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Adaptive controller design for electric drive with variable parameters
by Reinforcement Learning method

T. PAJCHROWSKI* | P. SIWEK ., and A. WOJCIK

Poznan University of Technology, Institute of Robotics and Machine Intelligence, Piotrowo 3A, 60-965 Poznan

Abstract. The paper presents a method for designing a neural speed controller with use of Reinforcement Learning method. The controlled object
is an electric drive with a synchronous motor with permanent magnets, having a complex mechanical structure and changeable parameters. Sev-
eral research cases of the control system with a neural controller are presented, focusing on the change of object parameters. Also, the influence
of the system critic behaviour is researched, where the critic is a function of control error and energy cost. It ensures long term performance
stability without the need of switching off the adaptation algorithm. Numerous simulation tests were carried out and confirmed on a real stand.
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1. Introduction

In recent years, an increasing demand for the quality of servo-
drives is observed and its even further growth can be expected.
Many of these controlled devices e.g. industrial robots, machine
tools, wind turbines, paper machines or rolling machines have
a complex mechanical structure [1-6]. The increasing require-
ments for control performance imply that the drive systems
should be insusceptible to changes in parameters or should be
able to adapt. This issue is important, especially in the so-called
direct drives. The direct drive is a mechanical solution in which
the electric motor is connected to the load without a gearbox.
A special construction of the motor is required, that enables
the drive system to operate with a low rotational speed, gener-
ally below 100 rpm, and often even less. Lack of mechanical
transmission has many advantages, e.g.: elimination of back-
lash introduced by the transmission (which improves static ac-
curacy of work and dynamic properties of the drive), increase in
the efficiency of the drive system (elimination of losses in the
transmission) and reliability (fewer mechanical components).
The abovementioned advantages of direct drives require using
appropriate algorithms in the control system. In a direct drive,
the moment of inertia of a running machine is several times
greater than the moment of inertia of the motor itself, therefore
large changes in the moment of inertia in the machine affect the
operating conditions of the drive system (in a classic drive with
a gearbox, the moment of inertia converted to the motor has a
similar value).

In many drive systems, the moment of inertia depends on the
angle of the shaft position. Therefore, there arises a need for a
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position or speed control system with adaptive properties. It is
not trivial to propose suitable control algorithms or structure,
which would ensure high performance and control accuracy of
an electric drive. This problem concerns many industrial and
scientific institutions all over the world.

In order to ensure proper quality of the drive system opera-
tion under changing mechanical parameters of the drive, robust
[4] or adaptive [5] controllers are used, which very often imple-
ment computational intelligence methods, especially artificial
neural networks [6, 7]. The use of neural networks for speed
control is widely presented in the literature [7—14]. Different
types, learning algorithms and structures of neural networks
have been implemented. Papers [8—10] present two different
concepts of adaptive neural network controller. In [10] an adap-
tive controller with a reference model is presented, where the
neural controller learns from the error between the output sig-
nal of the reference model and the actual signal of the controlled
object. Paper [11] presents the concept of a neural control with
feedback from the reference current. Another interesting con-
cept of neural controller is given in [8], where the repetitive
neural controller is used. In articles [12, 13] a model of an in-
verse object is applied and in [14] — an internal model control
based on backpropagation neural network inverse system. The
main disadvantages of this solution are problems with selecting
proper teaching data, learning parameters and the structure of
the neural controller.

