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OPTIMAL FORM-FINDING OF CABLE SYSTEMS

G. DZIERZANOWSKI', I. WOJCIK-GRZABA?

Tensile structures in general, achieve their load-carrying capability only after the process of initial form-finding.
From the mechanical point of view, this process can be considered as a problem in statics. As cable systems are
close siblings of trusses (cables, however, can carry tensile forces only), in our study we refer to equilibrium
equation similar to those known from the theory of the latter. In particular, the paper regards designing pre-ten-
sioned cable systems, with a goal to make them kinematically stable and such that the weight of so designed system
is lowest possible. Unlike in typical topology optimization problems, our goal is not to optimize the structural
layout against a particular applied load. However, our method uses much the same pattern. First, we formulate the
variational problem of form-finding and next we describe the corresponding iterative numerical procedure for
determining the optimum location of nodes of the cable system mesh. We base our study on the concept of force

density which is a ratio of an axial force in cable segment to its length.

Keywords: cable systems, optimal form-finding, minimum weight, force density method

1. INTRODUCTION

The history of modern, large-span cable systems dates back to the 1950s when the Polish architect
Maciej (Matthew) Nowicki designed the Dorton Arena (a.k.a. Paraboleum) in Raleigh, USA. This
still existing construction is the first one whose roof was shaped as a net made of the high-strength

steel wires. Since then, the idea of covering the buildings, especially public facilities, such as sport
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arenas, exhibition halls, or airport terminals, with cable-supported vaults has inspired many world-
renown architects and civil engineers. Enumerating their works, even the ones which became iconic,
lies outside the scope of the paper. Let us only mention the large-span roof covering of the Warsaw
commercial hall “Supersam” — built in 1962 and destroyed in 2006. It was one of the earliest such
realizations in Poland; its arch-and-cable roof had been designed under the supervision of Jerzy
Hryniewiecki and Wactaw Zalewski.

Frei Otto, the pioneer of modern lightweight architectural design greatly admired the freedom of
formation offered by cable systems and other tensile structures, see [7]. The word “tensile” is crucial
here, as these naturally flexible constructions have to be pre-tensioned to reach the required, load-
carrying functionality. To visualize it, consider a single cable of length L, anchored at two points
spanning the distance L, L < L,. When subjected to self-weight only, the cable takes the form of a
catenary, while with the additional force concentrated at any point along the span, the shape changes
into a two-segment polygonal chain. In short, the shape of a pre-tensioned construction is tightly
bonded with a load applied to it, and so understood freedom of formation is usually perceived as the
main advantage of tensile structures.

It is thus clear that cable systems, and tensile structures in general, achieve the load-carrying capabil-
ity only after the process of initial form-finding. From the mechanical point of view, this process can
be considered as a problem in statics. As cable systems are close siblings of trusses (cables, however,

can carry tensile forces only), let us refer to the equilibrium equation

(1.1) B'n=p

where:

B — matrix reflecting the geometry of a truss; n — vector of axial forces; and p — vector of node loads.

Typically, B and p are fixed and the goal is to determine n. The optimal form-finding problem calls
for a different answer. Loosely speaking, it requires determining B for fixed n and p, and by this it
falls into the category of topology optimization problems formulated for constructions that are en-
tirely in tension. Such constructions, along with those entirely in compression, are referred to as
“Prager-structures”, see [8], where this term was coined. These, in turn, fall into the broader context
of “Michell structures”, see [6] for the detailed discussion on both topics.

In this paper, we put forward a numerical procedure for designing pre-tensioned cable systems, which
are kinematically stable and whose weight is lowest possible. We emphasize that, unlike in typical

topology problems, our goal is not to optimize the structural layout against a particular applied load.
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Main contribution of the paper consists in setting the algebraic framework for optimal form-finding
problem. In the proposed approach, determining vectors belonging to the null-space of matrix B is of
central importance. This turns out to pose non-trivial numerical challenges, not discussed in the so-
far published research regarding optimal design of cable systems.

Our exposition follows the pattern which is well-established in the literature. First, we formulate the
variational problem of optimum form-finding, next we describe the corresponding iterative numerical
procedure, and finally we illustrate its application. In our study, we make use of the concept of force
densities suggested in [9] by putting forward an iterative numerical scheme, but we point out that
different computational algorithms, like e.g. the ground structure method, see [11], also seem capable
of tackling the optimum problem at hand, see Sec. 7 for more details.

