(∞)
· 100% , (4)

where: y(∞) – steady-state value,
tm – peak time at which the peak value occurs,
y(tm) – peak value, which is the absolute value of y.

Rise time tr is the time in which the response rises from 10% to 90% of the
steady-state response [2].

2.1. DMC predictive control algorithm
2.1.1. SISO case

Predictive control algorithm DMC (Dynamic Matrix Control) was first used
in petrochemical industry. The DMC controller uses step response linear model
to predict process behavior. This model can be written as [17]:

yM
k =

D−1∑
i=1

si · ∆uk−i + sD · uk−D , (5)



330 R. NEBELUK, P. MARUSAK

where: yM
k – value of model output at sampling instant k,

si – step response coefficients (i = 1, 2, . . . , D),
D – dynamics horizon, which is equal to the number of sampling instants

after which the step response is fixed.

Predicted output values can be calculated as follows [13]:

yk+i |k =
i∑

n=1
sn · ∆uk+i−n +

D−1∑
n=i+1

sn · ∆uk+i−n + sD · uk−D+i + dk , (6)

where: dk = yk− yM
k describes influence of model uncertainty and of unmeasured

disturbances on the control plant. By expanding dk the equation (6) is transformed
to [13]:

yk+i |k = yk +

D−1∑
n=i+1

sn · ∆uk+i−n + sD ·
D+i−1∑
n=D

∆uk+i−n −
D−1∑
n=1

sn · ∆uk−n

+

i∑
n=1

sn · ∆uk+i−n|k .

(7)

2.1.2. MIMO case

The formulas (6) and (7) describe process model and predicted output values
for SISO processes. For MIMO processes a multivariable step response matrix has
to be defined. This matrix denoted as Sl consists of a set of coefficients si j

l of all
the finite step responses at the sampling instant l, i = 1, 2, . . . , ny, j = 1, 2, . . . , nu.
By performing a step change of one input with all other inputs kept unchanged
the values of outputs can be registered and by repeating this procedure for all the
other inputs j = 1, 2, . . . , nu the set of step responses can be obtained. Therefore,
the matrix Sl consists of all these step responses and can be written as [17]:

Sl =



s11
l s12

l s13
l . . . s1nu

l

s21
l s22

l s23
l . . . s2nu

l

s31
l s32

l s33
l . . . s3nu

l
...

...
...

. . .
...

sny1
l sny2

l sny3
l . . . snynu

l


, l = 1, 2, . . . , D. (8)

With the use of matrix (8) the formulas (6) and (7) can be rewritten [17]:

yMk =
D−1∑
i=1

Si · ∆uk−i + SD · uk−D , (9)



EFFICIENT MPC ALGORITHMS WITH VARIABLE TRAJECTORIES
OF PARAMETERS WEIGHTING PREDICTED CONTROL ERRORS 331

yk+i |k = yk +

D−1∑
n=i+1

Sn · ∆uk+i−n + SD ·
D+i−1∑
n=D

∆uk+i−n −
D−1∑
n=1

Sn · ∆uk−n

+

i∑
n=1

Sn · ∆uk+i−n|k .

(10)

The predicted values of outputs can be written in the vector–matrix format [17]:

Y (k) = Y 0(k) + M · ∆U (k) , (11)

where M · ∆U (k) is the process forced response dependent on future changes
of the manipulated variables and Y 0(k) is the process free response describing
the behavior of the process in response to the previous control changes. Process
forced response is described using dynamic matrix M which includes the process
step response coefficients. This matrix is of dimension nyN × nu Nu and is as
follows [17]:

M =


S1 0 . . . 0 0
S2 S1 . . . 0 0
...

...
. . .

...
...

SN SN−1 . . . SN−Nu+2 SN−Nu+1


. (12)

Dimension of Y (k), Y 0(k) is ny · N while of ∆U (k) – is nu · (Nu − 1) [17]:

Y (k) =


yk+1|k
...

yk+N |k

 , Y 0(k) =


y0

k+1|k
...

y0
k+N |k


, ∆U (k) =


∆uk |k
...

∆uk+Nu−1|k

 ,
where

y0
k+i |k =



y0_1
k+i |k

y0_2
k+i |k
...

y
0_ny
k+i |k


,

y
0_ j
k+i |k is the element of the free response predicted for i-th time instant from the

prediction horizon, for j-th output. The process free response is calculated as
follows [17]:

Y 0(k) = Y (k) + MP · ∆UP (k) , (13)
where matrix MP is used for calculations of the outputs predictions depending
only on past increments of the process control inputs ∆UP (k); the matrix is of
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dimension ny · N × nu · (D − 1) and has the following form [17]:

MP =


S2 − S1 S3 − S2 . . . SD−1 − SD−2 SD − SD−1

S3 − S2 S4 − S2 . . . SD − SD−2 SD − SD−1
...

...
. . .

...
...

SN+1 − S1 SN+2 − S2 . . . SD − SD−2 SD − SD−1


. (14)

Dimension of ∆UP (k) is nu · (D − 1) [13]:

∆UP (k) =


∆uk−1
...

∆uk−D+1

 ,
where:

∆uk−p =



∆u1
k−p

∆u2
k−p
...

∆unu
k−p


,

∆u j
k−p is the increment of the j-th control in the past (k − p)-th time instant. Ana-

lytic solution to the optimization problem for DMC controller is as follows [17]:

∆U (k) =
(
MTΨM + Λ

)−1
MTΨ

(
Y ref(k) − Y 0(k)

)
, (15)

where Λ is the matrix of weighting parameters of dimension Nu · nu × Nu · nu
weighting input increments and Ψ is the matrix of weighting parameters of
dimension N · ny × N · ny weighting predicted control errors. Matrix Ψ can be
written as follows:

Ψ =



Ψ1 0 0 0 0 0
0 Ψ2 0 ...

...
...

... 0 . . . 0 ...
...

...
... 0 . . . 0 ...

...
...

... 0 . . . 0
0 0 0 0 0 ΨN


, (16)
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where Ψi for i = 1, 2, . . . , N are defined in (3). Similarly matrix Λ [17]:

Λ =



Λ0 0 0 0 0 0
0 Λ1 0 ...

...
...

... 0 . . . 0 ...
...

...
... 0 . . . 0 ...

