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The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear 

programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial 

prestressing forces introduced into the specified redundant members of the structure. The system of constraints 

covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the 

design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar 

system, subjected to all design load combinations at serviceability limit state. The method of the objective function 

gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has 

been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of 

the redundant members to introduce the initial prestressing forces has been offered for high-order statically 

indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing 

forces for considered optimization problems.
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1. INTRODUCTION

The concept of prestressing steel structures is only recently being re-considered, despite a long and 

successful history of prestressing concrete members. In spite of having many advantages over 
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prestressed concrete, prestressed steel has not been popular due to the complexity and ambiguity 

involved in analysis and design calculations, as well as problems arising due to the application of 

external prestressing technique and fabrication [13].

Early work on the prestressing of steel structures was described by Magnel [12] in 1950, where it is 

shown experimentally that an improved retrenchment can be achieved by prestressing truss girders. 

More recent studies have explored the behavior and design of  the prestressed steel beams [5], flooring 

systems [6], columns [20, 23], trusses [1, 9] and space trusses [21, 22]. Studies of the structural 

response of sub-assemblies and the overall response of prestressed frames with sliding joints have been 

also carried out [2] with further numerical investigation into the stress-erection process of such systems 

[11]. Each of the studies described above identifies the potential economies and enhanced performance 

through the use of prestressing [13].

A number of research works were dedicated to the optimization of prestressed bar structures. Applied 

optimum design problems for the prestressed bar structures are usually formulated as parametric 

optimization problems, namely searching problems for unknown structural parameters, which provide 

an extreme value of the specified purpose function in the feasible region, defined by the specified 

constraints. For this purpose, research papers [7, 14, 25, 27] used mathematical programming methods, 

where an optimal design is divided into several stages. At each stage, a search is completed after 

varying values of a specific group of parameters. Introduction of such stage-by-stage procedures in 

numerous cases may distort the conditions of optimization tasks.

Prestressing of a statically indeterminate bar system can be created by introducing the initial 

prestressing forces into the redundant members of a structural system. The number of initial 

prestressing forces introduced into the bar system can be less or equal to the degree of static 

indeterminacy of the bar system or the number of the redundant members.

Optimum distribution of the internal forces and material in the bar structure, corresponding to the least 

structural weight, can be achieved by introducing the initial prestressing forces into all the redundant 

members of a bar system. However, economical efficiency caused by the regulation of internal forces 

should be estimated by taking into account additional costs, required to create prestressing in the 

structural system. The fewer the redundant members in the prestressing process of the structure 

subjected to the initial deformations, the lower the costs associated with creating prestressing.

Complex high-order statically indeterminate bar systems with a great amount of the redundant 

members have lots of prestressing variants for them. For such structures, the numerical techniques have 

been offered to determine an optimal prestressing, which requires a great amount of the calculations 

related to solving the optimization problems for each prestressing variant or related to the high 
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dimension of the design variable vector for unknown initial prestressing forces. In this paper, a

prestressed high-order statically indeterminate bar structure is considered as a research object. This 

object is being investigated to find an optimal number of the redundant members to introduce initial 

prestressing forces.

Although many papers are published on the parametric optimization of the prestressed bar structures, 

the development of a numerical technique to determine an optimal number of the redundant members 

to introduce the initial prestressing forces for high-order statically indeterminate bar structures remains 

an actual task. Therefore, the main research goal is the development of numerical algorithm to solve 

parametric optimization problems of the prestressed bar structures with the searching for the optimal 

number of the redundant members to introduce initial prestressing forces. The following research task

is stated accordingly: to suggest a numerical technique of determination an optimal number of the 

redundant members to introduce the initial prestressing forces.