From the cited literature we can deduce that nowadays we
face an increasing interest in machine learning. One of the def-
initions of machine learning is presented in [15]. In general,
to perform a task, the system learns from the delivered data
set. A dataset is a set of numerous examples, where an exam-
ple is a collection of attributes. Machine learning is fundamen-
tally divided into three types: Supervised learning, Unsuper-
vised learning, Reinforcement learning (see Fig. 1). The goal of
supervised learning is to find an approximation of the function
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that binds input and output data. Classification and regression
are two of the most common supervised machine learning tasks.
The main idea of unsupervised learning is to search for possi-
ble patterns and relationships in unclassified data. One com-
mon task of unsupervised learning is to group similar exam-
ples, which is called clustering. Reinforcement learning refers
to goal-oriented algorithms that learn how to achieve a com-
plex goal or maximize the outcome in a specific way in many
steps. A simple reward feedback is required, i.e. the so-called
reinforcement signal. Nowadays a lot of research is conducted
pertaining artificial intelligence and one of its branches — the
machine learning [16—18]. It is an interdisciplinary domain with
particular emphasis on fields such as computer science, robotics
and statistics. Particularly interesting research area pertaining
the control of electric drives seems to be Reinforcement Learn-
ing (RL) [19-21]. Reinforcement Learning is a type of Machine
Learning (see Fig. 1), and thereby also a branch of Artificial
Intelligence. It allows machines and software agents to auto-
matically determine an ideal behaviour within a specific con-
text, in order to maximize their performance. It allows a ma-
chine or software agent to learn how to operate based on feed-
back from the environment. This action can be learned once
and for all or adjusted over time. We are dealing with an au-
tomated learning method, which suggests that there is no need
for a human expert to know a specific application or plant. In
electrical drive applications, especially in robot drives where
the moment of inertia and load torque change simultaneously
and often as a function of angle, the use of RL seems justi-
fied. In [22, 23], authors attempt to design an adaptive con-
trol system using RL technique and neural network. Changes
in the controller parameters are updated online based on in-
formation that comes from a predefined critic and the environ-
ment.

Machine Learning
! i l
Supervised Unsupervised Reinforcement
Learning Learning Learning

Agent learns to interact
with envirnoment
to achive a reward

Continous value prediction| [Clustering/Labeling
Class/Label prediction ||based on similarity

Fig. 1. Fields of machine learning [23]

The main purpose of this article is to keep the angular ve-
locity constant, despite the variable moment of inertia or dis-
turbance, and to emphasize the important issues concerning the
design of neural controllers and their long-term performance
stability, without the need of switching off the adaptation algo-
rithm by the RL method.

An important novelty proposed in the article is the definition
of a new critic as a function of error and control cost, which
ensures the stability of the drive system in a long-term horizon.
Numerous simulation studies have been carried out, where the
parameters of the critic proposed in the article were modified
to take a wide range of values. The proposed concept was suc-
cessfully tested on a laboratory stand.

1020

The paper is organized as follows. Section 2 presents the
structure of the drive system and describes the laboratory stand.
Section 3 focuses on the idea of RL control for the issue under
consideration. Section 4 presents the proposed concept of RL
control with neural networks. Sections 5 and 6 present simula-
tion and real studies, respectively. Section 7 is devoted to the
conclusions and future work.

2. PMSM drive system

2.1. The structure of the motor control. In presented article,
a speed controller for a direct drive with a synchronous perma-
nent magnet motor (PMSM) was researched. Block diagram of
the drive with PMSM is shown in Fig. 2. In the paper, authors
apply a Field Oriented Control of 3-phase motor using constant
angle of power 0 = /2, which corresponds to zero current in
the d-axis.

EM 400VAC/50Hz

¥

[0) , Ref
2 ) . igr
) C = T__

FBF < d/dt J

Fig. 2. The structure of the motor control PMSM. (FBF - anti-
resonance filter, EM — part of the electromechanical system, C-speed
controller, iy r — controller output signal, iy — auxiliary input for com-
pensation of periodic and friction torque, iy — g-axis reference current)

2.2. Laboratory Stand. To realize the research, a laboratory
stand (Fig. 3) was used, with a changeable moment of inertia
and the load torque, as function of angle of the shaft according
to the equation:
do * dJ

la=1"47 "% qe =
where: / — moment of inertia, @ — angular speed, 7; — dynamic
torque, O — shaft position.

Figure 4 shows the solution of the Eq. (1), which was used in
performed simulations. Figure 5 presents changeable moment
of inertia as a function of the angle. The minimum and maxi-
mum value depends on the number of placed metal rings and
the shaft angle. The minimal value of inertia is 1.09 kgm? (one
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Fig. 3. Photography of the load continuously variable moment of iner-
tia. 1 — metal rings for changing the weight; 2 — arm of variable length

J©)

Fig. 4. A block diagram of the system with variable moment of inertia
depends on the angle of rotation of the shaft
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Fig. 5. Waveforms moment of inertia and load torque for the different
combinations of the metal rings
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metal ring located in the lowest part of the drive), and the max-
imum value is 3.77 kgm? (three metal rings located in the high-
est part of the drive). The biggest load torque is observed in
positions 0 and 180 degree, as shown in Fig. 5.