Optimal designing of cable structures has long been a research topic. Early theoretical works, see e.g.
[4], [5], based on the concepts of differential geometry, were supplemented with computer-assisted
studies over the course of recent years. Among many issues posed in this framework, optimizing with
respect to steel profiles availability, see e.g. [1]; maximizing the stiffness of a net, [2]; or minimizing
the values of forces in cables, [10]; are of special interest in light of our study. Various optimization

problems and solution methods, including those based on force densities, are also discussed in [3].

2. THE OPTIMIZATION PROBLEM

Consider the following optimization problem:
Design a pre-tensioned cable system anchored at a rigid contour,
or a number of rigid posts, and having a minimum weight.

Let the system be composed of k cables forming a net of arbitrary mesh. Write m for the number of
anchored nodes of the mesh and m for the number of the remaining ones (free nodes). The location
of anchors is fixed in space; their Cartesian coordinates produce vectors X,y,Z € R™, while the posi-
tion of free nodes is not given up front; suppose that they produce vectors X,y,z € R™. Each cable in
the system consists of segments stretched between two nodes; in the sequel, we write s to denote the

total number of segments in a cable system. The total weight of a cable mesh is

2.1)
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where:
y > 0 —unit weight of cable material; Vs > 0 — volume of the S-th cable segment; Ag > 0 — cross-section area

of the S-th segment; Lg > 0 — length of the S-th element.

From (2.1), it is immediate that weight minimization and volume minimization problems coincide.
Therefore, in the remainder we focus on the latter.

Now fix g7 > 0 for the limit tensile stress in a single segment. Thus,

(22) NS = Aso-T )

stands for the limit axial force in the S-th cable segment and it is clear that Ng > 0 in the entire sys-
tem. Components of the vector n = (Ns) are statically admissible if the cable system is in equilibrium
under the action of the pre-tensioning forces applied at the anchored nodes of the contour. Since the

external load is absent, p = 0 in (1.1), and the equilibrium equation of the net reads

(2.3) B'Tn=0,

hence, the pre-tensioned net is in equilibrium if n lies in the null space of matrix B.

We suppose that net-stretching forces are large enough to eliminate the effect of sagging due to the
self-weight of cables. In other words, we tackle the case in which the values of axial forces in cables
induced by stretching the entire system by forces applied at the anchors are dominating over the forces
caused by the gravity load. Moreover, due to manufacturability constraints, it is reasonable to assume
that the cross-section of a single cable is constant along its length; to denote this, we fix Ag =
Ay, S =1,..,s inthe sequel. In light of (2.2), the tensile forces are also constant and the volume of

a cable net is now given by

where:

Ls = Ls(X,y,Z).
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Our conjecture is that the minimum volume, denoted by ¥ in the sequel, is attained if the cable net is
uniformly stretched to the limit tensile stress o7. In other words, we claim that forces in a cable system

of least weight are constant and given by Ng = Agor, S =1, ..., s, and thus
24 n = Ayor1,

where:

1 — vector of ones.

The optimization problem introduced at the beginning of this section reads

X,y,Z € R™,
B'1=0 '

(Py) ‘ 17=A0min{ z Ls(x,y,z)|
5=1,..,5

Justifying the conjecture in (2.4) is postponed to Section 4.
3. THE FORCE DENSITY NOTATION

Define the vectors of segment length projections at x-, y-, and z-axes of the fixed Cartesian system
h,=Cx+Cx, h,=Cy+Cy, h,=Cz+Cz.

Matrices C, C form the block matrix [C C], which is an incidence matrix of a cable net understood as

the directed graph with s edges (net segments) and m + m vertices (net nodes.) Free nodes are num-

bered from 1 to m and the anchored ones from m + 1 to m + m. Figure 1 shows a part of such a net.

Fig. 1. A part of the cable net. Boxed numbers pertain to anchored nodes;

circled numbers pertain to free nodes; plain numbers pertain to net segments.
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Assuming that the boxed numbers pertain to the anchored nodes and those circled to the free ones,
and that each segment in the net is directed from the node with the lower number towards the node

with the larger one, we get

cocoor oo
(@]
Il
mroooco©
orocoocoo

...... JSI‘OWS l cee eee ...JSI‘OWS
m columns m columns

for the part of a net shown in Fig. 1. Rows of matrices in (3.1) show the connections between nodes.
Here, “—1” corresponds to the beginning and “1” corresponds to the end of a given cable segment.
For example, first row corresponds to segment 1 linking node 1 (free) with node 2 (free), the sixth
one corresponds to segment 6 linking node 3 (free) with node m + 1 (anchored), etc.

