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Abstract. The paper presents new ensemble solutions, which can forecast the average level of particulate matters PM10 and PM2.5 with 
increased accuracy. The proposed network is composed of weak predictors integrated into a f inal expert system. The members of the ensemble 
are built based on deep multilayer perceptron and decision tree and use bagging and boosting principle in elaborating common decisions. The 
numerical experiments have been carried out for prediction of daily average pollution of PM10 and PM2.5 for the next day. The results of 
experiments have shown, that bagging and boosting ensembles employing these weak predictors improve greatly the quality of results. The 
mean absolute errors have been reduced by more than 30% in the case of PM10 and 20% in the case of PM2.5 in comparison to individually 
acting predictors.
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of many neural predictors based on averaging or dynamic inte-
gration have been also proposed [10‒12] to get more accurate 
forecast. Nowadays, ensembles of predictors are among the 
most competitive forms in solving the predictive tasks [14, 15].

The paper will exploit this trend of investigations, however, 
by applying completely different way of building and integrat-
ing the ensemble. Two approaches will be studied. One is based 
on bagging and the second on boosting philosophy. Bagging 
is the method for generating multiple versions of predictors 
trained on different sets of learning data and using them to 
get an aggregated prediction values for unseen input samples. 
Boosting strategy also creates many predictors, but the next 
added units are learned on the samples, which were classified 
less accurately by previous models. The numerical experiments 
performed on the PM10 and PM2.5 have shown much higher 
accuracy in comparison to classical methods of ensemble inte-
gration.

The paper is organized as follows. Chapter 2 presents the 
statistical characterization of the data bases representing both 
types of particulate matters. Chapter 3 is devoted to generation 
and selection of diagnostic features. The next chapter pres-
ents the results of application of single predictors based on 
deep multilayer perceptron and decision tree. The following 
two chapters describe the idea of application of bagging and 
boosting in creation of ensemble. Chapter 7 presents the results 
of numerical experiments performed on PM10 and PM2.5 by 
applying bagging and AdaBoost. The concluding chapter sum-
marizes the results and compares them with other classical 
methods of ensemble creation.

2.	 Characterization of data used in experiments

The numerical experiments will be performed on two types 
of particulate matters: PM2.5 and PM10. The data of the first 

1.	 Introduction

Air pollution has become an important concern nowadays of 
modern societies considering its harmful implications on human 
beings and ecosystems [1‒3]. The problem is strictly associated 
with the level of such pollutants as particulate matters, SO2, 
NOx and O3. Especially important is the particulate matter 
(PM) of the diameters to 10 µm (PM10) and 2.5 µm (PM2.5). 
The main source of PM is the vehicular traffic and dust of the 
streets created by the circulation. These particles have direct 
impact on human health via inhalation [1, 4]. To counteract 
their harmful effect, the monitoring of air quality and special 
policies have been implemented to protect public health and 
ensure air pollution below the maximum levels in the region.

Particulate matters (PM) are of special importance for Euro-
pean and American policies defining restrictions for yearly and 
24-hour average PM concentrations [3, 4]. To respect the short-
term limit values defined by these restrictions and reduce the 
concentration levels, the emission abatement actions should be 
planned at least one day in advance. Hence, one day ahead 
forecasting is needed.

Classical statistical methods (AR, ARMA, ARIMA) have 
been nowadays replaced by nonlinear models, for example 
neural networks or decision trees [5]. Their learning processes 
apply the pollution data from the past as well as some meteo-
rological information. No understanding of the mechanism of 
pollution creation is needed. Many different solutions to this 
problem have been proposed in the past [5‒13]. They include 
multilayer perceptron (MLP), radial basis function (RBF), Sup-
port Vector Machine as well as Elman network. The ensembles 
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type were taken from Chinese database representing pollution 
in Beijing [13] and the second type from Polish data base rep-
resenting measurements made in Ursynów (Warsaw) [10]. The 
measurement results are given for the succeeding hours of the 
day. Figure 1 presents the hourly and daily average distributions 
of the data representing PM2.5, while Fig. 2 the distribution 
of PM10.

