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Abstract. In this paper deep neural networks are proposed to diagnose inter-turn short-circuits of induction motor stator windings operating 
under the Direct Field Oriented Control method. A convolutional neural network (CNN), trained with a Stochastic Gradient Descent with 
Momentum method is used. This kind of deep-trained neural network allows to significantly accelerate the diagnostic process compared to the 
traditional methods based on the Fast Fourier Transform as well as it does not require stationary operating conditions. To assess the effectiveness 
of the applied CNN-based detectors, the tests were carried out for variable load conditions and different values of the supply voltage frequency. 
Experimental results of the proposed induction motor fault detection system are presented and discussed.
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signals requires a few seconds measurement to maintain the 
appropriate FFT spectrum resolution. In the modern diagnos-
tic systems, shortening the process time is a priority due to 
the nature of the defect, such as coil short circuits. This task 
requires full automation of the process, which is not ensured 
by known analytical methods. To reduce the role of experts 
and ensure full automation, artificial intelligence techniques 
are used in diagnostic processes.

Analytical methods are undoubtedly the basis for the devel-
opment of neural defect detectors. Artificial intelligence tech-
niques, and particularly artificial neural networks, are designed 
to evaluate the technical condition of a machine in accordance 
with the input information, which is most often the result of 
signal analysis. In the diagnostic systems, the most popular 
among the known neural structures are multi-layer perceptrons 
[8, 9], radial basis function neural networks [10], self-organiz-
ing Kohonen maps [11, 12] and wavelet neural networks [13]. 
These structures have a common feature, which is the need to 
provide initial processing of the diagnostic signals to identify 
the symptoms that constitute the input vector of a neural net-
work. Classical neural structures were successfully used in the 
tasks of detection [13], classification [11] and the assessment 
of the degree of individual damage [9]. Ensuring automation of 
the process also proved the advantage of neural detectors over 
analytical methods of detection. However, the need to perform 
an initial analysis of the signal, and thus increase the detection 
time, requires further optimization of the diagnostic processes. 
The solution to the problem of preliminary processing of the 
diagnostic signal may be the Deep Neural Networks (DNNs). 
Deep neural structures are characterized by different features 
compared with classic neural networks, obtained by abandoning 
the rule of universal approximation.

In the last few years, only a few solutions using deep 
learning methods in diagnostic processes have been developed 
[14‒22]. Most of the applications are related to mechanical 

1.	 Introduction

Induction motors (IM) are currently the most common group of 
electrical machines in the industrial systems. During the opera-
tion of these machines various types of damage can occur. Their 
causes may be due to both incorrect operation and manufac-
turing errors. About 38% of all IM defects, relate to stator [1]. 
They result from gradual degradation of the insulation, most 
often due to temperature changes, local displacement of the 
coils, as well as external conditions (dust, humidity) [2]. Elec-
trical failures are characterized by high dynamics of the defect 
handling. Therefore, methods of early detection of coil short 
circuits become extremely important.

Currently used electrical machine diagnostic systems can 
be divided into systems using the analysis of diagnostic signals 
[3‒5] and diagnostic techniques based on artificial intelligence 
[6, 7]. Among the analytical methods of detecting failures of 
the electrical machines the most common is the analysis of the 
diagnostic signal in the frequency domain (FFT – Fast Fou-
rier Transform) [4]. It consists of the observation of the signal 
amplitudes emphasized in the spectrum at the frequencies char-
acteristic for a given damage. Despite the widespread use of the 
FFT, this method has limitations that force a gradual departure 
from this technique of analysing the diagnostic signal. This 
is due to the need to ensure the stationarity of the diagnostic 
signals during the measurement, which in many cases is impos-
sible to achieve. In addition, the efficiency of failure symptom 
extraction is strongly connected with the number of measured 
samples of the diagnostic signal (measurement time). In most 
cases, extraction of the damage symptoms from the diagnostic 
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damages and analysis of the mechanical vibration signals. This 
fact results from considerable changes of the signal because of 
the occurrence of the damage, and thus the ease of analysis. 
The deep learning methods have also been used to distinguish 
between most important motor damages: broken rotor bar, bear-
ing damage, inter-turn short circuit [16] and additionally unbal-
anced and bowed rotor [17]. However, the type of the electrical 
damage in [16] is not defined precisely. In [17] only one fault 
with three shorted turns is analysed.