3. Reinforcement Learning (RL) method

Reinforcement Learning (RL) is a type of machine learning
technique (see Fig. 1) that enables an agent to learn in an inter-
active environment by trial and error, using feedback from its
own actions and experiences [24]. Unsupervised and reinforce-
ment learning (see Fig. 1) [24] use mapping between input and
output, unlike supervised learning, where feedback provided to
the agent is a set of correct actions required to realize the given
task. Reinforcement learning, on the other hand, uses rewards
and punishments as signals for positive and negative behavior.
Compared to unsupervised learning, reinforcement learning is
different in terms of goals. The goal in unsupervised learning is
to find similarities and differences between data points, whereas
in reinforcement learning the goal is to find a suitable action to
maximize the rewards of the agent. Figure 6 shows the basic
idea and elements involved in a reinforcement learning model.

State Reward Action
S, R, A,

R,
S..|Environment

Fig. 6. Basic idea a reinforcement learning model [23]

The key terms that describe the elements of a RL problem are
[24]: (1) Environment: the world which the Agent can interact
with (2) Agent: a hypothetical entity which performs actions in
an environment in order to get some reward, (3) State: the cur-
rent state returned by the environment, (4) Action: all possible
moves that the agent can perform, (5) Reward: an immediate
feedback sent from the environment to evaluate the last action
performed by the agent, (6) Policy/Critic: the strategy that the
agent employs to determine next action based on the current
state.

Several RL methods in machine learning have been devel-
oped and successfully applied to learn an optimal policy for
Markov’s decision-making processes (MDP — Markov Deci-
sion Processes) in real time, as shown in Fig. 7 [24]. An anal-
ogous control system using RL is shown in Fig. 8, where the
controller, based on state feedback and reinforcement feed-
back about its previous action, calculates the next control signal
which should lead to an improved performance.

The controller—critic structure is shown in Fig. 8 [25]. This
structure allows the algorithm to calculate optimal decisions
in real time, where the controller affects the environment, and
the critic evaluates those actions. The learning mechanism sup-
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Fig. 7. Reinforcement Learning for MDP [23]

Critic

)

Policy update

A

Controller

State

S
-

Fig. 8. Reinforcement learning with a controller—critic structure for
control system [23]

Control action

ported by a controller-critic structure consists of two stages:
policy evaluation by the critic and subsequent policy improve-
ment by the controller. The policy evaluation phase is carried
out by monitoring the environment behaviour and results of the
current control activities. Obtained results are evaluated using
a performance index. A policy can be defined in terms of op-
timality, such as minimum fuel consumption, minimum risk or
maximum reward. In this system, reinforced learning is a way
of learning about optimal behaviour by observing real-time re-
sponses from the environment under no optimal control poli-
cies.

4. Control by RL

In Fig. 9, the concept of reinforcement learning with a
controller—critic structure for PMSM control system is pre-
sented. The structure consists of:

e Environment:

— a mechanical part with a variable moment of inertia
and a load torque as a function of the motor shaft po-
sition, described by formula (1),

— closed torque control — if realized with well-tuned
controllers, in speed control research it can be approx-
imated by the following formula [26]:

Gr(s)=Kr- e ST 2

where: K7 — torque constant 17.5 Nm/A, T; — total
system measurement delays 0.5 ms,
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e Agent:

— critic — which evaluates the quality of the control and
is described by the following formula:

for = f(a)Ref(n), o(n), igef(n)) 3)

where: @R¢f — reference speed, i — reference current

in g axis,

Ref
q

— controller — generates control signal in sample n,
based on the reference value and previous measuring
samples and according to the formula:

i*(n) = f(0*'(n), o(n), ®(n—1),...

q
., o(n—k), 6(n)). 4)

Agent (- —
’ 5
Policy update,’

_5L[CIosedtorque Mechanical ) ; |®, 0
loop System | :

Fig. 9. Reinforcement learning with a controller—critic structure for
PMSM control system

In the following research authors assumed neural network as
the controller structure. The mentioned network is a feedfor-
ward network, consisting of three layers of sigmoid neurons.
All its neurons have a hyperbolic tangent activation function.