...
...

... 0 . . . 0
0 0 0 0 0 ΛNu−1


, (17)

whereΛi for i = 0, 1, . . . , Nu−1 are defined in (2).Y ref(k) is the vector containing
reference trajectory, of the same dimension as Y 0(k) [17]:

Y ref(k) =


yref

k+1|k
...

yref
k+N |k


.

The reference trajectory is a user-specified trajectory based on a set point trajec-
tory. It can be chosen in different ways in order to influence the control system
performance.

When the analytic formula (15) is used, the constraints on increments and on
values of manipulated variables can be taken into consideration by projecting the
increments of manipulated variables onto the admissible set [17]. Therefore only
the control increments from the first time instant of the control horizon can be
modified. Thus, the following constraints can be taken into consideration:

Umin ¬ U (k |k) ¬ Umax , (18)

∆Umin ¬ ∆U (k |k) ¬ ∆Umax , (19)
where

U (k |k) =



u1
k |k

u2
k |k
...

unu
k |k


, ∆U (k |k) =



∆u1
k |k

∆u2
k |k
...

∆unu
k |k


,

Umin, Umax, ∆Umin, ∆Umax are vectors of length nu each, containing constraints
on values and increments of process inputs, respectively. Such an approach often
leads to results close to optimal. However, it is much more difficult to take
into account constraints on the process outputs in this way. To include these
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constraints and the control constraints on the whole control horizon it is easier to
use a numeric solution of the following quadratic optimization problem [7]:

min
∆U (k)

{ (
Y ref(k) − Y 0(k) − M · ∆U (k)

)T
Ψ

(
Y ref(k) − Y 0(k) − M · ∆U (k)

)
+ Λ · ∆UT (k) · ∆U (k)

}
(20)

subject to [7]:

∆Umin ¬ ∆U (k) ¬ ∆Umax , (21)

Umin ¬ U (k − 1) + J · ∆U (k) ¬ Umax , (22)

Ymin ¬ Y 0(k) + M · ∆U (k) ¬ Ymax , (23)

where Umin, Umax, U (k − 1), ∆Umin, ∆Umax are of dimension nu · Nu while Ymin,
Ymax are of dimension ny · (N −N1+1). Matrix J is of dimension nu ·Nu×nu ·Nu
and is defined as follows [7]:

J =


Iu 0 . . . 0
Iu Iu . . . 0
...

...
. . .

...
Iu Iu Iu Iu


, (24)

where every identity matrix Iu is of dimension nu × nu. A numerical DMC
controller solves the presented quadratic optimization problem at each iteration.
As a result the vector of future increments of the control inputs is obtained.
In the analytic version it is sufficient to apply the formula (15). However, the
numeric version solves the optimization problem taking into account input and
output constraints on the whole prediction horizon and gives the optimal results.
In every iteration of the algorithm in either version the first nu elements of the
obtained solution vector ∆U (k) are applied to the process. In the next iteration
of the algorithm the procedure repeats and the updated solution vector ∆U (k) is
obtained.

2.2. NDMC–SL predictive control algorithm

The nonlinear DMC algorithm with successive linearization (NDMC–SL) has
a similar structure to DMC, but with one modification. In every iteration of the
algorithm a linear model is extracted from nonlinear process model and a new
set of step responses is calculated from the new model. This model is extracted
by using current values of process inputs and outputs. As a result new dynamic
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matrix M and matrix MP are obtained and are later used to obtain analytic (15)
or numeric (20)–(23) solution of the optimization problem.

Algorithm steps for the current sampling instant k are as follows [17]:
1. Initialization.
2. Linearization of nonlinear model.
3. Obtaining dynamic matrices M (k) and MP (k):

M (k) =



SN1 (k) SN1−1(k) . . . S1(k) 0 . . . 0

SN1+1(k) SN1 (k) . . . S2(k) S1(k) . . . 0
...

...
...

...
...

. . .
...

SNu (k) SNu−1(k) . . . SNu−N1+1(k) SNu−N1 (k) . . . S1(k)

SNu+1(k) SNu (k) . . . SNu−N1+2(k) SNu−N1+1(k) . . . S2(k)
...

...
...

...
...

. . .
...

SN (k) SN−1(k) . . . SN−N1+1(k) SN−N1 (k) . . . SN−Nu+1(k)



, (25)

MP (k) =



S1+N1 (k)−S1(k) S2+N1 (k)−S2(k) . . . SD−1+N1 (k)−SD−1(k)

S2+N1 (k)−S1(k) S3+N1 (k)−S2(k) . . . SD+N1 (k)−SD−1(k)
...

...
. . .

...

SN+1−S1(k) SN+2(k)−S2(k) . . . SN+D−1(k)−SD−1(k)


. (26)

4. Calculating free response (13).
5. Defining the optimization problem and solving it using (15) in the uncon-

strained case or solving (20)–(23) in the constrained case.
6. Calculating new process inputs.
In the next sampling instant the algorithm goes back to step 2 repeating

linearization of the nonlinear model for current values of variables, then it follows
steps 3–6.

2.3. NDMC–NPL predictive control algorithm

In the nonlinear DMC algorithm with nonlinear prediction and linearization
(NDMC–NPL), just like in NDMC–SL algorithm, in every iteration a lineariza-
tion of the nonlinear model is conducted. However the difference is in calculating
process free response. Here every element of the free response is calculated using
the nonlinear model and not the linearized one like in algorithm NDMC–SL.

Algorithm steps for the current sampling instant k are as follows [17]:
1. Initialization.
2. Linearization of the nonlinear model.
3. Designing the matrices M (k) and MP (k) with the use of linearized model

as in (25) and (26).
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4. Calculating free response iteratively with the use of nonlinear model as
follows:

y0
k+1|k = g

(
yk, yk−1, . . . , yk−nA, uk−τ, . . . , uk−nB

)
+ dk ,

y0
k+2|k = g

(
y0

k+1|k, yk, . . . , yk−nA+1, uk−τ+1, . . . , uk−nB+1
)
+ dk ,

...

y0
k+N |k = g

(
y0

k+N−1|k, y
0
k+N−2|k, . . . , yk−nA+N−1, uk−τ+N−1,

. . . , uk−nB+N−1
)
+ dk ,

(27)

where dk = yk − g(yk−1, . . . , yk−nA−1, uk−τ−1, . . . , uk−nB−1).
5. Defining the optimization problem and solving it using (15) in the uncon-

strained case or solving (20)–(23) in the constrained case.
6. Calculating new process inputs.
In step 4 a nonlinear process model and the previous values of process outputs

and inputs are used to calculate the free response. During the calculations future
output values are replaced with the previously calculated elements of the free
response. In the next sampling instant the algorithm goes back to step 2 with
current values of variables and then follows the next steps.