Among the applied deep learning neural structures, the 
detection systems are mostly based on the convolutional neu-
ral networks (CNN) [14, 16, 18, 20‒22] and auto-encoders 
[15, 19]. As shown in [14, 20], convolutional neural networks 
allow direct analysis of the diagnostic signal without well-
known analytical methods. Moreover, CNNs are characterized 
by higher efficiency of the detection and evaluation of damage 
degree in comparison to the classical neural structures, pre-
sented in [16, 22]. Due to the principle of the CNN operation, 
it is necessary to adjust the input matrix accordingly. In most 
applications, the input signal is formed as a two-dimensional 
[18, 21, 22] or a three-dimensional matrix [15]. The size of the 
input matrix [21], the applied DNN structure [15] as well as 
the type of diagnostic information are directly connected with 
the effectiveness of the DNN-based neuronal fault detector.

All above mentioned papers deal with the detection of 
mechanical damages or classif ication between different types 
of motor failures. On the contrary, the main task of the diag-
nostic system presented in this paper is detecting the fault as 
well as an assessment of the IM faulty phase and stator wind-
ings damage level. The system uses the convolutional neural 
networks in the process of detecting inter-turn short-circuits. 

Diagnostic information contained in signals coming from the 
direct f ield-oriented control (DFOC) structure was used in 
research.

The paper is divided into 6 numbered sections. Next one 
presents shortly the applied control system of the induction 
motor drive. Then, the experimental setup is shown. The fol-
lowing section shows the transients of state variables and inner 
signals from the field-oriented control structure. Next, basics of 
deep neural networks, a method of generating their input vector 
and applied network structure are described. Successively, the 
training process of the network is presented, and the obtained 
results are analysed. Finally, the paper is shortly summarized.

2.	 Field-oriented control of induction motor

In this paper, the diagnostics of the stator winding damages 
of induction motor operating under the Direct Field-Oriented 
Control (DFOC) is taken in consideration. The structure of the 
control is shown in Fig. 1. The control system consists of four 
PI-type regulators: speed regulator Rωm, rotor flux amplitude 
regulator Rψr and two inner regulators of stator current vector 
components Risx, Risy.

Primary speed and flux regulators define the reference 
values of current vector components i ref

sx , i ref
sy . The secondary 

current controllers define the reference values of stator voltage 
vector components u ref

sx , u ref
sy , which, after the conversion to the 

stationary reference frame α–β, become the inputs of the Space 
Vector Modulation (SVM) block. The modulator calculates the 
duty cycles kA, kB, kC of the Voltage Source Inverter (VSI) 
which is supplied with a constant DC voltage ud.

Fig. 1. Block diagram of applied field-oriented control structure
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The control structure requires measurement of three phase 
currents iABC, the supply voltage of the inverter ud and the motor 
speed ωm. Stator voltage vector components usα, usβ are calcu-
lated using the duty cycles and the DC-bus voltage.

To make the transformations between the stationary α–β 
and synchronous x–y coordinate frames possible, the knowl-
edge about the rotor f lux vector angle γψr is necessary. The 
angle and the rotor f lux amplitude ψr are both estimated by 
a rotor f lux estimator (estimated values are marked with “^” 
symbol).

All variables in the paper are written using per-unit system, 
which is marked “pu” in all figures.

3.	 Experimental setup

Experimental tests have been conducted using the setup, shown 
in Fig. 2. This setup consists of two motors, the tested 3 kW 
induction motor and 4.7 kW Permanent Magnet Synchronous 
Motor (PMSM), generating the load torque. Both motors are 
supplied with classical two-level industrial frequency con-
verters. The converters operate with switching frequencies of 
10 kHz (IM) and 8 kHz (PMSM), respectively. The control 

signals for the first converter IGBTs are transferred with fibre 
optics. The hardware based dead time of 2 µs is ensured by 
a specially designed electronic system.

Three phase currents, DC-bus voltage and rotational speed 
are measured, using LEM transducers and incremental encoder, 
respectively. The impulses of the encoder are counted by the 
FPGA NI PXI-7851R, part of the rapid prototyping unit by 
National Instruments (NI).