4.1. Critic function. In controlling the motor speed of
PMSMs, the angular speed error is commonly used to create
controlling signals. Therefore, it is natural to try to optimize the
neural network with a similar dependency. This kind of critic
can be defined by the following formula:

for = Ce (0"~ o) 5)

where: C, — control error coefficient.

Using this kind of critic will result in a global minimization
of the object response error. If the reference value step changes
will be fed to the neural network, then one should expect that
the moment right after the step change will have a higher weight
than the small speed changes oscillating the set value. Even if
using a reference model that generates reference signal adjusted
to the time constants of the real object, because of the imper-
fectness of the reality description, small differences would still
exist and result in obtaining an error. In case of significantly
long-time horizons, the learning algorithm will cumulate the
error and thus forcing an increasingly forceful response of the
network, which will in consequence worsen the quality and cost
of control.

Bull. Pol. Ac.: Tech. 68(5) 2020
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In order to achieve a globally convergent process of con-
troller’s learning, there is a need to choose a function that takes
into account the cost of the control, so that the controller will
be punished for issuing a too high control signal throughout its
whole performance. This publication uses the critic function in
the following form:

for =Ce (0" — @) - Cif 6)
where: C,. — controller cost coefficient.

4.2. Neural network structure. In presented research two
possible structures of neural controllers were analysed. First
one (Fig. 10) has the classic structure of the feedforward type,
which behaves in a way similar to the PD-type controller, whose
main disadvantage is the fixed error.

Controller

ANN

Fig. 10. Internal structure of the neural network-based controller

To eliminate the fixed error, the network structure was ex-
tended to integrate one of the network outputs after strength-
ening it by K; fold. The obtained neural network is shown in
Fig. 11.

Controller

Ref :
@ ' \

ANN

v

Fig. 11. Internal structure of the neural network-based controller with
integration

Presented ANN has been taught with the use of an error back-
propagation algorithm. Teaching neural networks with this al-
gorithm is possible only if one can indicate the error gradient

Bull. Pol. Ac.: Tech. 68(5) 2020

of the network. To calculate this gradient, knowledge about the
teaching data is required, namely the knowledge about pairs
consisting of neural network input vectors and output errors
calculated for these particular vectors. In case of unknown net-
work outputs, which is the case of control systems, error cal-
culation is not trivial. Because of this, methods such as Model
Reference Adaptive Control (MRAC) are used. This particular
method is characterized by one of the networks being taught to
reconstruct the object responses, while the second one works as
a controller. Thanks to this, it is possible to calculate the control
network error based on the backpropagated control error, which
is obtained from the network used for modelling the object.

In order to solve this problem, in presented research, the au-
thors applied an ANN taught by a RL algorithm. In RL, changes
in the environment that are caused by agent’s actions are ob-
served, and result in the agent being rewarded or punished by
a critic for the particular action in consideration, according to
the formulas (5) or (6) respectively. The formulas numerically
define the sign of the network error gradient, which is caused
by the agent’s actions. To calculate its approximate values, the
neural network input vector is required, which is responsible
for causing the measured changes in the environment. If the ap-
proximate values of the error gradient are known, it is possible
to appoint changes in ANN weights, which will bring it closer
to the optimal solution. The algorithm can be presented as in
Fig. 12.

ANNInput(n)
wRef(n)
AN
y Y
Controller
\
. Ref
iy () N,
¥ |
|
Plant |
wait one sample =l
I
0] n+1) §|
T
O(n+1)y g:
=
> ope 2|
- Critic 5
S 2|
§4 e (ntl) |
z. \ |
Z |
< ~ Backprop. -—-

Fig. 12. Reinforcement Learning scheme for neural speed controller

S. Simulations results
Simulation research was performed in MATLAB Simulink

2019a environment, on the device model presented in Fig. 2.
A continuous-time model of the drive system was used for the
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simulation, using a variable-step solver. The drive model out-
puts were sampled with a constant step of 100 ps. Control sys-
tem was implemented in the discrete form with sample time of
100 ps. The reference speed signal was generated based on ran-
dom values from a uniform random number generator from the
[—0.5; 0.5] interval. Authors assumed that to precisely define
the influence of a given parameter on the controller, all simula-
tions should start form the same point and the controller should
always be fed the same teaching data. To achieve this, each sim-
ulation was preceded by re-setting the generator seed to a sin-
gle, fixed value. Thanks to such an approach, ANN began each
simulation with the same weights, and the reference signal was
the same for each test.