Now, use the notation in which v = [v]] ,J =1,...,j, denotes a vector and V = [v;] is a correspond-

ing diagonal matrix of dimensions j X j. With this, the matrix of cable segment lengths is given by

1
(3.2) L=(H,oH,+H,oH,+H,0H,),

where:

[Tt}

o” symbol — the Hadamard product of matrices.

Namely, if A, B are matrices of equal dimensions then the components of C = A o B are calculated

through C;; = A} By;.
For further discussion, it is convenient to split (2.3) into x-, y-, and z-directions according to
(3.3) (C"H,L™Hn=0, (C'"HL)n=0, (C"H,LHn=0,

where:
matrix products in brackets represent matrices of direction cosines, i.e. the cosines of angles between segment

axes and coordinate axes.
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We also introduce the force density vector
q=L"n,
and we fix
D =cCTQC, D=cCTQC,
in (3.3), which allows for calculating the position of free nodes of the least weight cable net through
(3.4 x=-D"'Dx, y=-D'Dy, z=-D"'Dz.

4. JUSTIFYING THE UNIFORM STRETCH CONJECTURE

Now, we turn back to the uniform stretch conjecture from Section 2. To justify it, we first define the

functional

4.1 p(axy,z) =Tr(Qe L*(x,y,2),

where:

“Tr” — trace operator.
With (2.4) and (3.2) we get

4 =o074,1L71,
and thus

JO(QJ Xy, Z) = GTAOTr(L(XJ Yy, Z)) = O-TAO Z LS(XI y, Z) )

5=1,..,5

which shows that the functional in (4.1) attains the value of V for the uniform limit stretch in the
entire cable system. This, in turn, confirms the conjecture set in Section 2.

Hence, (Py) now reads
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q — arbitrary

and

X,y,Z € R™, where
X,y, Z satisfy (3.7).

A 1
(P) V = —min{ $(q,Xx,y,Z)
or

The optimization problem (P) serves as a basis for a numerical procedure put forward in Section 5.

5. NUMERICAL PROCEDURE FOR (P)

Formulae (3.4) determine the coordinates X, y, z, of free nodes in the cable net. Due to the fact that
the right hand sides of these formulae also depend on X, y, z, the optimization problem (P) is nonlin-
ear. We solve it through the iterative procedure generally described in [9]. Our purpose is to specify
this procedure in light of the minimum weight problem.

Let,

.1 g(q,x(q),y(q),z(q)) = 0,

stand for the nonlinear equation representing the general form of constraints imposed on the cable
system. Due to the assumed dependence of the free node coordinate vectors X, y, Z on the force density
vector q, in the sequel we write g = g(q) for short. For the description of the iteration process, as-
sume q,_, for the vector of force densities at the beginning of the n-th iteration step, n = 1,2, ..., and
qo for the initial forces densities.

Next, introduce

b=-g(qn-1),
and
_ds
dq 9=qn-1
Consequently,

(5.2) GAq=bh,
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where:

Aq — vector of increments of force densities.

Equation (5.2) allows for calculating the values of force densities at the end of the n-th iteration step

through

(53) Qn = Qn-1 +Aq.
The matrix G in (5.2) is calculated with the help of the chain rule, i.e.

(5.4)
dg 0g 0gox 0Jgdy 0g 0z

“dq aq xaq dyaq 0z9q"
Here, see [9]:

0x ady 0z
—=-D!'Cc"H,, —=-D'c’"H,, —=-D"'CTH,,
oq ¥’ 0q Y’ dq z

while calculating the gradients dg/dq, dg/0x,0g/dy,0g/0z , requires additional assumptions, so
that the numerical procedure suits the purpose of solving the minimum weight problem in (P).
These assumptions regard the construction of a contour bounding an optimized cable system. The
systems are categorized as:

i) “closed” if the entire contour is rigid;

i) “open” if the contour is made of cables stretched between rigid posts.
Boundary cables in open systems usually serve for supporting the net, and hence are often excluded

from the optimization process. To deal with such a case, we use (2.4) in rewriting (5.1) in the form

(5.5) g(q) = L'q" — 4071 =0,

expressing the optimality of forces in selected cable segments. Here we assume s* for the number of
the optimized segments and §* for the set containing their numbers. Consequently, §* € §, where
§ ={1,2,...,s} stands for the set of all segment numbers, and s* < s. Also, dim1* = dimq* =

dim1 = s"in (5.5).
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Next, we calculate

og
0z

dg . g

_— —_— — * *\—1 * Ok
3q ' 3% Q" (L))" *H;C".

