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Abstract. In this study, an energy-based spectrum sensing method combined with copula theory is proposed for cognitive radio systems. In the 
proposed spectrum sensing model, cognitive radio users first make their own local spectrum decision with energy-based spectrum sensing. Then, 
they forward their decision to the fusion center. In the fusion center, this decision is compared with the threshold value determined by copula 
theory and global spectrum decision is made. The test statistic at the fusion center were obtained with the Neyman Pearson approach. Thus, 
the fusion rule was created for the fusion center and necessary simulation studies were performed. According to the results of the simulation 
studies, the proposed detection method showed better results than the traditional energy based detection method.
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els and under noise uncertainty factor. Cooperative detection 
[9‒10], fuzz tests [11], some clustering algorithms [12] have 
been used in the literature for spectrum detection.

In this study, a copula theory combined with energy based 
detection is proposed for spectrum detection in CR systems. 
In the proposed detection model, CR users transmit their local 
decisions to the fusion center, and the fusion center makes 
global decisions. Therefore, the fusion rule at the fusion center 
was obtained and the necessary simulation studies and theoret-
ical expressions were confirmed.

The rest of the paper is organized as follows. In Section 2, 
proposed spectrum sensing model and Copula theory are pro-
vided. The sensing algorithms and their theorical analysis are 
presented in Section 3. Simulation results based on randomly 
generated signals are given in Section 4. Conclusions are drawn 
in Section 5.

In this study, bold letters (x) and italics (x) represent matri-
ces and vectors, respectively.

2.	 Spectrum sensing model

The main purpose of spectrum sensing is to identify the empty 
spectrum bands and allocate them to secondary users. The sec-
ondary user represents the radio user using an empty spectrum 
band as an opportunist. The Primary Base Station (PBS) user 
is the radio user who has the legal right to use a specific spec-
trum band. According to the detection model to be used in this 
study (Fig. 1), first of all, each CR user creates their own local 
decision to detect the spectrum. Local decisions are sent to the 
fusion center, where a global spectrum decision is made. Then 
the Cognitive Radio Base Station (CRBS) communicates with 
CR users. PBS is passive at this time.

According to the detection and radar theory, the detection 
of a communication signal embedded in noise is expressed by 
binary hypothesis testing. Binary hypothesis testing for detec-
tion theory and radar systems is given below [13].

1.	 Introduction

There are two main reasons for the spectrum scarcity problem in 
recent years. One of them is the increase in the data sizes trans-
mitted in wireless communication systems and consequently 
the increase of the bandwidth required for communication 
[1]. The other is the increase of the number of applications in 
wireless communication systems [2]. Thereby, measurements 
show that the radio frequency spectrum is idle for most of the 
time [3]. This is due to fixed spectrum assignment policies [4]. 
According to fixed spectrum assignment methods, the spectrum 
region assigned to a particular user is not made available to 
another user, even if that user is not in the spectrum. In order to 
solve this problem, firstly, instead of fixed spectrum allocation, 
dynamic spectrum assignment policies should be adopted which 
is exactly the main purpose of cognitive radio (CR) systems [5]. 
A CR system continuously scans the spectrum environment in 
which it is located, opening the received empty spectrum regions 
to secondary users. Secondary user means an opportunistic user 
who is not licensed for a particular spectrum region. Thus, idle 
spectrum gaps are evaluated. In CR systems, spectrum detection 
is the initial step. In the literature, different methods for spec-
trum detection have been proposed. The best known of these 
methods is Energy Detection (ED), due to the calculation cost 
[6]. In addition, eigenvalue-based detection and cyclostationary 
based detection are used in the literature [7]. The choice of the 
method to be used is made according to the technical charac-
teristics of the signal to be detected (modulation, OFDM, etc.). 
For example, if the signal to be detected is fully known, cyclos-
tationary detection is the most successful detection method [8]. 
In addition to these methods, different methods have been pro-
posed to improve the detection performance at high noise lev-
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	 H0 → y(n) = η(n)� (1)

	 H1 → y(n) = s(n) + η(n) ,� (2)

where y(n) are samples of transmitted signals that include the 
effects of wireless communication channels such as multipath 
fading and path loss, s(n) is the primary user signal, η(n) is 
the White Gaussian noise, which is i.i.d., having mean zero 
and variance ση