The significant differences between both types of data dis-
tribution are visible. They refer to the values, repeatability and 
histograms. High differences are observed in the distribution of 
the peak values within different seasons of the year. Figure 3 
shows their dependence on the daily hours in the form of his-
togram of PM2.5 and PM10 in 4 seasons of the year.

The basic PM measurements have been associated with dif-
ferent sets of meteorological variables. In the case of PM2.5 
they included: dew point, temperature, pressure, direction of 
wind, wind speed, cumulated hours of snow and cumulated 
hours of rain. In the case of PM10 the following meteorologi-
cal variables were measured: wind speed, wind direction, tem-
perature, humidity and sun radiation. Additionally, information 
about other pollution types was also available. They include 
SO2, NO2 and ozone.

The interesting thing is the correlation between the PM 
level and these additional variables. Table 1 presents values 
of Pearson correlation coefficient for both types of PM. Due 
to different availability of additional atmospheric variables 

PM2.5 PM10

Fig. 1. The distribution of PM2.5 data: a) hourly distribution, b) daily 
average

Fig. 2. The distribution of PM10 data: a) per hour, b) per day
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the column contents for PM2.5 and PM10 are also different 
and some of them are empty due to the absence of particular 
measurements.

Table 1 
Correlation between PM and additional variables available 

in measurements

Variable PM2.5 PM10

Temperature – 0.091 – 0.199

Wind speed – 0.248 – 0.311

Wind direction – 0.168 – 0.171

Humidity – – 0.034

Hours of rain – 0.051 –

Hours of snow – 0.019

Pressure – 0.047 –

Dew point – 0.171 –

SO2 – – 0.428

NO2 – – 0.579

Ozone – – 0.232

The correlation values presented in the Table 1 seem to be 
rather low. Remarkable is a relatively high correlation of PM 
concentration and other types of pollutants, especially com-
pared to the atmospheric parameters. However, we should be 
aware that the correlation coefficient only contains informa-
tion about linear relationships between variables and not the 
general nonlinear dependency. The preliminary experiments 

have shown that the inclusion of information on SO2, NO2 
and ozone has improved the accuracy of the prediction. Tak-
ing this into account we have included them as the potential 
diagnostic features in the model of prediction process in PM10 
prediction.

3.	 Selection of diagnostic features

The aim of the research is to build an efficient model of fore-
casting the next day average of PM based on some selected 
input attributes representing the diagnostic features of the pro-
cess. In creation of potential features, we have considered many 
different aspects of the process. Analyzing autocorrelation 
functions, we have observed some dependence of the predicted 
PM level in day d on its values from the past. Three days from 
the past have been selected in this way. Therefore, the first set 
was composed of 24-hourly values of PM of the preceding days 
(d-1), (d-2) and (d-3). Additionally, we have included also daily 
average of these three days: PM(d-1), PM(d- 2) and PM(d-3). 
The next set of descriptors was defined on the basis of mean 
values of all available meteorological parameters from the 3 
previous days (d-1), (d-2) and (d-3). Notice, that these param-
eters differ for PM2.5 and PM10. Additional set of parameters 
referred to the maximum, minimum and their hours of appear-
ance related to the meteorological parameters. This time their 
influence was limited to only the previous day (d-1). In the 
case of PM10 the additional set of descriptors was formed from 
available measurements of NO2, SO2 and ozone. Their state in 
only one previous day was characterized by the daily average, 
maximum and minimum hourly value within this day and their 
hours of occurrence.

PM2.5 PM10
Spring SpringSummer Summer

Autumn AutumnWinter Winter

Fig. 3. The histogram of the peak hourly distribution of a) PM2.5, b) PM10 in different seasons of the year
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To provide the information about human daily activity, we 
have included the code of the type of day. Working days were 
coded by one and non-working days by zero. Finally, the season 
information was also incorporated into the model. The binary 
code “00” was used for spring (months from 3 to 5), “01” for 
summer (months from 6 to 8), “10” for autumn (months from 
9 to 11) and code “11” for winter (month 12, 1 and 2). As 
a result, the total number of potential features was equal to 115 
for PM2.5 and to 151 for PM10.