2. FORMULATION OF PARAMETRIC OPTIMIZATION 

PROBLEMS

Let a parametric optimization problem of a structure consisting of the bar members be considered,

which can be formulated as presented below: to find optimum values for bar’s cross-section sizes and 

initial prestressing forces, introduced into the specified redundant members of a bar system, which 

provide the extreme value of the determined optimality criterion and satisfy all the load-bearing 

capacities and stiffness requirements. We assume that the structural topology, cross-section types, node 

type connections of the bars, the support conditions of the bar system, as well as loading patterns and 

load design values are predefined and constant. The formulated optimum material and internal forces 

distribution problem can be stated as a non-linear programming task in the following mathematical 

terms: to find the unknown cross-sectional sizes and unknown initial prestressing forces:

(2.1) � � � � � �� �, ,, ,
TT

CS PS CS PSX X X X X� �� �� � ��T
X�X X X� � � , ,1, X CSN� � , ,1, X PSN� � ,

providing the least value of the determined objective function:

(2.2) � � � �* *

  
min

X
f f X f X

	

� � �

X
fmin

X 

� � �* f X� �* i
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in the feasible region (search space) 
 defined by the following system of constraints:

(2.3) � � � �� �0 | 1, CX X N�� �� 
 �φ � � �� 0 | 1X X� � 1� � � 0 |X� � 0 |

where XX – vector of the design variables; CSXX and PSXX – vectors of unknown cross-sectional sizes and 

unknown initial prestressing forces, accordingly; ,  f �� – continuous functions of the vector argument; *X *X –

optimum solution (the vector of optimum values of the structural parameters); *f – optimum value of the 

objective function; CN – number of constraints � �X�� �X , which define a feasible region in the design space 
 ;

,X CSN – total number of unknown cross-sectional sizes of the structural members; ,X PSN – total number of 

unknown initial prestressing forces, introduced into the specified redundant members of the bar system.

In cases when vector of the design variables XX consists of unknown cross-sectional sizes CSXX only,

then the optimum material distribution problem for the bar system is under consideration. 

The specific technical-and-economic index (material weight, material cost, construction cost, etc.) or 

another determined indicator can be considered as the objective function Eq. (2.2), taking into 

consideration the ability to formulate it analytical expression as a function of design variables XX .

Load-bearing capacity constraints (strength and stability inequalities) for all design sections of the 

structural members, subjected to all ultimate load combinations, as well as displacement constraints 

(stiffness inequalities) for the specified nodes of a bar system, subjected to all serviceability load 

combinations, should be included into the system of constraints Eq. (2.3). Additional requirements 

which describe structural, technological, and serviceability particularities of the building structure 

under consideration can be also included into the system of constraints.

Design internal forces in the bar structural members(components) used in strength and stability 

inequalities of the system Eq. (2.3) are considered as state variables depending on design variables XX

and can be calculated from the following linear equation system of the finite element method:

(2.4) � � � �, ,CS ULS k ULS k PSX z p X� �K � �X � X��X�pz p , 1, LCk N� ;

where � �CSXK �X – stiffness matrix of the finite element model of a bar system, which should be formed 

depending on the unknown (variable) cross-sectional sizes of the structural members CSXX ; � �,ULS k PSp X ��p X�X –

column-vector of the node’s loads for k th ultimate design load combination, which should be formed depending 

on the unknown (variable) initial prestressing forces PSXX ; ,ULS kzz – result column-vector of the node 
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displacements for k th ultimate design load combination; LCN – the number of ultimate load combinations. 

The design internal forces (axial force, bending moments and shear forces) can be calculated depending 

on the node displacement column-vector ,ULS kzz for each i th, the design section of j th bar finite element 

of the structure subjected to k th ultimate design load combination.

Node displacements of a bar system used in stiffness inequalities of the system Eq. (2.3) are also 

considered as state variables depending on design variables XX and can be calculated from the 

following linear equation system of the finite element method:

(2.5) � � � �, ,CS SLS k SLS k PSX z p X� �K � �X � X��X�pz p ;

where � �,SLS k PSp X ��p X�X – column-vector of the node’s loads for k th design load combination of the serviceability 

limit state, which should be formed depending on unknown (variable) initial prestressing forces PSXX ; ,SLS kzz –

result column-vector of the node displacements for k th design load combination of the serviceability limit state. 

The design vertical and horizontal displacements can be calculated depending on a node displacement 

column-vector ,SLS kzz for each m th node of the finite element model subjected to k th serviceability 

design load combination.