The whole setup is controlled and coordinated by real time 
controller NI PXIe-8840. It defines the control signals, based 
on measurements, and sets required load torque value. Visu-
alization and data acquisition process is made with usage of 
the VeriStand software. The neural network training and test-
ing have been done offline using MATLAB software. During 
experimental verification (online research) the proposed diag-
nostic procedure is implemented using LabView.

4.	 Test results for continuous operation

Figure 3 shows exemplary transients of selected signals obtained 
during the start-up, constant speed operation ωm = 0,5 and load 
torque changes, from zero mo = 0 to nominal value mo = mn: 

Fig. 2. Block diagram of the experimental setup
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Fig. 3. Transients of selected signals during start-up, constant speed operation ωm = 0.5 and stepwise varying load torque mo = 0:mn under 
temporary shortage of five shorted turns Nsh = 5 in phace C: a) number of shorted turns, b) phase currents, c) stator current components in 

synchronous reference frame, d) stator vector components in synchronous reference frame

i sA
,B

,C
 [p

u]

isA isB isCisA isB isC

N
sh

b)

a)

isx isyisx isy

c)

i sx
,y
 [p

u]

d)

u s
x,

y [
pu

]
re

f

usx usy
ref refusx usy
ref ref

t [s]

t [s]

t [s]

t [s]

i sA
,B

,C
 [p

u]

isA isB isCisA isB isC

N
sh

b)

a)

isx isyisx isy

c)

i sx
,y
 [p

u]

d)

u s
x,

y [
pu

]
re

f

usx usy
ref refusx usy
ref ref

t [s]

t [s]

t [s]

t [s]

i sA
,B

,C
 [p

u]

isA isB isCisA isB isC

N
sh

b)

a)

isx isyisx isy

c)

i sx
,y
 [p

u]

d)

u s
x,

y [
pu

]
re

f

usx usy
ref refusx usy
ref ref

t [s]

t [s]

t [s]

t [s]

i sA
,B

,C
 [p

u]

isA isB isCisA isB isC

N
sh

b)

a)

isx isyisx isy

c)

i sx
,y
 [p

u]

d)

u s
x,

y [
pu

]
re

f

usx usy
ref refusx usy
ref ref

t [s]

t [s]

t [s]

t [s]

c)

d)

a)

b)



1043

Stator winding fault diagnosis of induction motor operating under the field-oriented control with convolutional neural networks

Bull.  Pol.  Ac.:  Tech.  68(5)  2020

(b) motor phase currents; signals from the control structure: 
components of stator current (c) and voltage (d) vectors in syn-
chronous reference frame. Figure 4 shows motor speed (b) and 
estimated electromagnetic torque (c).

After each change of the load torque, a metallic short-circuit 
of 5 turns has been modelled, each one for about 1‒2 seconds 
(as shown in Fig. 3a). It can be seen that the short-circuit of 
several turns in one coil causes a momentary, non-significant 
change of isx current component and both usx and usy reference 
voltage components. Only the value of the isy component varies 
significantly and permanently after the damage occurrence. Due 
to the field orientation of the control structure, the shape of 
the electromagnetic torque (Fig. 4c) is analogous to the y-axis 
current vector component (Fig. 3c), as the rotor flux amplitude 
is stabilized. Speed of the motor (Fig. 4b) is almost constant 
during the operation, then decreases slightly after a sudden 

change of the load torque appears and then returns to the ref-
erence value immediately. Slightly larger oscillations of the 
speed can be observed during the fault occurrence comparing 
to the non-faulty operation as well.

Moreover, some additional oscillations can be seen in inter-
nal signals of the control structure. According to [23], it can 
be stated that this relates to the appearance of an additional 2 fs 
frequency harmonic ( fs is the supply frequency). The influence 
of the load torque on the signal values is negligible. It is worth 
to notice, that there is no necessity to determine the actual value 
of the supply frequency in the case of the proposed DNN.

Values of the stator phase current amplitudes practically 
do not react to the damage. This kind of failure does not cause 
the reaction of industrial overcurrent protections in its initial 
stage. However, it spreads to consecutive turns (coils) very fast, 
therefore fast diagnostic system is necessary.