2, namely η(n) » CN(0, ση
2). In this study, 

we assume that the detection model is given in Fig. 1. Let us 
assume that the users of CR users have their own local spec-
trum decision. Assuming the CR users observations to be con-
tinuous variables, let the Probability Density Function (PDF) 
of the observations received by the i.th CR users at the n.th 
time instant under the H1 and H0 hypotheses be f (yin j H1) and 
f (yin j H0), respectively, where i = 1, …, M and n = 1, …, N. 
However, no information is available about the common prob-
ability distribution functions of the CR observations. Thus, 
according to signal samples from CR users, the local decision 
can be expressed mathematically as follows.

	 ri = 
1  if       TSi < ζ i

0  if       TSi > ζ i
,� (3)

where TSi and ζ i are the test statistic and the threshold at the i.th 
CR user respectively, ri is i.th user’s local spectrum decision. 
According to the proposed detection model, each CR user trans-
mits their local decision to the global decision center. These 
decisions are combined in the global decision-making center. 
The problem of spectrum sensing consists of determining opti-
mal fusion test statistic to achieve global decision using local 
thresholds at CR users. Individual and global decision thresh-

olds in CR users are derived according to Neyman Pearson 
(NP) detection theorem. When determining global and individ-
ual threshold values, we assume that CR user observations (and 
therefore CR users decisions) are conditionally independent and 
identically distributed (IID).

2.1. Copula theory and spectrum sensing. To find the opti-
mal test statistic in the fusion center, for simplicity, let us 
assume that there are two CR users in the detection model 
(i = 1, 2 and M = 2) [14]. Let r = 

£ 
r1, r2
¤T, where r1 and r2 

show the local decision of each CR user. So r1 and r2 as vector 
r1 = 

£
r11, …, r1N

¤
 and r2 = 

£
r21, …, r2N

¤
. Then the optimal test 

statistic in the fusion center is defined by the Likelihood Ratio 
(LR) function as follows [15].

	 δ (r) = 
P(r1, r2 j H1)

P(r1, r2 j H0)
,� (4)

where P(r1, r2 j Hp) is the joint probability distribution function 
of the CR users under the p.th hypothesis, p = 0, 1. Using the 
assumption of temporal independence of BR users decisions, 
optimal fusion statistics are expressed as follows.

	 δ (r) = 
∏N

n = 1 P(r1n, r2n j H1)

∏N
n = 1 P(r1n, r2n j H0)

.� (5)

We assume that Qjk = Pr(r1n =  j, r2n = k j H1) and Wjk =
= Pr(r1n =  j, r2n = k j H0) for all  j = 0, 1, k = 0, 1. Thus, for 
the spectrum detection model with two CR users, the set of 
probabilities in the fusion center is defined as follows.

	 Q00 = ∫
ζ1

–1 ∫
ζ2

–1
f (r1n, r2n j H1)dr1n dr2n� (6)

	 W00 = ∫
ζ1

–1 ∫
ζ2

–1
f (r1n, r2n j H0)dr1n dr2n� (7)

Equations 6 and 7 are the logic values of the decisions made 
by CR users. Therefore, the Q and W functions define combined 
joint PDF’s under the H1 and H0 hypotheses. But as can be seen, 
for the calculation, the joint PDF of the r1 and r2 CR users’ 
local decisions under the hypotheses H1 and H0 are required. 
Since this information is not known a priori, the marginal PDFs 
of CR observations and the marginal PDFs of local users of 
CR users should be obtained before an optimal fusion rule 
can be obtained. Still, we want to emphasize that multivariate 
probability density functions are not for the marginal density 
functions of two variables. Namely, given the random marginal 
distributions, common distribution functions cannot be simply 
written. For this we need to use the Sklar’s theorem.

2.2. Sklar’s theorem. In statistics, the relationship between 
multivariate probability distribution functions and their mar-
ginal probability distribution functions is explained by Sklar’s 

Fig. 1. Proposed detection scenario
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theorem [16]. Let an p-dimensional distribution function K with 
marginal distribution functions K1, …, Kp. Then there exists 
a copula C, for all x1, …, xm. Namely

	 F(x1, x2, …, xN) = C(F1(x1), F2(x2), …, FN(xN)) ,� (8)

where C is a standard p- dimensional copula. For absolutely 
continuous distributions F and F1, …, Fp the joint PDF of ran-
dom variables x1, x2, …, xp can be derivated by differentiating 
both sides (1);

	
f (x1, x2, …, xp) = 

= ∏ N
n = 1 fn(xn)c(F1(x1), F2(x2), …, FN(xN)),

� (9)

where fn(xn), are the marginal PDFs and c is denoted as the den-
sity of standard multivariate copula C that is given as follows,

	
∂ L(C(u1, …, ud))

∂u1, …, ∂ud
,� (10)

where u1 = F1(xm) and u = 
£
u1, …, ud

¤
.