The parametric optimization problem stated by Eqs. (2.1) – (2.3) can be successfully solved using 

gradient projection nonlinear methods [17, 26] in cases when the purpose function and constraints of 

the mathematical model are continuously differentiable functions, as well as the search space is smooth 

[10, 19]. The method of objective function gradient projection onto the active constraints surface with 

simultaneous correction of the constraints violations [8] ensures an effective search for the optimum 

solution [15]. Additionally, a sensitivity analysis is a useful optional feature [24] that could be used in 

the scope of numerical algorithms which are developed based on the gradient methods.

3. A METHOD TO DETERMINE OPTIMAL PRESTRESSING 

VARIANT OF THE BAR STRUCTURE

A certain � th prestressing variant �V of a bar structure can be definitely described by a set of 

redundant members � � ,, , 1, RMr N �� � � �� �r , and by the value of the initial prestressing force ,PSX �
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introduced into these members, � � � �� � ,, , ,, , ,  1, RMPS PSX r X N �� � � � � � �� � �V r , here ,RMN � is the number 

of redundant members for � th prestressing variant �V .

The set of the prestressing variants is � � � �,, PSX� � �� �Β V r , ,1, X PSN� � . The number of initial 

prestressing forces introduced into the bar system can be less or equal to the degree of static 

indeterminacy of a bar system DSIN , namely 
,

,
1

X PSN

RM DSIN N�
� �


� . The design variables vector � �,PS PSX X ���X X�

of the unknown (variable) initial prestressing forces for the considered bar system is formed according 

to set � ���Β V of the prestressing variants. An optimal prestressing variant for the considered 

structure can be defined as a combination of some prestressing variants � �V B and presented as subset 

�Θ B , � �|� �� 	Θ V V B , ,1, X PSN� � X PSNX , , ,X PS X PSN N
 XN NX PS X .

In the beginning set Θ representing the optimal prestressing variants is ��Θ , vector of the initial 

prestressing forces is PSX ��X � . At each iteration of the proposed algorithm, one of the prestressing 

variants � 	V B is included into the set Θ , and the optimum material and internal forces distribution 

problem Eqs. (2.1) – (2.3) in the bar system should be solved.

Let the following function be introduced to the further consideration Eq. (3.1), where it estimates both 

under-stressing and overstressing in the term of normal stresses for all the structural members:

(3.1) � �� �2

max, ,
1 1 1

LC DSBN NN

x j x ijk
k j i

X� � �
� � �

� ����S ��2
X ;

where � �,x ijk X� �X – design value of the local longitudinal stress due to the bending moments and the axial force 

calculated in i th design section for j th structural member subjected to k th load case combination depending on 

design variables XX ; DSN – number of design sections in structural members; NB – number of the structural 

members; max,x j� – allowable stresses.

An order of the consecutive including the prestressing variants 

� � � �� � ,, , ,, , ,  1, RMPS PSX r X N �� � � � � � �� � �V r , from set Β into set Θ can be defined by values of the 

components of the gradient vector for function �S Eq. (3.1) with respect to the variable prestressing 

parameters PSXX . Prestressing variant � � � �� � ,, , ,, , ,  1, RM mm m PS m m PS mX r X N� �� � 	 �V r Β , with maximum 
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value of the gradient of the function �S Eq. (3.1) related to the number of redundant members ,RM mN

should be primarily included into set Θ . Consecutive including of the prestressing variants from set Β

of the predefined prestressing variants into set Θ representing the optimal prestressing variants should 

be performed until the regulation of an internal forces in the structure under consideration, leads to the 

desired decrement of the objective function.

Let the following algorithm be presented to find the optimal number of the redundant members for 

introducing initial prestressing forces into the redundant members of the bar structures.

Step 0. 0n � is the number of optimization problems solved. The optimal number of the redundant 

members to introduce the initial prestressing forces for considered bar system is 0RMN � . The degree 

of static indeterminacy of the bar system is DSIN .