Fig. 4. Transients of selected signals during start-up, constant speed operation ωm = 0,5 and stepwise varying load torque mo = 0:mn under 
temporary shortage of five shorted turns Nsh = 5 in phase C: a) number of shorted turns, b) motor speed, c) estimated electromagnetic torque
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5.	 Deep learning neural networks

The use of deep learning methods in the electric machine 
damage detection systems is currently a novelty in the field 
of diagnostics systems. Deep neural networks allow to depart 
from the principles of developing structures resulting from the 
theorem of universal approximation. A distinctive feature of 
deep learning neural structures is the use of an increased num-
ber of hidden layers as well as an increase in network learning 
levels. Therefore, the goal of deep learning is both to acquire 
prediction of the output based on the input information as well 
as to understand the basic features of the input matrix. One of 
the groups of deep neural networks are convolution neural net-
works (CNN). A distinctive feature of the CNN is the extraction 
of higher order features from signals using the convolution 
operation. The use of CNN in the signal analysis allows the 
detection of the basic signal features as well as interactions 
between them. Depending on the task of CNN, structures con-
taining many convolutional segments can be used.

The use of deep learning methods in diagnostic tasks forces 
appropriate memory match, computational capabilities, as well 
as selecting the developed structure depending on the function. 
Nevertheless, the current state of development of microproces-
sor technology enables the implementation of DNN in micro-
controller systems. The practical implementation of DNN was 
presented, among others, in [24, 25], where the authors show 
the possibility of implementing DNN in microcontrollers from 
the ARM Cortex M3 [24] and ARM Cortex-A9 [25] families.

As demonstrated in [24, 25] the use of microcontrollers 
based on RISC (Reduced Instruction Set Computing) architec-
ture allows to achieve high performance of applications based 
on deep learning methods. In conclusion, deep learning methods 
are currently not a problem from the hardware implementation 
point of view. There are many hardware solutions containing 
deep network libraries [26]. Consequently, it is possible to 
develop and later perform the detection and classification sys-
tems based on the available microcontrollers.

5.1. Development the input matrix of the convolutional neu-
ral network. The principle of CNN operation forces the appro-

priate adaptation of network input matrices. Figure 5 presents 
the method of processing diagnostic signals into a CNN input 
packets. To detect machine defects, the research used the data 
coming from the control structure. The learning and testing 
samples were developed in three steps:
1)	Measurement of 2000 samples of selected diagnostic signals 

(isx, isy, u ref
sx , u ref

sy ) which constituted the elements of vector.
2)	Conversion of the vector into 40£50 matrices.
3)	Recording of selected matrices containing diagnostic signal 

samples into 2D and 3D matrices.
The use of 2000 samples of individual diagnostic signals 

enabled the measurement time to be reduced to 0.2 seconds. 
Analytical diagnostic methods using e.g. FFT (Fast Fourier 
Transform) analysis require a much longer measurement time, 
reaching several seconds while ensuring stationary measure-
ment (constant speed, load torque, etc.). In practical appli-
cations, ensuring the stationarity cannot be achieved in most 
cases. Therefore, the limitation of the measurement time result-
ing from the direct analysis of the diagnostic signal by the 
neural network is an undoubted advantage.

During experimental research, the impact of the information 
contained in the input vector on the effectiveness of detection 
and classification of IM faults by the neural network was ana-
lysed.

5.2. The structure of convolutional neural network. The 
basic function of the convolutional networks is to extract the 
features of higher orders using the operation of mathemati-
cal convolution. These networks do not have a predetermined 
architecture, parameters of training process or rules regarding 
the number of convolution layers. The CNN structure should 
be seen as progressing with each additional convolutional layer, 
allowing to extract more features of the input matrix. There-
fore, the network structure depends on the type of information 
provided, as well as the function performed by CNN. Figure 6 
presents the diagram of the proposed CNN structure, which per-
forms the task of recognizing the degree of IM stator damages. 
Because of the direct use of the diagnostic signal, the developed 
structure contains 5 convolution sets. These sets, marked with 
a blue envelope in Fig. 6, act as feature detectors. The other 

Fig. 5. Elaboration of the input layer of the CNN– schematic diagram
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parts of the CNN structure allow to assign an input vector to one 
of the initially predefined categories. At the initial stage of the 
research, many different CNN structures have been analysed. 
The structure presented in Fig. 6 is characterized by the highest 
level of the effectiveness for 2 different data packets.