The selection of copula functions is a key problem in the 
common statistics of random variables, since different copula 
functions can model different types. Therefore, families of mul-
tivariable standard copula functions with different properties 
are defined.

3.	 Proposed spectrum sensing method

According to the proposed detection model, firstly CR users 
form their own local decisions. In the proposed model, the local 
spectrum decision is the energy-based spectrum sensing method 
and mathematically expressed as follows.

	 ∑ N
n = 1 j yi(n)j2 

H0
<>
H1

 F –1
χ 2

2
(1 ¡ Pfa)

ση
2

2
,� (11)

where F –1
χ2

2
 and Pfa represent the distribution of Chi Square with 

2 degrees of freedom and the limit value of the Probability of 
False Alarm (Pfa) determined by the Federal Communication 
Committee (FCC), respectively. Thus, local decisions (1 or 0) 
generated by CR users are transmitted to the global decision 

center. In addition ∑N
n = 1 j yi(n)j2 and F –1

χ2
2
(1 ¡ Pfa)

ση
2

2
 represent 

the test statistic and threshold value at the i.th CR user respec-
tively. So information received from CR users can be expressed 
as follows.

r1n = 
0  if  ∑ N

n = 1 j yi(n)j2 < F –1
χ 2

2
(1 ¡ Pfa)

ση
2

2

1  if  ∑ N
n = 1 j yi(n)j2 > F –1

χ 2
2

(1 ¡ Pfa)
ση

2

2

� (12)

Thus, the information received from each CR user (0 or 1) 
is sent to the fusion center. To find the optimal test statistics, 
assume that there are two CR users in the detection model. 
Thus, the combined probability distribution functions of CR 
users’ local decisions are expressed as follows.

P(r1n, r2n j H1) = W (1 ¡ r1n)(1 ¡ r2n)
00

P(r1n, r2n j H1) = W r1n(1 ¡ r2n)
10 W (1 ¡ r1n)r2n

01 W r1n r2n
00

� (13)

	
P(r1n, r2n j H0) = Q (1 ¡ r1n)(1 ¡ r2n)

00

P(r1n, r2n j H0) = Qr1n(1 ¡ r2n)
10 Q(1 ¡ r1n)r2n

01 Qr1n r2n
00

� (14)

Substituting (13) and (14) in (5), taking the log on both sides, 
the optimum test statistic at the fusion center is obtained.

	
logζg(r) = C1∑ N

n = 1 r1n + C2∑ N
n = 1 r2n +

logζg(r) + C3∑ N
n = 1 r1n r2n ,

� (15)

where, ζg(r) represent global threshold or fusion rule. In addi-
tion [14],

C1 = log
W00 P10

W10 P00
� (16)

C2 = log
W00 P01

W01 P00
� (17)

	 C3 = log
P00 P11W10W01

P01P10W11P00
.� (18)

The joint probability density of CR users observations with 
the parameters of copula can be created using Gauss (Normal) 
or Student-t copula functions. Common possibilities of sensor 
decisions of CR users can be obtained by solving the double 
integrals of the intensity of the signals received by the corre-
sponding CRs. Thus optimal fusion rule is now given by

	 logζg(r) 
H0
<>
H1

 ψ ,� (19)

where ψ  is the global threshold at the fusion center. Perfor-
mance measurements for detection in radar terminology are 
determined by Probability of Detection (Pd) and probability of 
False Alarm (Pfa). The optimal fusion test statistic denoted by 
logζg(r) is asymptotically Gaussian. Therefore Pd and Pfa are 
identified by the following conditional possibilities.

	 Pd = P(H1 j H1) = Q
³ψ ¡ µ1

σ1

´
� (20)

	 Pfa = P(H1 j H0) = Q
³ψ ¡ µ0

σ 0

´
,� (21)
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where µ x and σ x, the first- and second-order statistics are 
denoted by x.th hypothesis x = 0, 1.