Step 1. A searching problem for optimum cross-section sizes of the considered structure without initial 

prestressing forces in the redundant members is formulated and solved in the space of the unknown 

cross-sectional sizes CSXX only. As a result, those optimum cross-section sizes *
,CS nX *X of the structural 

members, which provide the least value *
nf of the objective function Eq. (2.2) and satisfy the system of 

constraints Eq. (2.3), are defined. 1n n� � .

Step 2. The set of the prestressing variants � � � �,, PSX� � �� �Β V r , ,1, X PSN� � , of the bar system is 

predefined by a designer. The number of redundant members ,RMN � for each predefined prestressing 

variant � � � �� � ,, , ,, , ,  1, RMPS PSX r X N �� � � � � � �� � �V r should not exceed the degree of the static 

indeterminacy of the bar system DSIN , ,RM DSIN N� 
 . Auxiliary vector � �, ,|PS PS PSY X X� � �� 	V�Y X� of the 

unknown initial prestressing forces is formed according to set Β . Initial zero value for each component 

,PSX � of vector PSYY should be assigned.

Step 3. Set of the optimal prestressing variants is ��Θ . Vector of the design variables corresponding

to initial prestressing forces is ,PS nX ��X � .

Step 4. Vector for the gradient of function �S Eq. (3.1) is calculated for all variable prestressing 

parameters (unknown initial prestressing forces) PSYY :

(3.2)
,PSX

�
�

�

� ��� �� � � �
�� � !

SS , , ,  1,PS PS X PSX Y N� �" 	 �11� .

Step 5. Whichever prestressing variant � � � �� � ,, , ,, , ,  1, RM mm m PS m m PS mX r X N� �� � 	 �V r Β that meets the 

following criteria, should be included into the further consideration:
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(3.3)
, ,

1 max
RM m PS mN X

��
# $
�

S , ,RM m DSIN N
 ;

where ,RM mN – number of redundant members where initial prestressing force ,PS mX is introduced. 

If there are no prestressing variants with the number of redundant members ,PS mX less than the number 

DSIN of static indeterminacy degree, then move to step 10 should be executed.

Step 6. Unknown initial prestressing force ,PS mX , corresponding to prestressing variant mV , should be 

added to the design variable vector ,PS nXX , � �, , ,PS n PS n PS mX X X� ��X X X� .

Step 7. The optimum material and internal forces problem Eqs. (2.1) – (2.3) is formulated and solved in 

the space of the unknown cross-sectional sizes and unknown initial prestressing forces. Those optimum 

values for cross-sectional sizes *
,CS nX *X and for initial prestressing forces *

.PS nX *X are defined 

� �* * *
, ,,

T

n CS n PS nX X X�� �* * *� T
X * **� , which satisfy the system of constraints Eq. (2.3), and provide the least value of the 

objective function *
nf Eq. (2.2). 1n n� � .

Step 8. If * * *
2 1 1n n nf f f%� � �� & , where 1.05% ' is the desired decrement of the objective function value, 

caused by introducing initial prestressing force ,PS mX in the redundant members mr of the m th

prestressing variant � � � �� � ,, , ,, , ,  1, RM mm m PS m m PS mX r X N� �� � �V r , then m� �Θ Θ V , � �,PS PS PS mY Y X� ��Y Y X� .

The optimal number of the redundant members to introduce the initial prestressing forces into the 

considered bar system is increased, as ,RM RM RM mN N N� � . The degree of static indeterminacy of the 

bar system is decreased, as ,DSI DSI RM mN N N� � . Move to step 4 should be performed. Otherwise, when 

* * *
2 1 1n n nf f f%� � �� ( , then move to step 9 should be executed.

Step 9. Introducing the initial prestressing force ,PS mX into the mr redundant members of the bar system 

is not effective. Returning to the previous optimum solution should be executed, * *
1n nX X ��* *X * , * *

1n nf f �� .

The number of optimization problems solved, should be decremented. 1n n� � .