3. Preliminary experiments

3.1. Control plant description

First experiments were conducted in the control system of a linear plant
described by the following transfer function [8]:

G(s) =
−s + 1

4s2 + 2s + 1
e−4s . (28)

By using the Z-transform and assuming sample time Tp = 1 [s] the model can be
presented as the following discrete transfer function:

G(z) =
−0.08427z + 0.277

z2 − 1.414z + 0.6065
z−4 . (29)

In order to implement a DMC controller a step response of (29) was obtained;
it is shown in Fig. 1.

As seen in Fig. 1 the plant has dynamics difficult to control. It has a delay
τ = 4 [s], an inverse–response starting at t = 5 [s] and later an oscillating
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Figure 1: Step response of a linear model

response. A linear second order discrete differential equation describing the plant
is as follows:
y(k) = −0.0843u(k−5)+0.277u(k−6)+1.4138y(k−1)−0.6065y(k−2). (30)

3.2. Influencing control performance with different shapes of the trajectory
of weighting parameters ψi

For the considered control plant a DMC controller in the analytic version was
designed. The following controller parameters were chosen: N = 20, Nu = 10,
λ = 2; the simulation method was used to tune the controller. The parameters
were chosen in such a way that the steady-state is reached by the process in the
shortest time. These values of parameters remain unchanged for all experiments
in this subsection. The first trajectory under consideration is:

ψi =
1
N

i , (31)

where the biggest value of the weighting parameter is ψN = 1. This trajectory
reduced the overshoot but increased the rise time of the controlled system output.
Similar results have been obtained with the next trajectories:

ψi =
1

N2 i2, (32)
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ψi =
N

N + i − 1
, (33)

ψi = −
1
N

i + 1, (34)

where similarly to trajectory (31) the biggest value of the weighting parameter
is 1. However, these trajectories have different shapes i.e. trajectory (32) rises
asymptotically while the descending trajectories (33) and (34) have different
descending ratios. Trajectory (32) reduced the overshoot even more but also
increased the rise time further in comparison to trajectory (31). Trajectory (33)
has decreased slightly the overshoot without any change in the rise time in
comparison when using a trajectory of constant weighting parameters. Trajectory
(34) has slightly more reduced the overshoot but also slightly increased the
rise time in comparison with trajectory (33). These experiments show that the
shape of the trajectory has influence on the overall system performance. The first
experiments have shown that by choosing the appropriate shape of trajectory of
the weighting parameters ψi it is possible to reduce the overshoot comparing to
the case when the weighting parameters ψi are the same on the entire prediction
horizon.

Trajectories tested so far were able to reduce the overshoot, but not the rise
time. In the next experiments other trajectories are inspected in order to find the
one that can effectively reduce the rise time as well. The first one is as follows:

ψi =


1 for i = k,

0 for i , k,
(35)

where all weighting parameter except one have values equal to 0; k is the tuning
parameter of this trajectory. For different values of k (where k = 1, 2, . . . , N)
different system performance was observed. The trajectory (35) reduced the
overshoot greatly but also increased the rise time greatly. However, for different
values of the parameter k, different values of rise time were obtained; for k = 9
the least one. The next trajectory is the opposite to the trajectory (35):

ψi =


0 for i = k,

1 for i , k,
(36)

where this time all weighting parameters except one have values equal to 1.
In this case the rise time remained unchanged, but overshoot had either de-
creased or increased, depending on value of k. For k = 8 the overshoot was
reduced. An additional experiment was conducted where weighting parameters
for i = {1, . . . , 5} had values 0 and the rest – 1. The purpose of this test was to
eliminate the influence of the delay and of the inverse–response and, as a result,
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to improve the system performance. However, it increased the overshoot while
the rise time was the same as when using the constant trajectory. The next tested
trajectory was as follows:

ψi =


K for i = k,

1 for i , k,
K > 1, (37)

where one of the weighting parameters had a higher value than the rest. Several
experiments have been conducted for different values of tuning parameters k and
K . For k = 8 and K = 150 the best results were obtained; in this case both:
rise time and overshoot were reduced. The value of parameter k is exactly the
same as for trajectory (36) when the best control performance was obtained. It is
also close to parameter k = 9 for trajectory (35) where also the best results were
achieved. In the next experiments other trajectories were tested to further reduce
the rise time by changing the shape of trajectory (37). The first one is in the shape
of the Gauss function:

ψi = K · e−
(
i−k
a

)2

, (38)

where a is a parameter defining the shape of the trajectory. This parameter
influences the width of the trajectory. Depending on the value of parameter a the
overshoot can be increased or reduced. When parameter a is increased, as a result
the width of the trajectory is increased, and the overshoot is reduced. However,
the rise time can be increased as well if the width of the trajectory is increased
too much. If parameter a is reduced then the opposite happens. The rise time is
reduced, but the overshoot is increased. However, if the width of the trajectory
is reduced too much the rise time can also get increased. Nevertheless, trajectory
(38) reduced the rise time effectively in comparison to trajectory (37). For a = 4
the best results were obtained. Also other functions, like bell-shaped, triangular
and trapezoidal ones were tested:

ψi = K · 1

1 +
(
i − k

b

)2a , (39)

ψi =



0 for i ¬ a,

K · i − a
k − a

for a ¬ i ¬ k,

K · c − i
c − k

for k ¬ i ¬ c,

0 for ­ c;

(40)



340 R. NEBELUK, P. MARUSAK

ψi =



0 for i ¬ a,

K · i − a
b − a

for a ¬ i ¬ b,

K for b ¬ i ¬ c,

K · d − i
d − c

for c ¬ i ¬ d,

0 for i ­ d,

(41)

where a, b, c and d are tuning parameters defining shapes of trajectories. Experi-
ments with changing the shapes of trajectories (39), (40) and (41) were started by
making their width close to the width of the trajectory (38) which gave the best
control system performance. Next, all the parameters were increased and reduced
to check their influence on the obtained results. Similarly to trajectory (38) if the
width is increased overshoot is reduced and if it is increased too much the rise
time is also increased. The opposite like in trajectory (38) also happens i.e. when
width is reduced then the rise time is reduced and the overshoot increased. If it
is reduced too much then the rise time can get increased as well. Nevertheless,
for different shapes of trajectories, even if the width is similar, different con-
trol system performance is obtained. Therefore, it is important to perform these
experiments to achieve the best control system performance.