The following article focuses mostly on presenting the long-
term correct system performance.

The first performed simulation test (Fig. 13) was to verify
the operation of the speed control system, without integration,
which uses the critic given in (5). Said critic is dependent only
on the control error and has the form that can be easily found in
cited subject literature. The analysis consisted of checking the
initial learning phase of the regulator, which was fed pseudo-
random step changes in the reference value. The controlled ob-
ject, according to (1), was characterized by angle-dependent in-
ertia and load torque.

Z
£
3, | | | .94
0 10 20 30 40 04 ]7
Time [s]0.2
71.48 715 71.52
— 5
=
<0
0
Mo
_5 il 1 L
0 10 20 30 40 50 60 70 80

Time [s]

Fig. 13. Initial learning phase of the network for critic given by the
relation (5)

The initial control phase is stable, the system adapts in less
than 2 s to the controlled object and is characterized by no fixed
error. However, after 23 s of simulations, the control system
starts to oscillate in an unfading way. This kind of state holds
independently of the simulation time. One can find solutions of
this problem in subject literature, e.g. limiting the maximal val-
ues of weights or turning off the learning algorithm after some
time. Yet, all the proposed methods have their disadvantages.
Limiting the maximal values of weights reduces the space of
possible results, which increases the chance of finding opti-
mum being not possible. Moreover, there arises the problem
of appointing the limit itself. On the other hand, turning off the
learning after a set time, causes the algorithm to be unable to
find solutions for control objects which slowly change their pa-
rameters.

Figure 14 presents the initial learning phase of a network,
without integration, for the critic proposed in paper (6). The

1024

controller under consideration adapts significantly longer to the
plant (42 s). During that time, weights of the neural network
undergo small changes. After the initial adaptation time, the
controller starts to visibly improve its performance, forcing the
object to aperiodically change its state. Because in the consid-
ered research case the learning algorithm does not substitute the
control error integration, a significant fixed error occurs.

0 10 20 30 40 04 /

Time [s]0.2
71.48

0 10 20 30 40 50 60 70 80
Time [s]

Fig. 14. Initial learning phase of the network for critic given by the
relation (6)

Figure 15 presents the performance of the system after 900 s
of learning. One can notice constant changes of Tr, and J, which
are reflected in the average value of the reference current. One
can also see that the controller still works stable after this time.

-3
900 905 910 915 920 925 930 935 940 945 950
Time [s]

Fig. 15. Control system response after 900 s of learning

Critic presented in (6) is characterized by proportionality co-
efficients between the reference current in the ¢ axis: C, and

Bull. Pol. Ac.: Tech. 68(5) 2020
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the control error: C,. The proportion between those parameters
sets the impact of the speed control reaction to the changes in
the reference value or disturbances occurring in the plant. The
smaller the C,, the higher the cost of control expressed by the
Integral Absolute Cost indicator (7):

IAC = /m abs (i%) dr. %
0

The influence of C. is shown in Fig. 16. One can notice that
the neural controller behaves according to the formula stated
above.