Step 10. Optimal number of the redundant members to introduce the initial prestressing forces into the 

considered bar system is RMN . Number of optimization problems solved is n . Optimum material and 

internal forces distribution corresponds to the design variables vector *
nX *X and objective function *

nf .
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4. NUMERICAL EXAMPLE

The efficiency of the proposed 

numerical algorithm is 

presented to define the optimal 

number of the redundant 

members for introducing initial 

prestressing forces into the bar 

system, considering parametric 

optimization of a cross-beam 

structure (see Fig. 1).
Fig. 1. Design scheme of the cross beam structure with node and bar 

numbers

The cross-beam structure is subjected to the distributed dead load with characteristic value 5.669 kN/m

and distributed live load with characteristic value 243.189 kN/m. Applied loadings on the considered 

cross-beam structure are transmitted using mezzanine beams arranged with step 1m.

For considered cross-beam structure, steel grade S275 according to EN 10025-2 is used with the 

following material properties: yield strength fy = 275 N/mm2, modulus of elasticity E = 210000 N/mm2,

Poisson's ratio in elastic stage v = 0.3 and unit weight γ = 7800 kg/m3. For all structural members 

welded I-beam cross-section type is used. Throat thickness for all beam flange to beam web welded 

connection is 4wa � mm.

Sufficient shear buckling resistance for all beam webs has been assumed ensuring by intermediate 

transverse and longitudinal stiffeners arranged according to EN 1993-1-5 requirements [4]. Class 3 for 

all cross-sections of the beam structural members is also assumed for considered cross-beam structure. 

Cross-section sizes for all beams have been assigned as the same, in order to have load-carrying 

capacity reserves in the structure, which can be further utilized by prestressing. In practice, such 

bearing capacity reserves may exist due to requirements of unification, restrictions on the assortment 

range of rolled steel profiles, etc. It should be noted that there is no need for prestressing, in cases when 

tapered structural members are used for considered cross-beam structure. 

According to item 1 of the algorithm presented above, the optimum material distribution problem is 

solved for specified initial data. Cross-sectional sizes of the cross-beam structure were considered as 

design variables � �,  ,  ,  
T

CS w w f fX h t b t� �X h� , where hw is the beam web height, tw is the beam web thickness, 

bf is the beam flange width, tf is the beam flange thickness. The material weight G was considered as 

the objective function Eq. (2.2):
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(4.1) � � � �2 minCS w w f fG X h t b t L)� � $� �X h� � ;

where L is the overall length of all beams in the structure, 144L � m.

Load-carrying capacity constraints (strength and stability inequalities) for all design sections of the 

structural members, subjected to the ultimate design load combination, have been included into the 

system of constraints. The following strength constraints have been considered, formulated for all 

design sections 1, DSi N" � of all structural members 1, Bj N" � according to requirements [3]:

(4.2)
� � � �� �

� �
max, 0 , 0

,

2
1 1 0

2
ijk M Ed ijk w f M

y yy j CS

X M X h t

f fI X

� ) )�
� � � 


� � �� �X M X h� � �� 2

���
��w f�� )� �

�
�

;

(4.3)
� � � � � �

� �
max, 0 , , 0

,

3 31 1 0ijk M Ed ijk y j CS M

y yw y j CS

X Q X S X

f ft I X

* ) )
� � � 


� � � � �X Q X S X� � � �3 �
��

�j CS�, �, j �,

�
)� �

�
�, ;

(4.4) � � � � � �
� �

� � � �
� �

2 2

, ,2 20 0
, ,

, ,

3 1 3 1 0
2 2

Ed ijk w Ed ijk f f w fM M
Ed ijk Ed ijk

y y y j CS w y j CS

M X h Q X b t h t
X X

f f I X t I X
) )

� *
+ , + ,�
- . - .� � � � � 

- . - .
/ 0 / 0

2 2
, + ,� � � � �

2 � � � �X h Q X b h� � � �
00)� � �2� � �2� � �2� � �2� �2 1 0.