Table 1 and Fig. 2 summarize the best and the most interesting results from
conducted experiments. The best control system performance was obtained with
the bell-shaped trajectory with the parameters a = 4 and b = 3.5. As seen also in
Fig. 2 the overshoot and rise time were significantly reduced comparing to the case
with the constant trajectory. However, due to using the proposed trajectory the
influence of inverse–response was increased. Moreover, manipulated variable has
higher values at the beginning of the experiment in order to guarantee this system
performance. This section introduced the use of differently shaped trajectories
of weighting parameters ψi in a control system of a linear plant with difficult
dynamics. The next sections explore the influence of these trajectories on the
control systems of nonlinear plants.

Table 1: Comparison of control system performance with different trajectories of weight-
ing parameters ψi

Trajectory
number yo [%] tr [s] Parameters

– (constant) 3.3405 4 –

32 0 6 –

37 2.6268 2 k = 8, K = 100

39 2.0372 2 k = 8, K = 100, a = 4, b = 3.5
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Figure 2: Responses of the control system with DMC controller to the change of the set
point value to yset = 10 with different trajectories of weighting parameters ψi; output –
top, input – bottom
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4. Experiments in the control system of a chemical reactor

4.1. Control plant description

The second control plant is a polymerization reactor in which a chemical
reaction of combining monomer molecules together in order to produce large
polymer chains or three-dimensional networks is carried out. This polymerization
reactor is a SISO nonlinear plant that is described by the following differential
equations model [5]:

ẋ1 = 10(6 − x1) − 2.4568x1
√

x2 , (42)
ẋ2 = 80u − 10.1022x2 , (43)
ẋ3 = 0.0024121x1

√
x2 + 0.112191x2 − 10x3 , (44)

ẋ4 = 245.978x1
√

x2 − 10x4 , (45)

where the output is calculated as:

y =
x4
x3
. (46)

The input is the flowrate of initiator denoted as u and the output is the number-
average molecular weight (NAMW) of the product denoted as y. The operating
conditions are as follows: x10 = 5.50677 kmol/m3, x20 = 0.132906 kmol/m3,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Figure 3: Steady-state characteristic
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x30 = 0.0019752 kmol/m3, x40 = 49.3818 kmol/m3, u0 = 0.016783 m3/h,
y0 = 25000.5. Steady-state characteristic of the plant is presented in Fig. 3. This
characteristic is highly nonlinear for u ¬ 0.2.

4.2. Influencing control system performance with different shapes
of the trajectory of weighting parameters ψi

Three MPC algorithms were designed for the considered control plant. These
are: DMC, NDMC–SL and NDMC–NPL. DMC and NDMC–SL algorithms were
implemented in analytic version while NDMC–NPL algorithm – in numeric ver-
sion. All three algorithms were thoroughly tested with the same set of parameters
N = 50, Nu = 10 and λ = 2e12 chosen in such a way that the best system
performance was obtained. For these parameters the steady-state is reached by
the process in the shortest time. A linear model was extracted from the nonlin-
ear process model (42)–(46) for the DMC algorithm. The process model was
then implemented as discrete differential equations with an assumed sample time
Tp = 0.01 [h]. Input constraint was also taken into consideration in the algorithms
– negative values of manipulated variable are prohibited.

Comparison of the responses obtained with all three algorithms is presented in
Fig. 4. Test simulations show that the control system with NDMC–NPL algorithm
offers the best control quality in comparison to the other algorithms – the settling
time and the overshoot are the smallest. Control system with the NDMC–SL
algorithm operates better than the one with the DMC algorithm – generates
smaller settling time. However in both control systems oscillating responses were
obtained. Moreover, due to nonlinearity of the plant the response has a different
character depending on the value of set point. If the set point has a value higher
than the initial output value the output trajectory has an oscillating character
with slow reduction of oscillations, but if the initial output value has a higher
value than the set point the output trajectory has barely visible oscillations. This
difference can influence the control performance during the experiments. The
control system with the NDMC–NPL algorithm has no oscillating character of
the response and has shown the best control quality. Therefore it was used in
next experiments with different shapes of weighting parameters trajectories. The
numerical results of all experiments have been collected in Table 2; superscripts
of overshoot and of the rise time denote what was the value of the set point,
namely 1 denotes the set point equal to 29500.5, and 2 – 20500.5.

First experiments were done with trajectories (31)–(34). These trajectories
caused reduction of overshoot y1

o in comparison to using the constant trajectory
of weighting parameters. However, the rise times t1

r , t2
r and the overshoot y2

o
have increased. This difference in the influence of trajectories on the overshoot is
caused by the nonlinear characteristic of the plant, as pointed out in the previous
subsection. The example shows that the plant is hard to control and that finding
the best shape of the trajectory of weighting parameters is not an easy task. Next
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Figure 4: Responses of the control systems of the polymerization reactor to the set point
changes with controllers: DMC – solid line, NDMC–SL – dashed line, NDMC–NPL –
dotted line; output – top, input – bottom
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Table 2: Comparison of control system performance with different trajectories of weight-
ing parameters ψi