Suppose that the number of CR users in the given detection 
model is M, global decision rule is defined as follows.

	 logζg(r) = ℵTτ (r) = ∑ N
n = 1 ∑ 2M ¡ 1

k = 1 ℵkψk ,� (22)

where ℵT represents the weight vector and see Appendix 1 for 
τ (r). The combined intensity of CR users observations with 
the knowledge of the copula parameters can be generated 
using Gaussian or Student-t copula. The common probabilities 
of sensor decisions that determine optimal test statistics can 
be obtained by solving the double integrals of the combined 
intensity of CR observations.

4.	 Simulation studies

In this section, we illustrate our proposed energy-based spec-
trum sensing with Copulas through numerical examples. 
According to the detection model, we produce random PBS 
signal by adding noise at different SNR values. We assume that 
the communication channel is Rayleigh channel. In addition, 
the OFDM technique is used and OFDM parameters are given 
in Appendix 2. Two different graph types are used for perfor-
mance evaluation in simulation studies. One of them is the ROC 
curves and the other is SNR-Pd graphs. Also, copula function is 
used for normal and Chair-Varshney copula functions.

In Fig. 2, traditional energy-based spectrum sensing and 
proposed sensing model (energy-based with copula) perfor-
mances are compared. Although the two methods show close 
detection performance, the proposed method is signif icantly 
more successful. As it is known, energy-based detection, which 
is one of the most common spectrum detection methods, is the 
most successful detection method when the noise variance is 
fully known. If the variance of noise is unknown, some estima-
tion methods can be found, but detection errors can adversely 
affect the performance of the method. Therefore, the most 
negative aspect of the energy detection method is its vulnera-
bility to noise uncertainty. However, the most reliable method 
in terms of calculation costs is ED. In addition, in Fig. 2,  

Fig. 2. ED and Prosed method sensing performances(normal copula), 
N = 100, M = 4
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Fig. 3. ED and Prosed method sensing performances, N = 100, M = 4
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the number of samples is 100. Increasing the number of sam-
ples can provide a more successful detection performance, but 
with the increase in the number of samples, the detection time 
increases.

If the CR users in the detection model are evaluated with 
the assumption that they are conditionally independent from 
each other, the simulation results observed (Chair-Varshney) 
are given in Fig. 3. As it is known, when the Chair-Varshney 
rule is applied, the processing cost decreases but this affects 
the detection results negatively. The chair rule shows that users 
of BR should be too far to be correlated with each other. but in 
practice this is not easy for CR systems. Also, as it is known, 
in order to make a spectrum decision in Energy based spec-
trum sensing, noise variance must be known in advance. In 
practice, noise variance is estimated by estimation methods. 
In this study, no estimation method was used, noise variance 
was used theoretically. Looking at Eq. 12, it is seen that noise 
variance is necessary to f ind the threshold value. It should 
be known that in ED based detectors, estimation errors may 
occur in estimating noise variance. This phenomenon is called 
noise uncertainty and leads to performance loss in ED based 
methods. However, this negative factor was not taken into con-
sideration in this study.

But it is also known that the cost of calculation decreases 
with the chair rule. It should be kept in mind that when the 
number of CR users is 3 or more, the Chair Varshney rule will 
reduce the calculation cost and detection times.

Refer to Fig. 4 for the variation of the number of CR users 
and detection performances, wherein the y-axis shows the cor-
rect detection sequence when the proposed method is oper-
ated 100 times. For example, assuming M = 4, approximately 
88 times of accurate detection were performed (with the Nor-
mal Copula function). Thus, referring to Fig. 4, the increase 
in the number of CR users positively improves the detection 
performance. The increase in the number of CR users in dis-
tributed detection systems improves the detection performance, 
but in practice it is difficult to increase the number of CR users.

ROC curves provide important information for detection 
performance in radar systems [17, 18]. In radar systems, the 
maximum value for the Pfa value has already been determined 
by certain organizations (for example Federal Communication 
Committee for CR systems). However, detection performance is 
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model showed remarkable success compared to traditional 
energy-based detection.