��ijk f f w f� � �,� � � �,� w Ed ijk f f w f� � � �,�
133

� � � � �
33

� � � �,�
. - .� � �

33
� � �2� I X�2�

3
� � �

333
� � �

.

where � �,Ed ijkM X �X and � �,Ed ijkQ X �X – bending moment and shear force acting in i th design section of j th

structural member subjected to the ultimate load case combination, 1k � , calculated from the linear equations 

system of the finite element method Eq. (2.4), depending on unknown initial prestressing forces PSXX and 

unknown cross-sectional sizes CSXX of the structural members; 0M) – partial factor, 0 1M) � ; � �,y j CSS X �X and 

� �,y j CSI X �X – first moment of the half of cross-sectional area and the second moment of inertia, are accordingly 

calculated depending on unknown cross-sectional sizes CSXX of the j th structural members.

The following lateral-torsional buckling constraints have been also considered, formulated for all 

design sections 1, DSi N" � of all structural members 1, Bj N" � according to requirements [3]:

(4.5)
� �� �
� � � �

, 1

, ,

2
1 0

2
Ed ijk w f M

yLT j CS y j CS

M X h t

fX I X
)

1

�
� 


��X h�� 2�� �
� � �

1 1w f�� M

fX I X� �
)

�1 ;
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where 1M) – partial factor, 0 1M) � ; � �,LT j CSX1 �X – the reduction factor for lateral-torsional buckling calculated 

depending on the elastic critical moment for lateral-torsional buckling. The latter has been determined based on 

the cross sectional properties depending on the variable cross section sizes CSXX and takes into account the 

distance between lateral restraints equals to 1m.

The following constraints, which reflect maximum width-to-thickness ratios for compression parts for 

beam webs (internal compression parts) and beam flanges (outstand compression parts), formulated as 

for the 3rd cross-section class, according to EN 1993-1-1 [3], have been also included into the system of 

constraints: 

(4.6) 2 1 0
124 235

yw w

w

fh a
t

�
� 
 ;

(4.7)
2

1 0
28 235

f w w y

f

b t a f
t

� �
� 
 .

The following vertical displacement constraints for specified (all internal) nodes of the cross-beam 

structure have been also included into the system of constraints: 

(4.8)
� �,

max,

1 0z lk

z l

X�

�
� 


�X
;

where � �,z lk X� �X is the vertical displacements of l th structural node subjected to k th serviceability load case 

combination, calculated from the linear equations system of the finite element method Eq. (2.5), max,z l� is the 

allowable vertical displacement for l th structural node, max, 80z l� � mm.

The dimensions of the considered optimum material distribution problem were 4 design variables and 

377 constraints. In order to realize the formulated optimization problem Eqs. (4.1) – (4.8), software 

OptCAD intended to solve parametric optimization problems for steel structural systems [16, 18] has 

been used. The following continuous optimum cross-sectional sizes *
CSX *X for all beams has been 

obtained: hw = 2055.60 mm, tw = 17.93 mm, bf = 703.14 mm, tf = 26.47 mm, corresponded to the 

material weight G* = 83212.0 kg of the cross-beam structure for the case when the number of 

redundant members to introduce initial prestressing forces equals to zero, NRM = 0. Then the continuous 
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optimum cross-sectional sizes have been discretized and the following discrete optimum cross-

sectional sizes *
CSX *X for all beams has been received: hw = 2050 mm, tw = 18 mm, bf = 670 mm, 

tf = 28 mm, corresponded to the material weight G* = 83588.5 kg of the cross-beam structure.

1st prestressing variant

a

2nd prestressing variant

b

3rd prestressing variant

c

4th prestressing variant

d

5th prestressing variant

e

6th prestressing variant

f

Fig. 2. Prestressing variants for the cross-beam structure by: a – d – lowering external supports; e – f – vertical 

shifting of the beams relative to each other at their mutual intersections

The set of prestressing variants for the considered cross-beam structure 

� � � �, ,, ,  1,PS X PSX N� � � �� � �Β V r , , 6X PSN � has been predefined (see Fig. 2) , according to item 2 of the 

algorithm presented above. The corresponding auxiliary vector � �, , ,| ,  1,PS PS PS X PSY X X N� � � �� 	 �V�Y X� of

the unknown initial prestressing forces with initial zero values for all components ,PSX � was formed.