Trajectory
number y1

o [%] y2
o [%] t1

r [h] t2
r [h] Parameters

– (constant) 0.4203 0.1141 0.78 0.89 –
31 0.2329 0.2012 0.9700 1.5300 –
32 0.12 0.6474 1.1600 2.3800 –
33 0.3116 0.2826 1.0300 1.6200 –
34 0.1147 2.0566 1.6500 4.3400 –
37 0.4764 1.4361 0.7700 0.6600 K = 100, k = 5
37 0.7615 2.9039 0.4800 0.3900 K = 100, k = 25
37 0.0658 1.2179 0.5100 0.4300 K = 100, k = 40
37 0.7210 2.1789 0.5500 0.5000 K = 50, k = 25
37 0.6493 1.5461 0.6100 0.5800 K = 30, k = 25
37 0.5129 0.6019 0.7200 0.7500 K = 10, k = 25
37 0.7211 3.0340 0.4400 0.3500 K = 150, k = 25
37 0.6567 2.9248 0.4100 0.3200 K = 200, k = 25
38 0.0623 0.0869 0.3700 0.3000 K = 150, k = 25, a = 10
38 0.1279 0.3024 0.3500 0.2800 K = 150, k = 25, a = 5
38 0.4296 1.7296 0.3500 0.2600 K = 150, k = 25, a = 2
38 1.4833 0.0766 0.2200 0.3100 K = 150, k = 25, a = 12
39 0.3747 1.4705 0.3400 0.2700 K = 150, k = 25, a = 10, b = 2
39 0.1233 0.2242 0.3400 0.2800 K = 150, k = 25, a = 10, b = 5
39 1.0052 0.0740 0.2300 0.3000 K = 150, k = 25, a = 10, b = 10
40 1.8616 0.0715 0.2100 0.3100 K = 150, k = 25, a = 0, c = 50
40 0.0696 0.1063 0.3700 0.3000 K = 150, k = 25, a = 10, c = 40
40 0.2719 1.0263 0.3400 0.2600 K = 150, k = 25, a = 20, c = 30
41 0.0662 0.0893 0.3700 0.3000 K = 150, a = 10, b = 23, c = 27, d = 40
41 0.0952 0.1518 0.3600 0.2800 K = 150, a = 15, b = 23, c = 27, d = 35
41 0.1843 0.5210 0.3400 0.2700 K = 150, a = 20, b = 23, c = 27, d = 30

experiments were done by using trajectory (37) that generated good results in
the previous section. Firstly optimal value of parameter k should be found with
an assumed value of parameter K . For the linear plant the greater the value of
parameter K the more visible rise time reduction was obtained; therefore K = 100
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was assumed initially. For k = 5 rise times t1
r , t2

r have been slightly reduced, but
the overshoots y1

o, y2
o have increased. Increasing parameter k has caused further

reduction of the rise times and increase in the overshoots. Above k = 25 the rise
times could not be reduced more. When increasing k above this limit the rise
times increase and the overshoots become less visible. Parameter k = 25 was
chosen for further experiments, because of the maximum reduction of the rise
times. After choosing the value of parameter k experiments with different values
of the parameter K were done. For values of the parameter lower than 100 the
rise times t1

r , t2
r and the overshoot y1

o have increased, but overshoot y2
o has been

reduced. For values of the parameter K greater than 100, the rise times t1
r , t2

r and
the overshoots y1

o, y2
o have been reduced. However for K = 150 overshoot y2

o has
increased slightly in comparison to K = 100, but for K = 200 it was reduced.
Nevertheless, K = 150 has been chosen as the optimal value of the parameter,
because of two reasons. The first was the small difference in control quality
between K = 150 and K = 200. The second one was the significant increase of
the manipulated variable at the beginning of the experiment with the increase of
parameter K . Afterwards, K = 150 and k = 25 were used to implement other
shapes of trajectories.

For trajectory (38) the rise times and the overshoots were further reduced.
Experiments were conducted by changing the shape parameter a. If the width
of the trajectory was increased then overshoots y1

o, y2
o were reduced, but rise

times t1
r , t2

r increased. Fig. 5 shows an example of control system responses
obtained by changing the shape of trajectory (38). For a = 10 the best results
were achieved therefore this value of the parameter was used as a reference for
designing trajectories (39)–(41). If parameter b in the bell–shaped trajectory got
increased then rise time t1

r and overshoot y2
o got reduced, but unfortunately rise

time t2
r increased. Overshoot y1

o got reduced for b < 10 and got increased for
b ­ 10. For trajectory (40) when the width of the trajectory was reduced then
the rise time t2

r was also reduced. However, overshoots y1
o, y1

o and the rise time
t1
r got either reduced or increased depending on the values of parameters. In the

case of trajectory (41) when width of the trajectory was reduced then rise times
t1
r , t2

r got reduced. The overshoots y1
o, y2

o had either got increased or reduced.
Many experiments have been conducted and the most interesting responses are
presented in Fig. 6.

The least overshoot y1
o was obtained for trajectory (38) with parameters K =

150, k = 25 and a = 10. The lowest overshoot y2
o and the lowest rise time t1

r
were obtained for trajectory (40) with parameters K = 150, k = 25, a = 0
and c = 50. The lowest rise time t1

r was obtained also for trajectory (40), but
with parameters K = 150, k = 25, a = 20 and c = 30. The results show that
the best results are achieved when using Gaussian, bell–shaped, triangular or
trapezoidal–shaped trajectories. This was also true for the control system of the
linear plant, discussed in the previous section. Trajectory (39) with parameters
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K = 150, k = 25, a = 10 and b = 5 was chosen as the optimal one, because of
the most reduced values of the rise times t1

r , t2
r and of the overshoots y1

o, y2
o, in

comparison to other results.
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Figure 5: Responses of the control system with NDMC–NPL algorithm for different set
point values and different shape of trajectory (38) with parameters K = 150, k = 25 and:
red – a = 2, green – a = 5, blue – a = 10; output – top, input – bottom
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Figure 6: Responses of the control system with NDMC–NPL algorithm for different
set point values and different shapes of trajectory of weighting parameters ψi: green –
constant trajectory, blue – trajectory (31), magenta – trajectory (37) with K=100, k=5,
cyan – trajectory (37) with K = 100, k = 25, yellow – trajectory (37) with K = 150,
k = 25, red – trajectory (39) with K = 150, k = 25, a = 10, b = 5; output – top, input –
bottom
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4.3. Checking influence of disturbances and of modeling uncertainty on control quality

Additional research was done to test influence of disturbances and of modeling
uncertainty on control system performance. First experiments were conducted to
check the influence of the measurement noise v. This disturbance was generated
as a random signal vr with an assumed amplitude Kv:

vi = Kv · vr
i , (47)

where i is a time instant of the simulation time t.
Experiments were conducted for different values of parameter Kv and with

the constant trajectory of weighting parameter ψi and with the trajectory (39)
with parameters K = 150, k = 25, a = 10 and b = 5 used in the predictive
algorithm. The influence of the disturbance on control system performance was
tested for Kv = {50, 100, 300}. The purpose of these experiments was to check
how disturbance influences the control system performance when the algorithm
uses the mechanism of variable trajectory of weighting parameter ψi.