0
= Q (L) THC, £ = Q (L) IH;C,
Since dim dg/dq = s* X s* and the dimensions of the remaining matrices in (5.4) are s* X s, then it

is necessary to define an extended matrix L by introducing the zero columns in L*. Indices of these

columns belong to the set § \ §*. Finally, (5.4) becomes
G=L"-Q (L) *(H;C'D*C"H, +H;C'D"'C"H, + H;C'D"*C" H,),

with dim G = s* X s. From s™ < s, it follows that the system of equations in (5.2) is underdeter-
mined; the sought components in Aq outnumbers the equations. Assuming that (5.2) is consistent in
the sense of the Kronecker-Capelli theorem, there is an infinitude of solutions determining Aq. For

calculating the “best fitting” solution, we use the formula
(5.6) Aq=G*'b, G* =GT(GG") !,

where:

G* — the Moore-Penrose inverse of matrix G.

Thus calculated Aq coincides with the Least Square Approximation of the solution to (5.2). Proving
this fact falls out of scope of this paper. Note that in case of a closed cable system, or in case of an
open one with all cable segments optimized, we have §* = §, thus Q* = Q, etc., hence Gt = G™1.
Reassuming, the n-th iteration step of the procedure for determining the optimal configuration of a
cable system consists in the following substeps:

1) determining the vector Aq of force density increments from (5.6);

2) updating the vector q of force densities through (5.3) and subtracting vector q* if necessary;

3) updating the vectors X, y, z of free node coordinates through (3.4);

4) updating the vector 1 of segment lengths through (3.3) and subtracting vector 1" if necessary;

5) checking the stop condition from (5.5).
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6. EXAMPLES OF OPTIMAL DESIGN

The following examples show an open cable net anchored at several points located at two parabolic

arches; the anchors are marked with stars in Fig. 2.

a) b)

Nmin=277.77 kN )
Nmax=430,10 kN |-20

Nmin=1089.26 kN
S Nmax=1336.81 kN 20

T c) -

Nmin=11172.84 kKN
“‘\ N Nmax=13180.03 kN [

Fig. 2. Optimum open cable nets with optimized inner element layout; forces in the inner net cables are equal
to 100 kN. Outer cables are excluded from the optimization process; their role is limited to supporting the
inner net. Forces in outer cables fall within the range (Nmin, Nmax).

Three configurations, with various force density values in outer cables were assumed. Table 1 shows
these values, as well as force density values taken as initial in the iteration procedure for inner cables.

The goal of (P) was to find X,y, z determining the net whose inner elements are uniformly stretched

by a force equal to 100 kN.

Table 1. Force density values for open cable nets in Fig. 2

Force density values in elements [kN/m] Sum of inner

Variant Outer (assumed) Inner (initial for (P)) elements lengths [m]
a) 35 35 687,43
b) 350 35 723,50
c) 3500 35 737,42
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Figure 2 shows optimal configurations with extremal forces in outer cables. The rightmost column in
Tab. 1 provides the summed up inner cable lengths for different force densities in outer cables. To-
gether with the increase of the stretching force in outer elements, the sum of inner cable lengths also

increases towards a value corresponding to a closed net, i.e. such whose all outer nodes are anchored.

7. DISCUSSION OF THE SOLUTION METHOD

The main result of this study is rather straightforward. It says that the pre-tensioned, minimum volume
cable net is also a minimum way net. In such a net, the sum of lengths of cable segments is minimal,
see (Py). This statement may seem trivial, but is not so due to the complexity of the computational
part of the optimization problem. Its variant denoted by (P) is nonlinear in the design variables and
as such requires an iterative solution procedure. Its robustness was shown in Section 6.