Large number of automatically generated features suggests 
the need for their reduction. There are many selection methods 
[16, 17] which are used in practice. The introductory experi-
ments have shown the stepwise fit as the most appropriate. It 
is a systematic algorithm which performs a series of adding or 
removing the variables to the set of features in order to find out 
which of them are necessary and which can be omitted based 
on their statistical significance in a regression. The F-statistic 
score is computed in each step to test the model with particular 
terms or without them and the null hypotheses is checked to 
decide which terms should be included or rejected in the final 
feature set [18]. This methodology has allowed to reduce the 
final diagnostic features in a significant way, leaving only the 
important ones.

As a result of stepwise fit procedure, 28 features were 
selected of PM2.5 dataset, while only 20 features were found 
important for PM10 dataset. The selected features have been 
normalized dividing the measured values by their median. We 
have applied median, because this statistical measure is resistant 
to outliers, which happen very often in measurements.

Both data sets have been collected within 4 years. Total 
number of available measurements exceeded 34,000 samples. 
Dataset records were shuff led and split to 70% for the train-
ing phase and 30% for the test. Each experiment has been 
performed on randomly selected set of learning and testing 
samples.

4.	 Individual predictors

The proposed bagging and boosting techniques form the ensem-
ble composed of many units trained in a specific way, hoping 
to obtain better performance than could be obtained from any 
of the constituent member alone. In practice a machine learning 
ensemble consists of only a concrete finite set of alternative 
models that should be adjusted in a proper way.

Typically, the members of ensemble are weak predictors, 
which generate variety of results. The strength of ensemble 
is based on this variety. Application of very strong predictors 
in ensemble is not recommended since their verdicts will be 
repeatable and will not give the space for improvement. There-
fore, in this work we have decided to use decision tree (DT), 
which is the typical weak predictor and multilayer perceptron 
(MLP) of many hidden layers (deep structure). Application of 
more than one hidden layer makes MLP alike weak predictor. 
We have tried also radial basis function network and support 
vector machine however, the results were not satisfactory. The 
training results of RBF and SVM in many different runs were 

very stable, so there was no chance for improvement by their 
combination.

The MLP [19] applied in the ensemble is composed of 
input layer of signals, 3 hidden layers of sigmoidal activation 
function and one linear output unit (deep structure). The final 
structure of MLP has been chosen after series of preliminary 
experiments, which tried different number of layers (1, 2, 3, 4) 
and different number of neurons in these layers. In the case of 
PM10 the best results have been obtained for MLP structure 
20‒32‒16‒16‒1. In the case of PM2.5 the best MLP structure 
was 28‒32‒16‒16‒1. Levenberg-Marquard algorithm was used 
in learning procedure.

Decision tree (DT) was used as the second weak predictor 
[20]. Although DT is a typical classification tool it is easily 
adapted for regression problems by assigning classes to differ-
ent ranges of signal values. This is done automatically based on 
special parameter MinParentSize, which controls the required 
learning accuracy.

Such approach is applied in Matlab implementation [18], 
which was used in this work. DT is a flowchart-like structure 
in which each internal node represents a “test” on an attribute, 
each branch the outcome of the test, and each leaf node a class 
label representing the range of output signal values. In our 
solution the decision tree was supplied by 20 (PM10) and 28 
(PM2.5) input signals. Gini index was used in assessing the 
impurity index in every split of data.

In assessing the results, we have used different quality mea-
sures: mean absolute error (MAE), mean absolute percentage 
error (MAPE) and correlation coefficient R of the predicted 
and target series. In these definitions yi represents the actual 
response of predictor, ti – the target value and n number of sam-
ples, Cyt – the covariance of yi and ti, std – standard deviation 
of series of y and d.
●	 Mean absolute error (MAE)

	 MAE =  1
n

Ã

i =1

n

∑ jti ¡ yij
!