Appendix 1

Cyclic prefix length (us) 157
Effective symbol duration (ms) 2.51
Sub carrier bandwidth (Hz) 398.4375 
Number of sub carriers 244 

Appendix 2
	 τ 1,	 k = 1
	 τM ,	 k = M
	 τ 1τ 2,	 k = L + 1
	 τ 1τ 3,	 k = L + 2
	 τ 1τ 2τ 3,	 k = L + 1 + 

M(M ¡ 1)
2

References
	 [1]	 E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced 

for Mobile Broadband. 2nd ed., Academic Press, 2013.
	 [2]	 B.B. Pradhan and L.P. Roy, “Ergodic capacity and symbol error 

rate of distributed massive MIMO systems over Rayleigh-inverse 
Gaussian fading channels using ZF detectors”, Phys. Commun. 
38, 100906 (2020).

	 [3]	 D. Cabric, “Addressing feasibility of cognitive radios”, IEEE 
Signal Process. Mag. 25, 6 (2008).

	 [4]	 S. Razmi and N. Parhizgar, “OFDM for cognitive radio systems: 
Novel power allocation and bit loading algorithms”, Int. J. Elec-
tron. Telecommun. 65 (1), 139‒145 (2019).

	 [5]	 Z. Chen and Y. Zhang, “Cooperative energy detection algorithm 
based on background noise and direction finding error”, AEU-Int. 
J. Electron. Commun. 95, 326–341 (2018).

	 [6]	 C. Charan and R. Paney, “Eigenvalue based double threshold 
spectrum sensing under noise uncertainty for cognitive radio”, 
Optik 127(15), 5968–5975 (2016).

	 [7]	 P.S Aparna and M. Jayasheela, “Cyclostationary feature detection 
in cognitive radio using different modulation schemes”, Int. J. 
Comput. Appl. 47(21), 12‒16 (2012).

Fig. 4. CR users versus number of correct decision

 
2 4 6 865

70

75

80

85

Number of CR users

N
um

be
r o

f c
or

re
ct

 d
ec

is
io

ns

 

 

Chair-Varshney  Copula Function
Normal Copula Function

 
2 4 6 865

70

75

80

85

Number of CR users

N
um

be
r o

f c
or

re
ct

 d
ec

is
io

ns

 

 

Chair-Varshney  Copula Function
Normal Copula Function

 
2 4 6 865

70

75

80

85

Number of CR users

N
um

be
r o

f c
or

re
ct

 d
ec

is
io

ns

 

 

Chair-Varshney  Copula Function
Normal Copula Function

Number of CR user

N
um

be
r o

f c
or

re
ct

 d
ec

is
io

ns

85

80

75

65
2 4 6 8

70

Fig. 5. ROC curves for proposed detection schemes

 
0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

Probability of false alarm

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

Normal Copula Function
Chair Varshney Copula Function

1

0.8

0.6

0.4

0.2

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

0 0.2 0.4 0.6 0.8 1
Probability of  false alarm

still important when the limit values are exceeded. ROC curves 
for the proposed detection method are given in Fig. 5.

One of the detector performance indicators in detection the-
ory is the ROC curves. In ROC curves, Pd changes against Pfa 
are shown together. Normally, Pfa is predetermined by FCC, but 
ROC curves are used when detector performance is important 
when exceeding certain limits.

ROC curves for the proposed detection method are given in 
Fig. 5. As expected, a more successful detection performance 
was obtained with normal copula function. Figure 5 shows the 
detection performance of the proposed detector in the presence 
of 5 dB noise.

Table 1 gives the processing times of algorithms for tradi-
tional ED and the proposed method.

Table 1 
Algorithm calculation times for different N, M = 4

N = 100 N = 500 N = 5000
Classic ED 1.2 sec 1.4 sec 2.7sec
ED with Copulas  
(Normal Copula function) 1.8 sec 2.7 sec 5.1 sec

As can be seen from Table 1, the proposed method increases 
the detection time. However, when the proposed spectrum sens-
ing model (Fig. 1) is analyzed, it is seen that this is an expected 
phenomenon. Because in traditional ED based detection, the 
decision is made only by CR users. However, in the proposed 
detection model, local decisions made by each CR user are for-
warded to the fusion center for the global decision. The global 
spectrum decision is given here. Thus, the processing time is 
extended.

5.	 Conclusion

In this paper, we studied the problem of spectrum sensing for 
CR systems. We propose an energy-based detection model with 
Copulas for cognitive radios. In this study, spectrum sensing 
model, local decision and global decision rules are proposed. 
The theoretical results were confirmed by simulation studies. 
As a result of the simulation studies, the proposed sensing 
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