An alternative approach is to call the ground structure method, typically used in solving the topology
optimization problems for trusses. Loosely speaking, the method starts with fixing the B matrix con-
sisting of billions of rows, i.e. describing a “ground structure” consisting of billions of bars. The
topology of a ground structure, in particular the position of all nodes, is also fixed. Next, efficient
techniques of the Linear Programming are used to select optimal matrix B consisting of only those
rows from B, which determine the optimal, least volume truss. It is concluded in e.g. [11] that the
ground structure method is capable of solving the large-scale problems, also those formulated in three
dimensions.

Applying the ground structure method is possible in solving (Py). It requires the same procedure as
for the truss problem with one important handicap: the matrix B should have the 1 vector in its null
space. This, however, is not guaranteed up front for a general choice of the ground structure. There-
fore, fulfilling BT1 = 0 in (P,) needs a special subroutine providing the “best fit” approximation to

this constraint.
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plain numbers pertain to net segments.

Fig. 2. Optimum open cable nets with optimized inner element layout; forces in the inner net cables are equal
to 100 kN. Outer cables are excluded from the optimization process; their role is limited to supporting the inner
net. Forces in outer cables fall within the range (Nmin, Nmax).

Tab. 1. Force density values for open cable nets in Fig. 2.
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Rys. 1. Fragment siatki ciggnowej. Liczby umieszczone wewnatrz prostokatow oznaczaja wezly nieprze-
suwne; liczby umieszczone wewnatrz okregdw oznaczaja wezty wolne; pozostate liczby oznaczaja segmenty
siatki.

Rys. 2. Optymalne otwarte siatki ciggnowe z optymalnie rozmieszczonymi elementami wewngtrznymi; sity w
ciggnach siatki wewnetrznej wynosza 100 kN. Ciggna zewngtrzne nie podlegaja optymalizacji; ich rola spro-
wadza si¢ do utrzymania siatki wewngtrznej. Sity w ciggnach zewngtrznych przybieraja wartosci z zakresu
(Nmin, Nmax).
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Keywords: cable systems, optimal form-finding, minimum weight, force density method

SUMMARY:

This paper regards designing pre-tensioned cable systems, with a goal to make them kinematically stable and such that
the weight of so designed system is lowest possible. Unlike in typical topology optimization problems, our goal is not to
optimize the structural layout against a particular applied load. However, our method is similar. First, we formulate the
variational problem of form-finding and next we describe the corresponding iterative numerical procedure for determining
the optimum location of nodes of the cable system mesh.

From the mechanical point of view, the process of form-finding can be considered as a problem in statics. As cable
systems are close siblings of trusses (cables, however, can carry tensile forces only), let us refer to the equilibrium equa-
tion BTn = p, where: B denotes the matrix reflecting the geometry of a truss; n stands for the vector of axial forces; and
p is a vector of node loads. Typically, B and p are fixed and the goal is to determine n. The optimal form-finding problem
calls for a different answer. Loosely speaking, it requires determining B for fixed n and p, and by this it falls into the
category of topology optimization problems formulated for constructions that are entirely in tension. Such constructions,
along with those entirely in compression, are referred to as “Prager-structures”. These, in turn, fall into the broader context
of “Michell structures”.

In our study, we suppose that net-stretching forces are large enough to eliminate the effect of sagging due to the self-
weight of cables. In other words, we tackle the case in which the values of axial forces in cables induced by stretching
the entire system by forces applied at the anchors are dominating over the forces caused by the gravity load. Moreover,
due to manufacturability constraints, it is reasonable to assume that a single cable has a constant cross-section 4, along
its length. Our conjecture is that the minimum volume of a cable net is attained if the entire system is uniformly stretched
to the limit tensile stress o. In other words, we claim that forces in a cable system of least weight are constant and given
by Ng = Agor, S =1,...,s, where s denotes the number of segments.

In the search for solution to thus posed optimization problem, we make use of the concept of force density which is a ratio
of an axial force in cable segment to its length. Namely, we set g¢ = Ng/Lg for the force density in the S-th segment and
q € R for the vector of force densities. Assuming that the designed, pre-tensioned cable system is anchored at a rigid
contour, or a number of rigid posts, we write m for the number of these anchored nodes and m for the number of the
remaining nodes (free nodes) in the cable mesh. The location of anchors is fixed in space; their Cartesian coordinates
produce vectors X, ¥,Z € R™, while the position of free nodes is not given up front; suppose that they produce vectors

X,y,Z € R™. Reassuming, vectors q,X,y, Z are the design variables in the following optimization problem:

q — arbitrary

and

X,y¥,Z € R™, where

X,y, Z determine the equilibrium configuration of a cable system.

o1
P) V =—min{ $(q,xy,2)
ar

The functional g in (P) can be expressed in the form

pa.xyz) = Z qsli(xy,2) .