� (1)

●	 Mean absolute percentage error (MAPE)

	 MAPE =  1
n

Ã

i =1

n

∑
jti ¡ yij

ti

!
 ¢ 100%� (2)

●	 Correlation coefficient (R) of the observed and predicted 
data

	 R = 
Cyt

std(y)std(t)
� (3)

All numerical experiments have been performed with the Mat-
lab environment. Figure 4 presents the results of MAE in learn-
ing and testing the MLP and DT achieved in 20 repetitions of 
experiments in the case of PM10.

Large differences between learning and testing results are 
visible, especially in the case of decision tree. This is typical for 

https://en.wikipedia.org/wiki/Flowchart
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weak learners. This fact makes space for significant improve-
ments of results by applying bagging or boosting procedures.

Table 2 depicts the average results of testing MLP and DT 
predictors in their individual mode of operation in 20 runs of 
experiments. The significant differences between the quality 
measures are observed for both types of pollution. MLP learner 
was more accurate for both PM10 and PM2.5. It is evident that 
the prediction model for PM10 is much more accurate with 
respect to all measures. It is partly since the input information 
is richer in this case (supported by accompanying levels of 
NO2, SO2 and ozone).

Table 2 
The average results of testing MLP and DT, working in the mode 

of individual predictors

MAE (μg/m3) MAPE (%) R

MLP
PM10 4.57 14.84 0.94

PM2.5 14.29 21.27 0.93

DT
PM10 5.76 18.22 0.94

PM2.5 18.15 25.64 0.92

To check the influence of the feature selection procedure 
we have repeated experiments applying full set of generated 
descriptors (115 for PM2.5 and 151 for PM10). However, this 
time the results were much worse. In the case of MLP the MAPE 
was equal to 17.95% for PM10 and to 25.47% for PM2.5. Even 
worse results were in the case of DT (MAPE 23.21% for PM10 
and 29.6% for PM2.5). This is a natural effect of oversizing the 
network and including input signals that are not representative 
of the process under consideration.

The next experiments have been directed to improve the 
prediction results of ensembles by applying bagging and boost-
ing principles.

5.	 Bagging technique in prediction problems

Bootstrap aggregating, called simply bagging, is very popular 
technique used in ensemble of predictors [17, 20, 21]. It helps 
to increase the accuracy of prediction result and at the same 
time also reduces variance and allows to avoid overfitting. It is 
a method for generating multiple versions of predictors and using 
them to get an aggregated prediction values for unseen input data.

Let us assume the original training set D containing M learn-
ing pairs (x, d). In bagging approach, we apply many predictors 
trained by using smaller subset of m training samples (m < M), 
randomly selected from the original set. The training samples 
are drawn from D uniformly and with replacement. By sam-
pling with replacement, some observations may be repeated in 
the training sets. Then T predictors are trained using different 
sets of m bootstrap samples. Their results are combined by 
averaging (in regression) or majority voting (in classification).

Thanks to the aggregation process, bagging procedure 
reduces the variance of an individual base learner. However, 
bagging does not always lead to the improvement of the best 
individual learner, participating in the ensemble. It works espe-
cially well for weak learners, for example unstable, high vari-
ance base learners, for which we observe major changes in 
response to small changes in the training data. Such situation 
is typical for decision trees or some types of neural networks. 
However, for more stable predictors the bagging procedure 
offers less improvement on predicted outputs since there is less 
variability. Therefore, application of support vector machine is 
not recommended for this type of systems.

The important question is how deep (i.e. how complex) the 
predictors used in an ensemble should be. If the structure of 
predictor is too complex, there might be tendency to over fit 
the training data, which results in poor generalization perfor-
mance. Consequently, there is a balance to be achieved in the 
complexity of the predictor structure (decision tree or neural 

Fig. 4. The illustration of the change of MAE for PM10 prediction in learning and testing mode: a) MLP predictor, b) DT predictor
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network) to optimize predictive performance on future unseen 
data. The introductory numerical experiments are needed to 
solve this dilemma.