Starting from Kv = 50 the noise is visible in the input as well as in the
output of the control system. When comparing the responses of the control
system with constant or variable trajectories for increasing Kv one can observe
that the disturbance influences the control system operation in the same way
regardless of which trajectories are applied (Fig. 7 shows the responses obtained
for Kv = 100). This influence is rather small, the rise times have not changed,
the algorithm with variable trajectory still generates faster response, thus the
implemented mechanism works as intended.

Influence of model uncertainty on control system performance when using a
variable trajectory of weighting parameters ψi was tested in the next experiments.
Model uncertainty was included by changing gain of the control plant by appro-
priately modifying equation (43), where the input is amplified by a constant value.
This value will be changed by using a parameter Kdk . The modified equation is
as follows:

ẋ2 = Kdk · 80u − 10.1022x2 . (48)

The experiments were done for four different values of Kdk : Kdk =
{1.1, 1.3, 1.6, 1.8} which means increasing the gain by 10%, 30%, 60% and 80%,
respectively. For Kdk = 1.1 and constant trajectory the rise time increases what
is more visible when the set point is increased. However the rise time when
using variable trajectory (39) has not changed and it remains not influenced by
modeling uncertainty. The rise time increases with each increase in parameter
Kdk when constant trajectory is used. It also causes an inverse–response to appear
starting from Kdk = 1.3. On the other hand, the rise time decreases when variable
trajectory is used. Unfortunately, the overshoot increases then. Inverse–response
is not present in this case. When parameter is set to Kdk = 1.8 the overshoot is



350 R. NEBELUK, P. MARUSAK

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

y

104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

u

Figure 7: Responses of the control system with NDMC–NPL algorithm for different set
point values, with constant (red) or variable (blue) trajectories of weighting parameters
ψi , and with added disturbance for Kv = 100; output – top, input – bottom

much increased, but the overall control system performance is greatly improved
in comparison when the constant trajectory is employed. Fig. 8 shows the re-
sponses obtained for Kdk = 1.3. These experiments show that when the process
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Figure 8: Responses of the control system with NDMC–NPL algorithm to different
set point values with constant and variable trajectories of weighting parameters ψi , and
without or with modeling uncertainty for Kdk = 1.3; green – nominal model and constant
trajectory, blue – nominal model and variable trajectory; magenta – modeling uncertainty
and constant trajectory; red – modeling uncertainty and variable trajectory; output – top,
input – bottom
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model implemented in the NDMC–NPL algorithm is not very accurate then by
implementing a weighting parameter trajectory it is possible to reduce the influ-
ence of the model uncertainty on the control system performance. However, the
variable trajectory should be chosen carefully using the methodology presented
in the previous subsection so that these results could be achieved.

5. Application in the MIMO control system of an evaporator

5.1. Control plant description

The final experiments were done in the control system of a thin film evaporator
which is a nonlinear MIMO plant with 3 inputs and 3 outputs. Evaporators are used
to evaporate liquid substances like water. They are used to produce condensed
milk, jams, caramel mass, fruit juices and also in many other applications where
the final product needs to undergo an evaporation process. The nonlinear model
of the control plant is described by the following equations [10]:

ρA
dL2
dt
= F1 − F4 − F2 , (49)

d X2
dt
=

F1X1 − F2X2
20

, (50)

dP2
dt
=

F4 − F5
4

, (51)

T2 = 0.5616P2 + 0.3126X2 + 48.43 , (52)

T3 = 0.507P2 + 55 , (53)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
, (54)

T100 = 0.1538P100 + 90 , (55)

Q100 = 0.16 (F1 + F3) (T100 − T2) , (56)

F100 =
Q100
36.6

, (57)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
, (58)

T201 = T200 +
13.68(T3 − T200)
0.14F200 + 6.84

, (59)

F5 =
Q200
38.5

. (60)
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1. Process inputs are:

• F2 – product flowrate
• F200 – cooling water flowrate
• P100 – steam pressure

2. Process outputs are:

• L2 – separator level
• X2 – product composition
• P2 – operating pressure

3. Process disturbances are:

• F1 – feed flowrate
• X1 – feed composition
• T1 – feed temperature
• T200 – inlet cooling water temperature
• F3 – circulating flowrate

4. Other process variables are:

• F4 – vapor flowrate
• F5 – condensate flowrate
• T2 – product temperature
• T3 – vapor temperature
• F100 – steam flowrate
• T100 – steam temperature
• Q100 – heat duty
• T201 – outlet cooling water temperature
• Q200 – condenser duty

The constant ρA = 20. Process operating conditions are as follows:
F1 = 10 kg/min, F2 = 2 kg/min, F3 = 50 kg/min, F4 = 8 kg/min, F5 = 8 kg/min,
X1 = 5%, X2 = 25%, T1 = 40◦C, T2 = 84◦C, T3 = 80.6◦C, L2 = 1 m, P2 =
50.5 kPa, F100 = 9.3 kg/min, T100 = 119.9◦C, P100 = 194.7 kPa, Q100 = 339 kW,
F200 = 208 kg/min, T200 = 25◦C, T201 = 46.1◦C and Q200 = 307.9 kW.

For controlling the output L2 a PI controller was implemented as recom-
mended e.g. in [10]. A control loop F2–L2 was created and after several tests
parameters Kp = 8 and TI = 6.8 [min] were chosen to obtain the most reduced
rise time and overshoot. The problem to control the MIMO plant with 3 inputs
and 3 outputs was thus reduced and the MPC algorithm was designed to control
the remaining 2 outputs, using 2 remaining manipulated variables.
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5.2. Influencing control system performance with different shapes
of the trajectory of weighting parameters ψi

The DMC controller in analytic version was used to control the evaporator.
The parameters were chosen after several tests and their values are as follows:
N = 50, Nu = 5, λ1 = 1 and λ2 = 1. For these parameters the best overall control
system performance was obtained – the rise time and overshoot had low values.
Sample time Tp = 0.1 [min] was assumed. The controller takes input constraints
into consideration so they cannot be negative.