5=1,...s
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The numerical procedure for (P) is iterative due to the nonlinear dependence of % on the design variables. It requires
repetitive solutions of the linear equation for force density increments Aq and subsequent updating of the free node posi-
tion vectors X, y, Z. The scheme of the iteration step of the procedure for determining the optimal configuration of a cable
system consists in the following substeps:
1) determining the vector Aq of force density increments;
2
3
4
5

-

updating the vector q of force densities;

=

updating the vectors X, y, z of free node coordinates;

=

updating the vector 1 of segment lengths;

checking the stop condition from the constraint L'q* — Ayo,1 = 0, where L* = diag [ 17|, expressing the equality

=

of forces in selected cable segments. Here we assume s* for the number of the optimized segments, and hence
diml" = dimq" = dim1 = s".
Since the number of optimized segments is such that s* < s, it follows that the system of equations for the force density
increments Aq is underdetermined; the sought components in Aq outnumbers the equations. Assuming that this system is
consistent in the sense of the Kronecker-Capelli theorem, there is an infinitude of solutions determining Aq. For calculat-
ing the “best fitting” solution, we use the Moore-Penrose generalized inverse for rectangular matrices. Thus calculated

Aq coincides with the Least Square Approximation of the solution to the underdetermined system of equations.

Received: 16.02.2020 Revised: 04.07.2020
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OPTYMALNE KSZTALTOWANIE KONSTRUKCJI CIEGNOWYCH

Stowa kluczowe: konstrukcje ciggnowe, optymalne ksztaltowanie, minimum cigzaru, metoda gestosci sit

STRESZCZENIE:

W artykule rozwazane sa zagadnienia zwigzane z projektowaniem wstgpnie napigtych konstrukcji ciggnowych. Gléwnym
celem jest znalezienie konfiguracji kinematycznie niezmiennej o minimalnym cigzarze. W odréznieniu od typowych za-
gadnien optymalizacji topologicznej celem zadania nie jest optymalizacja konstrukcji pod dziataniem konkretnego ob-
cigzenia, chociaz zastosowana metoda rozwigzania jest podobna. Na poczatku formutlujemy problem wariacyjny poszu-
kiwania ksztattu konstrukcji, a nastgpnie przedstawiamy numeryczna procedurg iteracyjna stuzaca do znajdowania opty-
malnego potozenia weztow siatki ciggnowe;j.

Z punktu widzenia mechaniki proces poszukiwania ksztattu moze by¢ rozpatrywany jako problem statyki. Siatki cig-
gnowe sg pokrewne kratownicom (w kazdym ciggnie wystepuje tylko sita osiowa), wigc rozwazania mozna oprze¢ na
réwnaniu réwnowagi BTn = p, gdzie: B jest macierza odzwierciedlajaca geometrie kratownicy; n jest wektorem sit osio-
wych; p jest wektorem zewngtrznych sit weztlowych. W typowym zadaniu B i p s3 znane, a poszukiwany jest wektor n.
W zadaniu optymalnego ksztattu siatki nalezy odpowiedzie¢ na inne pytanie. W uproszczeniu mozna powiedzieé, ze
poszukuje si¢ macierzy B przy zatozonych wektorach n i p, a zatem jest to zadanie z kategorii optymalizacji topologicznej
sformutowane dla konstrukcji poddanej jedynie rozciaganiu. Tego typu konstrukcje, wraz z uktadami poddanymi jedynie
$ciskaniu, tworza grup¢ tzw. konstrukcji Pragera, ktére mozna zaliczy¢ do szerszej kategorii konstrukcji Michella.