6.	 AdaBoost for regression

Boosting technique applied in machine learning is another, very 
efficient way of obtaining good results of classification or regres-
sion by using many weak learner models forming an ensemble 
[22]. The fundamental assumption of boosting, is that it is pos-
sible to create strong and accurate model of the process by com-
bining many weak models paying higher attention to less accu-
rately predicted samples.The most important implementation of 
this approach is adaptive boosting, called shortly AdaBoost. It 
was proposed by Freund and Schapire [21]. AdaBoost applies 
many weak learners of relatively low accuracy to make their 
integrated results stronger. The learning algorithm starts from 
full original set of training data. Then creates a second model, 
which tries to correct the errors committed by the first model.

The succeeding models are added to ensemble until the 
training set is predicted perfectly or a maximum number of 
models have been reached. In the succeeding iteration of the 
training process, the weight is assigned to each training sample. 
The values of these weights inform the weak learners to prefer 
the samples with high values when selecting the next learning 
setAny learner network can be used in solution, for example 
neural networks or decision trees. At the beginning, the weights 
associated with the learning samples are set equal. Therefore, 
the probability of selecting each sample is the same. The chosen 
prediction model is trained by using the set of training samples 
and the errors committed at particular samples are calculated 
and stored to be used in the next bootstrap selection. The algo-
rithm prefers the samples for which the model is unable to 
perform prediction task accurately. These samples are more 
likely to be selected in the next stage of learning. The method 
used in adjustment of weights might use different mathemat-
ical formulas, which are called loss functions. Once the loss 
function is calculated for each training vector, it is possible to 
associate the weight with this vector. The larger the loss, the 
weight is more increased.

The basic AdaBoost algorithm was defined for classifica-
tion task. We will use it in a slightly different arrangement for 
regression [22]. The applied AdaBoost in regression can be 
presented as follows:
1)	Associate each learning pair (xi, di) for i = 1, 2, ..., M, 

where xi, represents the input vector and di the destination, 
with the weight wi. Initially, to each training pair we assign 
weight wi = 1 for i = 1, 2, ..., M. The probability that ith 
sample will be selected in the bootstrap training set is then

	 pi =  wi

j = 1

M
∑ wj

� (4)

where the summation is over all members of the training 
set. Select N1 samples (with replacement) to create the train-

ing set. Usually N1 is smaller than M, the total number of 
samples.

2)	Train the machine using the selected set of training samples.
3)	Pass every member of the data set through this machine to 

obtain a prediction y(xi) for all i = 1, 2, ..., M.
4)	Calculate the loss for each training sample Li = L(y(xi) ¡ di), 

where the loss function L may take any form, providing its 
value in the range [0, 1]. Let us assume the normalization 
factor in the form D = sup(y(xi) ¡ di) then different forms 
of the loss function can be associated with each pair, for 
example
●	 linear function

	 Li = 
jy(xi) ¡ dij

D
� (5)

●	 exponential function

	 Li = 1 ¡ e–
jy(xi) ¡ dij

D � (6)

Then calculate the average loss of the whole set

	 Lm = 
i =1

M

∑ pi Li� (7)

5)	Calculate confidence measure c of the actual predictor 

	 c = 
Lm

1 ¡ Lm
� (8)

Small value of c means high confidence of this predictor 
in processing the learning data and high value small con-
fidence. 

6)	Update the weights associated with the individual ith train-
ing sample

	 wi + 1 = wi c
(1 ¡ Li)

Z � (9)

The normalization factor Z is needed to ensure the sum of 
all instance weights is equal to one. Its value was defined 
here as the sum of all weights. The lower the loss of a par-
ticular learning pair, the higher the reduction in weight 
value. It makes less likely that this pattern will be chosen 
as a member of the training set in the next prediction phase.

7)	Repeat T times the training processes on new bootstrap of 
selected data sets and keep all trained predictor parameters 
in memory. 