According to item 3, vector for the gradient of function �S Eq. (3.1) has been calculated for all variable 

prestressing parameters (unknown initial prestressing forces) PSYY when variable cross-section 

parameters CSXX of the cross-beam structure were fixed at the level of *
CSX *X (see Table 1). An order of 

the consecutive inclusion of the prestressing variants � � � �� � ,, , ,, , ,  1, RM mm m PS m m PS mX r X N� �� � �V r from 

set Β of the predefined prestressing variants into set Θ , representing the optimal prestressing variants 

has been determined based on the values of the criteria Eq. (3.3) (see Table 1).
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Table 1. Determination of the order of the consecutive including of the predefined prestressing variants into the 

set of optimal prestressing variants

Prestressing 

variant, �

Number of redundant 

members ,RMN �

Initial prestressing 

force ,PSX �

��S components,×10-6,

Eq. (3.2)

Criteria 

Eq. (3.3)
Order

1 2 XPS,1 8.1133 4.0566 2

2 2 XPS,2 8.1170 4.0585 1

3 4 XPS,3 –7.7961 1.9490 3

4 4 XPS,4 –7.7877 1.9469 4

5 4 XPS,5 3.0895×10-4 0.7723×10-4 5

6 4 XPS,6 2.6861×10-6 0.6715×10-4 6

According to item 6 of the algorithm presented above, the unknown initial prestressing force ,2PSX that

corresponded to the 2nd prestressing variant (see Fig. 2, b), has been added to the design variable vector 

in the first instance. The optimum material and internal forces problem Eqs. (4.1) – (4.8) has been 

formulated and solved in the continuum space of the unknown cross-sectional sizes and unknown 

initial prestressing forces. The following continuous optimum cross-sectional sizes for all beams and 

optimal initial prestressing force has been obtained: hw = 2008.63 mm, tw = 17.52 mm, bf = 687.08 mm, 

tf = 25.86 mm, XPS,2 = –580.66 kN, corresponded to the material weight G* = 79453.2 kg of the cross-

beam structure for the case when the number of redundant members to introduce the initial prestressing 

force is NRM = 2. Then the continuous optimum cross-sectional sizes have been discretized and the 

following discrete optimum cross-sectional sizes for all beams and optimal initial prestressing force has 

been received: hw = 2060 mm, tw = 18 mm, bf = 650 mm, tf = 26 mm, XPS,2 = –580.66 kN, corresponded 

to the material weight G* = 79612.4 kg of the cross-beam structure. Introducing the initial prestressing 

force into the redundant members of the cross-beam structure according to the 2nd prestressing variant 

has ensured the material economy 4.76% compared to the weight of the structure without prestressing.

In the second iteration of the searching process for the optimal prestressing variant of the cross-beam 

structure, the unknown initial prestressing force XPS,1 , that corresponded to the 1st prestressing variant 

(see Fig. 2, a), has been added to the design variable vector. The optimum material and internal forces 

problem Eqs. (4.1) – (4.8) has been formulated and solved in the space of the unknown cross-sectional 

sizes and unknown initial prestressing forces. The following continuous optimum cross-sectional sizes 

for all beams and optimal initial prestressing forces has been obtained: hw = 2150.72 mm, 

tw = 18.76 mm, bf = 475.18 mm, tf = 27.99 mm, XPS,2 = –653.83 kN, XPS,1 = –662.0 kN, corresponded to 

the material weight G* = 75211.6 kg of the cross-beam structure for the case when the number of 

redundant members to introduce initial prestressing forces is NRM = 4. Then the continuous optimum 
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cross-sectional sizes have been discretized and the following discrete optimum cross-sectional sizes for 

all beams and optimal initial prestressing force has been received: hw = 2055 mm, tw = 18 mm, 

bf = 550 mm, tf = 28 mm, XPS,2 = –655.95 kN, XPS,1 = –414.6 kN, corresponded to the material weight 

G* = 76141.7 kg of the cross-beam structure. Introducing the initial prestressing force into the 

redundant members of the cross-beam structure, according to the 2nd (see Fig. 2, b) and the 1st

prestressing variants (see Fig. 2, a), ensured the material economy 9.8%, compared to the weight of the 

cross-beam structure without prestressing, and material economy 4.6%, compared to the weight of the 

cross-beam structure with the 2nd prestressing variant only.