The basic structure of the CNN shown in Fig. 6 includes 
the following layers:
●	 convolution layers,
●	 batch normalization layers,
●	 activation layers (in the paper, the Rectified Linear Unit 

layer – ReLU function is used),
●	 pooling layers.

Their task is to determine the characteristic features of the 
input matrix CNN for assignment to one of the specific cat-
egories. The principle of the operation of the CNN layers is 
discussed inter alia in [27, 28]. The main task of the last mem-
bers of the CNN structure is the assessment of belonging to 
one of the categories on the basis of the information about the 
characteristic features of the input matrix. For this purpose, the 
following layers are used:
●	 dropout layer,
●	fully connected layer,
●	 softmax layer,
●	 classification layer.

In addition, these layers are provided to reduce the time of 
the training process as well as to prevent over-fitting.

5.3. The process of training the CNN. The training process 
of deep neural networks is usually carried out with gradient 
descent algorithms. During the study, a Stochastic Gradient 
Descent with Momentum (SGDM) algorithm was used. SGDM 
algorithm is characterized by following the gradient of ran-
domly selected mini batch of training data. To accelerate the 
learning process, in the SGDM method, the step value is cal-
culated based on the information about subsequent value of 
the gradients.

The size of the step depends on how many successive gra-
dients indicate the same direction. The SGDM is an iterative 
algorithm, which means that it requires the initial values from 
which the first iteration begins. The effectiveness of the train-
ing process is strongly dependent on the initial learning rate 
used during the training process. At present, correct methods 
for selecting the initial values are not specified. In most cases, 
the hyperparameter values are selected empirically based on the 
analysis of the learning curves. Table 1 presents the hyperpa-
rameters of the applied layers of the CNN, while Table 2 shows 
the parameters of the training process.

Table 1 
Hyperparameter of CNN layers

Hyperparameter of NN Value of hyperparameter

Number of convolutional layers 5

Number of filters 30‒40‒60‒80‒100

Filter size 5£5

Padding/size “same”/ (3£3)

Number of pooling layers 5

Pooling method Maximum

Pool size 5£5

Padding/size “same”/ (4£4)

Number of activation layers 5

Type of activation functions ReLU

Number of normalization layers 5

Value of  “ε” factor 0.0001

Number of  dropout layers 1

Probability 0.5

Number of fully connected layers 1

Number of neurons 16

Fig. 6. Schematic diagram of the developed structure of the convolutional neural network
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Table 2 
Parameters of CNN training process

Parameter of CNN Value of CNN Training Parameter

Learning method Stochastic Gradient Descent with 
Momentum

Applied training data packet isx, isy u ref
sx , u ref

sy

Momentum coefficient 0.95 0.95

Initial learning rate 0.008 0.012

Number of training epochs 1000 1000

Training rate dropping method “piecewise” “piecewise”

Drop period 30 30

Training matrix size 40£50£2£4000 40£50£2£4000

Testing matrix size 40£50£2£4000 40£50£2£4000

Validation frequency 32 32

Shuffle method “every-epoch” “every-epoch”

Mini batch size 128 128

Number of categories Nc 16 16

Sixteen categories have been defined: one healthy state and 
fifteen unhealthy states – five different numbers of shorted 
turns (Nsh = 1, 2, 3, 4, 5) for each of three motor phases. The 
categories are defined in Table 3 in detail.

Table 3 
Experimental verification of  CNN structure

Phase Number of shorted turns Nsh

0 1 2 3 4 5

A 0 1 2 3 4 5

B 0 6 7 8 9 10

C 0 11 12 13 14 15

5.4. Operation of the proposed CNN. The proposed CNN 
has been trained using the rules presented in previous section 
and applied to the data collected in Fig. 3. The obtained results 
are shown in Fig. 7 and Fig. 8, for no-load and nominal load 
torque operation, respectively. The figures show the analysis of 

Fig. 8. CNN response during nominal load motor operation: a) reference x-axis voltage vector component (part of  Fig. 3d), b) response of the 
CNN (output category of the damage)

Fig. 7. CNN response during no-load motor operation: a) reference x-axis voltage vector component (part of  Fig. 3d), b) response of the CNN 
(output category of the damage)
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one of four signals taken into consideration, i.e. x-axis voltage 
vector component. Two different stages of the network opera-
tion can be distinguished: first one – the temporary one, after 
the fault is detected for the first time and before the output is 
stabilized. The fact that the fault is detected is indicated by the 
first appearance of an output category that is different than 0. 
The fault is marked as classified when the obtained category 
value stays unchanged in subsequent steps.