__0ar K
2 C =06
"O <
g of C, =04
3 c,=02
0.2 Cc =01
e
L . . . . . | : |
194495 1945 194505 19451 194.515 194.52 194.525 194.53 194535 194.54
Time [s]
6k
— 4f
<
G 2r
Q
E_T ot
2
: ) 7 . ; T 7 ‘ |
194495 1945 194505 19451 194515 19452 194525 194.53 194.535 194.54
Time [s]

Fig. 16. Influence of C. on the control system response

Performed research confirm the intuitive selection of param-
eters and stability of the proposed solution. Unfortunately, the
high value of the fixed error disqualifies the network structure
presented in Fig. 10. To counteract this effect, a network with
integration of one of the two outputs was designed (Fig. 11).
It should be noted here that in the presented case the critic be-
comes a two-element vector, which is calculated using the fol-
lowing formula:

et ANNQ™
for=Co@® —0)—c| ®)
ANNS

where: ANNO" is m’th output from the network.
Figure 17 depicts the comparison between systems con-
trolled by network without integration (Fig. 10) and with in-

0.2
__o01f
v
3 f
g 0r
= —  Ref
3 w
O ——w: no integration
02t ‘ | —w: integration ‘;
77.4 71.5 77.6 71.7 77.8 77.9 78 78.1

Time [s]

Fig. 17. Control system response for ANN speed controller with and
without integration

Bull. Pol. Ac.: Tech. 68(5) 2020

tegration (Fig. 11). The network with integration correctly re-
duces the fixed error but introduces an overshot. In modern
speed control algorithms overshot does not disqualify a con-
troller since it can be easily fixed by e.g. applying input filters,
limiting the step derivative or methods such as Input Shaping.
Because of the better characteristics of the neural controller
with the integration, further considerations will refer only to
this topology.

One of the most important issues connected with the machine
intelligence methods is testing the convergence of the result
to the global/local minimum. In order to perform its verifica-
tion, authors decided to present the characteristic of changes
in the Integral Square Error quality indicator, occurring in the
researched time period. The indicator can be calculated as:

(k+1)Ts

ISE = R — ) dr 9)
/ (o*-0)

kT

where: T — period of reference step, k — step number.

Teaching the network with use of pseudo-random signal and
controlling an object with an interfering signal and parameters
varying in time, makes it rather difficult to properly analyse ob-
tained results. Taking the above into consideration, testing the
convergence was performed on a plant with constant parameters
and @R°f generated in form of steps with a constant amplitude
and period (Fig. 18). The coefficient value calculated in a time
period can be seen in Fig. 19. A constant decrease of the value
in time is clearly visible, which proves the convergence of the
algorithm.

0.5
—  Ref
—_— w
3 —w
3 0
3
05 | | | ‘ | | | |
0 5 10 15 20 25 30 35 40

Time [s]

Fig. 18. Reference signal and measured speed signal for the conver-
gence test of network learning algorithm

1 i 1 1 N N f f I

0 10 20 30 40 50 60 70 80 90
Time [s]

Fig. 19. ISE indicator change in time, after the drive start-up with con-
stant parameters

Adaptive systems have the advantage of being able to retune
themselves if the parameters of the object change. To prove
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that, the presented system has this kind of characteristics, the
previous test was repeated with the difference that in 7th and
14th second, the moment of inertia of the plant was stepwise
changed. The test results can be seen in Fig. 20. As one can
notice, the ISE indicator decreased each time the parameter
changed in the object. The indicator setting at a higher level
after increasing the J parameter is a natural feature of the sys-
tem. The bigger the J the lower the motor acceleration, which
increases the ISE.

-3

45510 4
Al 3.5
13
35 —
=
g 25 &
e 3 - ﬁ‘
42 Lo}
25
15
2F —]
il 1 1 1 1 1 il 1 1
0 5 10 15 20 25 30 35 40

Time [s]

Fig. 20. ISE indicator changes in time, after the drive start-up with
stepwise variable parameters

The last simulation research consisted in comparing the per-
formance of the proposed neural controller to a PI, given by the
following transmittance:

T
Ti(z—1)

where: Kp — proportional gain, 77 — integration time, 75 — sample
time.

The controller used in the comparison has constant parame-
ters that cannot change in response to variations in the moment
of inertia in the object. For this reason, it was decided to tune
the PI controller to the arithmetic mean of inertia. The speed
controller parameters were calculated according to the symme-
try criterion as follows [27]:

<m@=&@+ (10)

Jmin +Jmax
Kp=05—— 11
P 2KTTI,”‘ ) ( )
Ty = 4T, (12)

where: Jyin /max — minimal/maximal moment of inertia.