In the considered control system two separate trajectories ψ1
i and ψ2

i had to be
found which would guarantee the best control performance. Both implemented
variable trajectories should reduce the rise time without increasing the overshoot
of all process controlled variables. Many experiments have been conducted with
different shapes of trajectories. Simulation tests were performed for trajectories
where: ψ1

i is variable and ψ2
i is constant; ψ1

i is constant and ψ2
i is variable;

ψ1
i is variable and ψ2

i is variable. The final experiments with both trajectories
variable were performed after gaining experience about the influence of each
of these trajectories on control system performance. All tests were done for
one set point change of either X2 or P2 at once; both: positive and negative
changes of each set point were done. Thus, for X2 the set point values were
X2 = 28 [%] and X2 = 22 [%] while for P2 – P2 = 53.5 [kPa] and P2 = 47.5 [kPa].
Additionally to rise time and overshoot, also the maximum control error of
the stabilized variable (the one for which the set point was not changed) was
measured. The values of these three parameters were used to compare control
system performance.

First experiments were conducted with trajectories (31) and (34) used as
either ψ1

i or ψ2
i trajectory. Applying the trajectory (31) to ψ1

i , ψ2
i or both gave

similar results and the improvement of control system performance was small
in comparison to applying the constant trajectory. Trajectory (34) gave different
results depending on the set point value; they are as follows:

• for variable ψ1
i and constant ψ2

i

– when X2 set point was changed to X2 = 28 [%] the overshoot as well
as the rise time increased, but the maximum control error got reduced;

– when X2 set point was changed to X2 = 22 [%] the overshoot and the
maximum control error decreased, but the rise time increased;

– when P2 set point was changed to P2 = 53.5 [kPa] the overshoot as
well as the rise time increased, but the maximum control error got
reduced;

– when P2 set point was changed to P2 = 47.5 [kPa] the overshoot and
the maximum control error got reduced, but the rise time increased;
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• for constant ψ1
i and variable ψ2

i

– when X2 set point was changed the overshoot got reduced, but the
maximum control error as well as the rise time got increased;

– when P2 set point was changed to P2 = 53.5 [kPa] the overshoot
got reduced, but the maximum control error and the rise time got
increased;

– when P2 set point was changed to P2 = 47.5 [kPa] the overshoot
as well as the maximum control error got reduced, but the rise time
increased;

• for variable ψ1
i and variable ψ2

i

– when X2 set point was changed to X2 = 28 [%] the overshoot got
reduced, but the maximum control error as well as the rise time got
increased;

– when X2 set point was changed to X2 = 22 [%] the overshoot and the
maximum control error got reduced, but the rise time increased;

– when P2 set point was changed to P2 = 53.5 [kPa] the overshoot as
well as the rise time got increased, but the maximum control error got
reduced;

– when P2 set point was changed to P2 = 47.5 [kPa] the overshoot and
the maximum control error got reduced, but the rise time increased;

The experiments show that these trajectories do not improve the control system
performance as much as in the control system of the linear plant. Nonlinearity
and the number of controlled variables make the control system not easy to tune
which means it is necessary to test other shapes of trajectories to improve control
quality.

In the next experiments trajectory (37) was implemented where values of
parameters k and K were found using the methodology presented in the previous
section. The experiments, in which the best parameters k and K were obtained,
were conducted for a set point change of X2 to X2 = 28 [%]. The parameters for
trajectories ψ1

i and ψ2
i were chosen as described in the following steps:

• for variable ψ1
i and constant ψ2

i

1. At the beginning K = 50 was assumed and changes of value of the
parameter k were applied. The rise time decreased until k = 30, then
it started to increase. However, the overshoot was getting reduced for
growing k, unfortunately maximum control error was getting increased
as well. Parameter k = 30 was chosen for the next experiments, because
of the least value of the rise time.
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2. For parameter k = 30 tests with different values of parameter K were
performed. When increasing the parameter K the rise time and the
overshoot were reduced. Unfortunately, the maximum control error
was further increased. Finally, parameter K = 50 was chosen, because
of the small reduction of rise time and due to increase of inputs am-
plitude at the beginning of control system operation with the further
increase of the parameter.

• for constant ψ1
i and variable ψ2

i

1. At the beginning parameter K = 50 was assumed for tests with different
values of parameter k. The rise time and the maximum control error
were constantly getting reduced with the increase of parameter k.
However, the overshoot was getting increased. Parameter k = 50 was
chosen for the next experiments, because of the least value of rise time.

2. For parameter k = 50 next tests were done for changes in parameter K .
When the parameter got increased the rise time and the overshoot got
reduced while the maximum control error got increased. However, the
reduction of the rise time was very insignificant and the amplitude of
inputs at the beginning of control system operation increased, therefore
parameter K = 50 was finally chosen for this trajectory.

When the trajectory (37) was used for both ψ1
i and ψ2

i , with the chosen
parameters, the following results were obtained:

• when X2 set point was changed the rise time as well as the maximum control
error got reduced, but the overshoot got increased;

• when P2 set point was changed the rise time got reduced, but the overshoot
as well as the maximum control error got increased;

The best results were obtained for trajectory (37) used for both ψ1
i and ψ2

i .
In the last experiments just like in previously considered control systems

of SISO plants trajectories (38)–(41) were implemented using the values of
parameters k and K obtained in the previous tests. Each of the trajectories ψ1

i and
ψ2

i was chosen separately to give the best control performance. During the tuning
process the width of each trajectory was changed according to the methodology
presented in the previous section. The trajectories were found for a set point
change of X2 to X2 = 28 [%]. Application of these trajectories greatly reduced
the rise time in comparison to trajectory (37), in all cases. The best results obtained
during these experiments are described below:

• for variable ψ1
i and constant ψ2

i

– for trajectory (38) with parameter a = 10 the overshoot got reduced
the most;
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– for trajectory (40) with parameters a = 10, c = 40 and for trajectory
(41) with a = 10, b = 25, c = 35, d = 40 the rise time got reduced
the most;

• for constant ψ1
i and variable ψ2

i

– for trajectory (41) with parameters a = 0, b = 45, c = 55, d = 60 the
rise time as well as the maximum control error got reduced the most;

For variable trajectory ψ1
i and constant ψ2

i the maximum control error got
always increased while for variable trajectory ψ2

i and constant ψ1
i – the overshoot

increased. The trajectory (40) was chosen for ψ1
i , because of the reduced rise time

and less overshoot and maximum control error than in the case of the trajectory
(41). For ψ2

i the best trajectory (41) was chosen for which, as stated before, the
rise time and the maximum control error got reduced the most.