As can be seen the classification time of the network is very 
small. However, it depends on the value of the torque. It is sig-
nificantly longer in the case of the no-load operation than in the 
case of nominal load torque. In both presented cases the detec-
tion and the classification of the damage is correct, because five 
turns are shorted in phase C (category number 15 – Table 3).

5.5. Analysis of the effectiveness of the CNN structure. The 
process of experimental verification of the developed CNN 
structure was analysed in terms of the diagnostic signal that 
carried information about the technical condition of the tested 
machine. For this purpose, test data packets were transferred 
to the CNN input layer. The assessment of the effectiveness of 
structures was divided into two categories: detection efficiency 
and effectiveness of the stator damages degree classification. 
Detection efficiency ηD is the ability of the CNN network to 
distinguish correctly between symptoms of the damaged and 
undamaged motor. The classification efficiency ηC combines 
both detection and distinction of the degree of stator dam-
age (faulty phase and number of shorted turns). The results 
of experimental tests for the 2 sets of the diagnostic signals 
presented in Table 4 were calculated in accordance with the 
following equations:

	 ηD =  XP

XF + XU
,� (1)

	 ηC =  1
NC i =1

NC

∑ XPi

Xi
,� (2)

where:
XP – the number of positive (correct) neural network responses,
XF – number of induction motor faulty states,
XU – number of induction motor unfaulty states,
NC = 16 – number of considered categories,
XP0‒15 – the number of positive (correct) neural network respons-
es for categories 0 to 15,
X0‒15 – number of considered cases in each category.

The analysis of the experimental verification results allowed 
to state that the detection efficiency was over 98% in the case of 
diagnostic signals coming from the control structure. It is worth 
noting that the same structure was used for the 2 discussed CNN 
testing data packets (current vector components, reference volt-
age vector components) and almost the same detection results 
have been obtained. Accordingly, it can be concluded that the 
features of the damage in the diagnostic signals are reflected 
in a similar way, so they are features of the same order. As 
observed during experimental verification, the damage classi-
fication efficiency index was smaller than the detection effi-
ciency index. This fact results from small quantitative changes 
in diagnostic signals due to a short circuit in various phases of 
the stator windings. In addition, it should be noted that during 
the measurements, 2000 signal samples were taken each time, 
regardless of the frequency of the supply voltage. Therefore, 
the developed matrices of input signals may be subject to some 
shifts between successive samples. Nevertheless, the developed 
structure was not dependent on the load torque as well as fre-
quency of the supply voltage.

6.	 Conclusions

Presented convolutional neural network is characterized by 
a high efficiency in the detection of IM electrical faults. The 
detector based on the CNN constitute ensures high level of 
both damage and classification efficiencies. The damage was 
detected in around 98% cases and most of the detection errors 
have been made in the case of one shorted turn. The network 
is also able to distinguish shorted phase and number of shorted 
turns in stator winding with about 90% of effectiveness. Thus, 
the developed detection system is less effective in the task of 
assessment the degree of damage. However, it should be pointed 
out that the main task of diagnostic systems is to detect damage 
at an early possible stage. Further assessment of the level of 
damage constitutes a secondary goal of diagnostic applications.

Moreover, the advantage of the proposed CNN-based fault 
detector is its very short diagnostic time. By using direct signal 
analysis, it was possible to limit the detection process time to 
maximum 0.2 seconds, which is an undoubted advantage due 
to the nature of the discussed damages. The advantage of the 
presented CNN application is also the use of signals from the 
control system without the need for additional measuring sys-
tems. The knowledge about the frequency of diagnostic signals 
is not necessary as well. Therefore, the presented solution may 
be an alternative to motor fault detectors based on classical 
neural networks in the future.
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