The comparison was conducted on an object with the load
torque and moment of inertia changing in the function of an
angle. In the Fig. 21 one can see the step response of the
PI and neural controllers. In the 78.5th second the plant had
J=1.17 kgm?, and in 54th second J = 1.98 kgm?. The range of
the full variability of J stretched from 1.17 kgm? to 3.77 kgm?.
For small values of J, the PI controller operated in a way unac-
ceptable in a real system. Vibrations created during the control
would have reduced the life expectancy of mechanical compo-
nents and could lead to damaging the device. In contrast to the

1026

PI controller, the neural network shows the same character of
the step response regardless of the inertia.

0.15
ol 0.45
% 0.05 0.4
2 0
=h e Ref
3 w
0.05 0.35 w
PI
-0.1
03 “ANN
0.15
78.5 78.52 78.54 54 54.02 54.04
Time [s] Time [s]

Fig. 21. Step responses of neural and PI controllers, for an object with
a changeable moment of inertia and load torque

Rapid operation of the controller promotes the reduction of
the ISE index by accelerating the response (Fig. 22). Due to
the high similarity of the values and the illegibility of the plot,
authors decided to present the difference between the indica-
tors (Fig. 23). First of all, the correlation between the changing

0.012

——PI controller
0.01 f |—— ANN controller

0.008
c%]) 0.006
=

0.004

0.002

0 10 20 30 40 50 60 70 80
Time [s]

Fig. 22. ISE indicator value for both the neural and PI controllers, for
an object with a changeable moment of inertia and the load torque
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Fig. 23. Differences between the ISE indicators for the neural and PI
controllers along with the moment of inertia

Bull. Pol. Ac.: Tech. 68(5) 2020



W\-\'\‘\’.CZ}.{SU].)ihl'l'li{.llilll.pl P
=

N www.journals.pan.pl

POLSKA AKADEMIA NAUK

Adaptive controller design for electric drive with variable parameters by Reinforcement Learning method

moment of inertia and the value of the indicator can be seen.
When analysing the obtained data, one could conclude that the
PI controller is, on average, better than the neural controller,
however, in order to be able to truly compare the two systems,
a quality indicator correlated with the critic’s function should
be used (6). In the research, it was decided to verify the IAEAC
indicator given by the formula (13):

(+1)Ts
IAEAC = / (Ceabs (0%~ @) + Cabs (&) ) dr. (13)
KTy

The indicator given by (13) is presented in Fig. 24. When the
cost of control is also considered during the analysis, it turns
out that the value of the indicator for ANN is 6 times lower
than the indicator calculated for PI.

0.4 | |——PI controller
—— ANN controller

0 10 20 30 40 50 60 70 80
Time [s]

'

0 10 20 30 40 50 60 70 80
Time [s]

Fig. 24. IAEAC indicator value for the neural and PI controllers, for
the object with a changeable moment of inertia and load torque

6. Real-plant results

The experimental tests were carried out on a laboratory driv-
ing stand equipped with a permanent magnet synchronous mo-
tor. The motor is controlled by a three-phase voltage converter
from the LABINVERTER family, type P3-5.0 / 550MFE, sup-
plied from a three-phase network with a voltage of 400 V and
a frequency of 50 Hz. The control algorithm has been imple-
mented on a ADSP-21060 signal processor from the SHARC
family (Analog Devices Inc.), with feature of 40 MHz (25 ns)
instruction rate and 120MFLOPs peak performance. The sam-
pling period of the control algorithm was 100 ps. Absolute
(14 bits per revolution) and incremental (with a resolution of
16384 pulses per revolution) encoders were used to measure
position and angular speed, respectively. The speed measure-
ment was performed using a technique based on a digital fil-
ter discussed in [28]. In this work, the PLL (Phase Locked

Bull. Pol. Ac.: Tech. 68(5) 2020

Loop) method combined with the M method has been recom-
mended. This allows to minimize the quantization noise, which
behaves similarly to a low-pass filter, but with the important
advantage of a shorter delay. The acquisition of measurement
and control signals was carried out using a Tektronix DPO
3014 digital oscilloscope with the possibility of recording 5
megasamples and a 100 MHz band. The control software was
developed and launched using the VisualDSP++ programming
environment.