8)	Each of T trained predictors makes individual prediction 
y(xt) for a particular testing vector xt. Final prediction 
of the whole ensemble made by T units is defined as the 
weighted median of all predictions (considering their re-
spective confidence levels associated with each predictor). 
It means that value yi(xt) generated by ith predictor is as-
sociated with its confidence measure ci. Next, they are re-
labeled in a way: c1 y1(xt) < c2 y2(xt) < … < cT yT(xt). The 
middle element in this series is the final response y(xt) of 
the ensemble. In the case, when all confidence measures ci 
are equal, the result of ensemble is ordinary median of the 
responses of all members of ensemble.



1213

Bagging and boosting techniques in prediction of particulate matters

Bull.  Pol.  Ac.:  Tech.  68(5)  2020

7.	 Results of numerical experiments

7.1. Application of bagging. Bagging algorithm may include as 
many predictors as necessary to outperform the single model. It is 
composed of two main procedures: bootstrap (selecting the learn-
ing samples) and aggregation (generating final verdict of ensem-
ble) [17]. Bootstrap is a random selection of subsets of samples 
with replacement of vectors from the training data. However, 
the bags should contain fewer samples than the whole training 
dataset to have diversity between learners. The correct choice of 
bag size is very important. If the number of samples in the bag is 
too small, the real distribution of the data is not well represented. 
On the other hand, too large a size results into a higher degree 
of uniformity of the data in certain bags, which leads to a loss of 
independence between the members of the ensemble.

It is necessary to carry out some experiments that provide 
a suitable number of predictors. This was done by increasing the 

size of bags and learners iteratively. Once a new bag is defined, 
the learner is trained with such subset and the result is added 
to the current predictions, hence the next forecast will be the 
average of all past predictions made before.

Figure 5 shows the graphical results of such experiments 
at changing size of the bag and at different number of predic-
tors. Figure 5a corresponds to MAE for PM2.5 and Fig. 5b for 
PM10. All of them represent testing results. The dashed line 
represents the result of the best individual MLP predictor at 
application of the whole data set. In both cases the advantage 
of bagging procedure is evident. However, its results depend 
on the size of bags. The optimal size of bags corresponds here 
to application of 80% of available data in learning process and 
the number of predictors over 100.

Similar results are also characteristic for DT. Figure 6 shows 
the appropriate testing results for this predictor. This time the 
profit from bagging application is even more visible with 

Fig. 6. The MAE changes with the number of DT learners at different sizes of the bags

Fig. 5. The MAE changes with the number of MLP learners at different sizes of the bags
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respect to the best DT predictor trained on the whole data set. 
The best results in this case correspond to application of 60% 
of available learning data in the bags. Similarly to the previous 
case, the number of predictors in ensemble should be over 100. 

Twenty repetitions of experiments performed at the optimal 
size of bags and application of 110 predictors in the ensemble 
have led to the results presented in Table 3.

Table 3 
The average results of testing MLP and DT at application  

of bagging ensemble

MAE (μg/m3) MAPE (%) R

MLP
PM10 3.31 11.13 0.98

PM2.5 11.47 15.26 0.98

DT
PM10 3.67 11.55 0.98

PM2.5 12.21 14.77 0.97

These quality factors (MAE, MAPE and correlation coef-
ficient R) outperform the best individual application of both 
predictor types.

7.2. Application of AdaBoost. The first decision in AdaBoost 
is to select proper form of loss function. Loss function rep-
resents the measure based on which we select the population 
of data set in the next generation of algorithm. The preliminary 
experiments have shown that exponential loss is not a very good 
choice. In most cases its application resulted in higher regres-
sion error than linear one. Therefore, in the experiments we 
have applied linear loss function.

Similarly to the bagging procedure, the first task is to find 
the optimal number of predictors and optimal size of bags used 
in experiments. Once again, the experiments have been repeated 
at changing values of the bag size and different population of 

weak learners. Contrary to bagging, it happened that increasing 
the predictors beyond some value did not lead to the improve-
ment of results. Fig. 7 depicts such situation of MLP learner in 
the case of PM2.5.