The combination of the best trajectories found separately is thus as follows:

ψ1
i =



0 for i ¬ a1 ,

K · i − a1
k − a1

for a1 ¬ i ¬ k,

K · c1 − i
c1 − b

for k ¬ i ¬ c1 ,

0 for i ­ c1 ,

ψ2
i =



0 for i ¬ a2 ,

K · i − a2
b − a2

for a2 ¬ i ¬ b,

K for b ¬ i ¬ c2 ,

K · d − i
d − c2

for c2 ¬ i ¬ d,

0 for i ­ d,

(61)

where K = 50, k = 30, a1 = 10, c1 = 40, a2 = 0, b = 45, c2 = 55, d = 60.
The control system operation obtained with trajectories (61) is detailed in

Table 3 and Fig. 9; changes of X2 set point were done. Measurements of over-
shoots, maximum control errors and rise times of respective process variables
are collected in the table; they are denoted as: ys

o_out , es
m_out , ts

r_out , respectively,
where out means the appropriate output and the superscript s indicates the value
of the set point change for which it was measured:

• s = 1 means X2 set point change to X2 = 28 [%],

• s = 2 means X2 set point change to X2 = 22 [%].
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Table 3: Comparison of responses obtained with constant or variable trajectories for
change in set point value of variable X2

Trajectory
number y1

o_X2
[%] e1

m_P2
[%] y2

o_X2
[%] e2

m_P2
[%] t1

r_X2
[min] t2

r_X2
[min]

– (constant) 0.8502 1.7856 1.3849 0.6457 34.7 31.2

61 0.6878 1.0711 3.015 0.7931 5.2 4.7

Trajectories (61) greatly reduced the rise times t1
r_X2

and t2
r_X2

, the overshoot
y1

o_X2
, and the maximum control error e1

m_P2
. However, the overshoot y2

o_X2
and

the maximum control error e2
m_P2

increased. Similar results were obtained for
changes of P2 set point. The results are presented in Table 4 and Fig. 10.

Table 4: Comparison of responses obtained with constant or variable trajectories for
change in set point value of variable P2

Trajectory
number e1

m_X2
[%] y1

o_P2
[%] e2

m_X2
[%] y2

o_P2
[%] t1

r_P2
[min] t2

r_P2
[min]

– (constant) 7.732 1.7278 2.2201 1.3412 23.9 33.7

61 5.0692 2.545 1.8389 0.7886 3.1 12.7

Measurements are denoted as follows: ys
o_out , es

m_out , ts
r_out where the super-

script s indicates the value of the set point change for which it was measured and
this time:

• s = 1 means P2 set point change to P2 = 53.5 [kPa],

• s = 2 means P2 set point change to P2 = 47.5 [kPa].

After using the variable trajectories (61), the rise times t1
r_P2

and t2
r_P2

were
greatly reduced also the overshoot y1

o_P2
and the maximum control errors e1

m_X2

and e2
m_X2

got reduced. Only the overshoot y2
o_P2

got increased. Thus, the overall
control system performance has greatly improved. The experiments show that the
methodology proposed for control systems of SISO plants can be also successfully
applied for control systems of MIMO plants. However, finding the best trajectories
is harder in this case, because of the influence each ψ j

i ( j = 1, . . . , ny), has on
each controlled variable.
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6. Summary

This paper presents many shapes of trajectories of weighting parameters ψi
which can improve control system performance when applied. The experiments
were done in control systems of three control plants: the linear nonminimumphase
plant, the nonlinear polymerization reactor and the nonlinear evaporator. For all
three plants a DMC controller was implemented. However, for the polymerization
reactor also NDMC–SL and NDMC–NPL control algorithms were designed.
Simple and more complex shapes of trajectories were investigated and also their
influence on each of the three designed control systems described in the paper.
The tests included many changes in shape parameters and analyzing the obtained
results. Moreover, for control system of the polymerization reactor influence of
disturbances and model uncertainty was tested. Comparison of control systems
performance was performed by comparing the values of rise times, overshoots
and maximum control errors in cases when constant or variable trajectories were
applied.

The best results for all control systems were obtained when using trajectories
(38)–(41). For the linear plant as well as the chemical reactor a bell–shaped func-
tion improved control system performance the most. However, for the evaporator
a combination of triangular and trapezoidal functions gave the best control qual-
ity. If this mechanism is used correctly it can greatly reduce either the rise time
or the overshoot of the controlled process as shown in this paper. Moreover, the
control system performance can be improved even if process model is not very
accurate or if the measurement noise is present.

In order to find the trajectory with least rise time and overshoot, it is recom-
mended to start with finding the best trajectory (37), i.e. to find the best values of
its 2 parameters: k and K that define this trajectory. The best value of parameter
k can be found by performing a few experiments with an assumed constant value
of the parameter K and then changing the value of the parameter k until the least
rise time is achieved. It is recommended to start the tests from k =

N
2

, where
N is the prediction horizon, and analyze the results obtained near this value,
first. The experiments described in the paper show that usually the k for which
the least rise time is obtained is near this value. Once the best parameter k is
found then experiments with changing the value of parameter K can begin. It is
recommended to increase this parameter until its influence on control quality is
barely visible or the amplitude of the input at the beginning of control system
operation is too high. When both parameters are correctly found then tests with
trajectories (38)–(41) can begin. It is recommended to start from a thin shape of
a chosen trajectory and slowly increase its width. The experiments in the paper
show that usually the best results are obtained with thinner rather than thicker
trajectories.
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This paper presents many trajectories that can be already used in the pro-
posed form. Using these trajectories in control systems of plants similar to the
ones described in the paper should improve control system performance. These
weighting parameter trajectories can be applied to any type of predictive control
algorithm and by following the presented methodology it is easy to find those
that can fulfill the objectives of the control system designer.
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