In the third iteration of the searching process for optimal prestressing variant of the cross-beam 

structure, the unknown initial prestressing forces XPS,3 and XPS,4 corresponded to the 3rd (see Fig. 2, c)

and 4th (see Fig. 2, d) prestressing variants accordingly, have been added to the design variable vector. 

The optimum material and internal forces problem Eqs. (4.1) – (4.8) has been formulated and solved in 

the space of the unknown cross-sectional sizes and unknown initial prestressing forces. The following 

continuous optimum cross-sectional sizes for all beams and optimal initial prestressing forces has been 

obtained: hw = 1941.52 mm, tw = 16.94 mm, bf = 664.08 mm, tf = 25.0 mm, XPS,2 = –401.61 kN,

XPS,1 = –410.9 kN, XPS,3 = 245.54 kN, XPS,4 = 260.04 kN, corresponded to the material weight 

G* = 74228.1 kg of the cross-beam structure for the case when the number of redundant members to 

introduce initial prestressing forces is NRM = 12. Then the continuous optimum cross-sectional sizes 

have been discretized and the following discrete optimum cross-sectional sizes for all beams and 

optimal initial prestressing force has been received: hw = 2065 mm, tw = 18 mm, bf = 610 mm, 

tf = 24 mm, XPS,2 = –323.71 kN, XPS,1 = –332.99 kN, XPS,3 = 326.67 kN, XPS,4 = 341.17 kN, 

corresponded to the material weight G* = 74636.6 kg of the cross-beam structure. Introducing the 

initial prestressing force into the redundant members of the cross-beam structure, according to the 2nd

(see Fig. 2, b), 1st (see Fig. 2, a), 3rd (see Fig. 2, c) and 4th (see Fig. 2, d) prestressing variants, has been 

ensured the material economy 12.0%, compared to the weight of the cross-beam structure without 

prestressing, as well as material economy 2.0%, compared to the weight of the cross-beam structure 

with previous 1st and 2nd prestressing variants only.

Since, decrement of the objective function value is not significant (less than 1.5%) compared to one for 

considered structure with previous prestressing variants, so introduction of the initial prestressing 

forces into the redundant members according to 3rd and 4th prestressing variants (see Fig. 2, c, d) is not 

effective. Search for the optimal prestressing variant of the considered cross-beam structure can be 

finished. Thus, the optimal prestressing variant of the considered cross-beam structure consists of the 

1st and 2nd prestressing variants (see Fig. 2, a, b) and can be created by lowering external 2nd, 5th, 8th
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and 11th supports (see Fig. 1). The optimal number of the redundant members for introducing the initial 

prestressing forces is 4 accordingly. 

In order to define the optimal prestressing variant for considered cross beam structure, three optimum 

material and internal forces distribution problems only have been solved with the number of variable 

initial prestressing forces 1, 2 and 3 accordingly.

As it has been shown in the presented numerical example, the suggested numerical technique to 

determine the optimal number of the redundant members to introduce initial prestressing forces ensures 

the reduction of the dimension for the design variable vector of unknown initial prestressing forces for 

considered optimization problems.

4. CONCLUSION

A numerical technique to determine the optimal number of the redundant members to introduce initial 

prestressing forces has been offered for high-order statically indeterminate bar structures. An idea to 

form an optimal prestressing variant for the considered bar structure by consecutive introduction of the 

initial prestressing forces into the redundant members and subsequent solving of the optimum material 

and internal forces distribution problems has been suggested. An order of the consecutive including of 

the initial prestressing forces into the redundant members can be defined by values of the components 

of the gradient vector for the function that estimates both under-stressing and overstressing in term of 

longitudinal stresses for all structural members of the bar system with respect to the variable 

prestressing parameters. 

The suggested numerical technique to determine the optimal number of the redundant members to 

introduce initial prestressing forces provides the reduction of the dimension for the design variable 

vector of unknown initial prestressing forces for considered optimization problems.
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