In this case around 50 learners seem to be optimal with 
respect to MAE. Once again, the best size of the bag contained 
80% of available learning data. The performed experiments 
have shown that in the case of DT the optimal number of pre-
dictors was 90 at the bag size equal to 60% of the available 
learning data set. These sets of parameters have been applied 
in final experiments of predicting PM10 and PM2.5.

Twenty repetitions of experiments performed at the optimal 
size of bags and by applying the optimal number of predictors 
in the ensemble have led to the results presented in Table 4.

Table 4 
The average results of testing MLP and DT at application 

of AdaBoost

MAE (μg/m3) MAPE (%) R

MLP
PM10 3.82 12.34 0.98

PM2.5 12.03 17.05 0.98

DT
PM10 4.18 12.25 0.98

PM2.5 13.19 16.90 0.96

As it is seen application of AdaBoost has improved the 
results of individual best predictors, however, its results are 
slightly worse than these obtained in bagging. The important 
advantage of AdaBoost is high repeatability of results. Figure 8 
shows the MAE results for PM10 obtained in 20 repetitions 
of experiments with MLP in the role of predictor. Standard 
deviation of results was equal to std = 0.1119 at average value 
of MAE equal to 3.82.

Fig. 7. The change of MAE for PM2.5 at application of MLP learners 
in boosting application

Fig. 8. The change of MAE results in 20 repetitions of AdaBoost 
experiments at application of MLP predictor for PM10
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8.	 Conclusions

The paper has studied the application of bagging and boosting 
ensembles to predict daily average of particulate matters (PM10 
and PM2.5) for the next day. The experiments have proved that 
such form of ensemble creation provides high repeatability and 
better performance in comparison to either individual predic-
tors or typical ensemble integrated by averaging. The numerical 
results related to the quality measures have shown very similar 
performance of both investigated methods, although, slightly bet-
ter results have been obtained in bagging. On the other side, the 
AdaBoost ensemble is more stable and, in most cases, requires 
smaller number of predictors to achieve an improvement of qual-
ity measures. The experiments have shown that deep multilayer 
perceptron and decision tree represent good candidates for the 
implementation in bagging and boosting ensembles.

The complexity of the calculations should also be com-
mented on. To obtain the improved results, we must use a high 
number of ensemble members (usually more than one hundred). 
This increases the cost of the calculation. Therefore, this tech-
nique is not suitable for online learning. Note, however, that the 
typical learning procedure is off-line. Therefore, the calculation 
time is not critical. On the other hand, the test mode is very fast 
and practically does not depend on the number of regressors 
in the ensemble.

Compared with previous studies, our model provided more 
accurate predictions of the daily level of pollution, including 
all quality measures. This is well seen on the example of PM10. 
The results presented in the paper [12] for the same data base by 
using dynamic integration of ensemble have reported following 
values MAE = 5.79 µg/m3, MAPE = 18.62% and R = 0.935. 
The corresponding results obtained by applying complex 
ensemble [10] using many different predictors and selection 
methods were as follows: MAE 5.31 µg/m3, MAPE=17.83% 
and R = 0.924. The best results of this paper for the same data 
are MAE = 3.31 µg/m3, MAPE = 11.13% and R = 0.980.

It is more difficult to compare our results for PM2.5 with 
those presented for the same database in [13], since this work 
only presented the mean square root error (RMSE) of the suc-
ceeding months.

The results presented in this paper were not stable and 
have been changing in the range [4.55–41] µg/m3 at appli-
cation of non-parametric regression model and in the range 
[2.92–26.47] µg/m3 applying partial linear regression model 
of prediction. No results regarding MAE or MAPE have been 
presented. Our best result of RMSE obtained for the whole data 
base was 18.45/ µg/m3 at application of bagging ensemble built 
based on MLP.

Future work will include a larger exploration of this topic 
by covering wider horizon of data used in prediction process 
and application of larger population of predictors cooperating 
with each other.
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