W naszych rozwazaniach zaktadamy, ze sity rozciagajace ciggna sa na tyle duze, ze eliminujg efekt luznego zwisu pod
cigzarem wlasnym. Zajmujemy si¢ zatem przypadkiem, w ktorym osiowe sity wywotane przez wstgpne sprezenie kon-
strukcji dominujg nad sitami grawitacji. Co wigcej, uwzgledniajac ograniczenia techniczne zwiazane z produkcja lin sta-
lowych, zaktada si¢ staty przekrdj A, na dtugosci ciggna. Nasze rozwazania opierajg si¢ na przypuszczeniu, ze siatka o
minimalnej objetosci materiatu jest rownomiernie napigta do wartosci granicznej napre¢zen or. Inaczej mowiac, zaktada
sig, ze sity w siatce ciggnowej o minimalnym cigzarze sg state i rowne: Ny = Agop, S =1, ..., s, gdzie s oznacza liczbg
elementow siatki.

Poszukujac rozwigzania tak postawionego zadania optymalizacji, korzystamy z pojecia gestosci sit czyli stosunku sity w
elemencie do jego dtugosci. Gesto$¢ sity w elemencie o numerze S definiuje si¢ jako: g5 = Ng/Lg, a zatem wektor ggsto-
$ci sit q € R®. Zakladajac, ze projektowana, wstgpnie napigta siatka ciggnowa jest zamocowana na obwodzie do sztyw-
nego elementu lub punktowo w wybranych weztach, mozna przyjaé¢ oznaczenia: i dla liczby weztow zamocowanych
oraz m dla liczby pozostatych (wolnych) weztow siatki. Potozenie zakotwionych weztow jest ustalone i opisane wekto-
rami wspotrzednych kartezjanskich X, ¥, Z € R™, natomiast wektory wspohrzednych weztéw wolnych s poszukiwane i

oznaczone jako: X,y,z € R™. Podsumowujac, wektory ,X,y, z sa zmiennymi projektowymi w nast¢gpujacym zadaniu

optymalizacji:
q — dowolne
1 oraz
P) V= U—Tmm #»(q,x,y,2) X,y,2 € R™, gdzie

X, y, z okres$laja potozenie rownowagi konstrukcji cieggnowe;j.

Funkcjonat ¢ w zadaniu (P) mozna zapisa¢ w formie:
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paxyz)= Z gsLi(x,y,2) .

S=1,..5

Ze wzgledu na nieliniowg zaleznosé¢ funkcjonatu o od zmiennych projektowych, rozwiazanie zadania (P) wymaga za-
stosowania iteracyjnej procedury numerycznej. W kazdej iteracji nalezy rozwiaza¢ liniowe rownanie na przyrost wektora
gestosci sit Aq oraz znalez¢ aktualne wektory potozenia weztéw wolnych Xx,y, z. Algorytm postgpowania w kazdym
kroku procedury znajdowania optymalnego ksztattu siatki ciggnowej sktada si¢ z nast¢pujacych punktow:

1) znalezienie wektora przyrostow gestosci sit Aq;

2) znalezienie aktualnego wektora gestoscei sit q;

3) wyznaczenie aktualnych wektorow wspotrzgdnych weztéw wolnych x,y, z;

4) obliczenie aktualnych dtugosci elementéw zebranych w wektorze 1;

5) sprawdzenie warunku stopu wynikajacego z narzucenia réwnych wartosci sit w wybranych elementach siatki:
L'q" — Ayor1l = 0, gdzie L* = diag [1"]. Zalozono, ze s* jest liczbg elementéw wiaczonych w proces optymali-
zacji, a zatem: dim1* = dimq* = dim1 = s™.

Poniewaz liczba elementéw wiaczonych do procesu optymalizacji spetnia warunek s* < s, uktad rownan na przyrosty
gestosci sit Aq moze by¢ niedookreslony, co oznacza, ze liczba poszukiwanych sktadnikow wektora Aq jest wigksza niz
liczba rownan. Przy zatozeniu niesprzeczno$ci uktadu rownan w rozumieniu twierdzenia Kroneckera-Capellego, istnieje
nieskonczenie wiele rozwigzan Aq. W celu znalezienia rozwigzania ,,najlepiej dopasowanego” mozna zastosowac opera-
cj¢ uogdlnionego odwracania macierzy Moore’a-Penrose’a, ktora ma zastosowanie w przypadku macierzy prostokatnych.
Znaleziony w ten sposob wektor Aq odpowiada rozwigzaniu niedookreslonego uktadu réwnan uzyskanemu Metoda Naj-

mniejszych Kwadratow.
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