The implementation of the adaptive neural controller algo-
rithm on DSP was written in C language. The controller code
was based on the authors’ own library, performing two main
tasks: calculation of the feedforward, multilayer artificial neu-
ral network output and modification of network weights using
backpropagation algorithm [29]. The developed library allowed
to compile the code regardless of available support for ma-
trix operations and was adapted to use the CMSIS library for
ARM architectures and runtime libraries for SHARC architec-
ture. Due to the assumption of using the neural controller with
a sample time of 100 us and small size of the artificial neu-
ral network (less than 20 neurons per layer), the implementa-
tion was carried out with an emphasis on computation time,
at the expense of greater consumption of data memory. Due
to the low-level nature of the algorithm, dynamic memory al-
location was avoided. The network adaptation concerns only
the value of weights, not the size of the layers, so static mem-
ory allocation is a sufficient solution — all sizes of inputs, out-
puts, and intermediate results are known a priori. The authors’
library for neural operations works with a set of scripts im-
plemented in the MATLAB environment, which enable quick
and convenient generation of C language source files contain-
ing network structure definitions of a given size and initial
weights.

To carry out experimental research, a neural controller was
implemented, based on the network structure shown in Fig. 11
and the adaptation procedure with the critic given by the func-
tion (6). The paper presents the results of drive start-ups in three
different mechanical configurations:

(a) With a small moment of inertia, Jyyi,,

(b) With a large moment of inertia, Jp,x,

(c) With an indirect, asymmetrical moment of inertia, Jasym.

Figure 25 shows waveforms of the reference and measured
angular speed of the drive, as well as the reference current in q
axis during the start-up of the neural controller. After just a few
hundred samples, the adaptation allows to correctly track step
changes in the reference value. The nature of the responses to
single step changes is not yet consistent — weights adaptation is
still going on.

Figure 26 shows object and controller responses waveforms
after approx. 2000 seconds of constant operation of the con-
trol and adaptation algorithm. The system operates in a stable
way and obtains a uniform character of the response to the step
changes in the reference value, which confirms the correct per-
formance of the controller.

Figure 27 depicts the control system response to single ref-
erence value step changes by approx. 2000 seconds from the
beginning of adaptation. The neural controller ensures the ex-
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Fig. 25. Starting the system: speed and control signal waveforms at the
beginning of adaptation. Operating with moment of inertia Jp,j,
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Fig. 26. Operating after approx. 2 thousand seconds: speed and control
signal waveforms. Operating with moment of inertia Jyj,
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Fig. 27. System response to the reference value step change after ap-
prox. 2 thousand seconds of performance: speed and control signal
waveforms. Operating with moment of inertia Jiyi,
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pected control quality, consistent with the simulation results in
the long period of adaptation.

During the experimental verification of the control algorithm,
it was checked whether the system that underwent adaptations
for a given configuration (set of system parameters) is able
to properly adapt to the step change of parameters. To do so,
the controller adaptation for a mechanical configuration with
the moment of inertia J,;, was performed. Next, the control
and adaptation process was stopped, the moment of inertia was
changed to Jax, and the control and adaptation were started
again. Figure 28 shows the system response after reboot.

Figure 29 shows the response of the control system to a step
change in the reference value, after approx. 180 seconds of
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Q
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Fig. 28. Changing the moment of inertia; speed and control signal
waveforms after changing the moment of inertia from Jyi, t0 Jmax-
The system initially adapted to the configuration with Jji,
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Fig. 29. Changing the moment of inertia; speed and control signal

waveforms after changing the moment of inertia from Jyi, t0 Jmax.-

The system response to the reference value step change after approx.
180 seconds of the performance
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operation from the moment of the system start after the change
in the moment of inertia. The control system correctly adapts to
changes in the drive system, obtaining a response similar to the
system’s response before changing the parameters.

An analogous experiment was carried out for the change of
symmetry of the moment of inertia: the controller was adapted
for mechanical configuration with the moment of inertia Jyqx.,
and then the process of control and adaptation was stopped, the
moment of inertia was changed to Jysym, and control and adap-
tation were started again. Asymmetrical load is characterized
by a clear correlation between the load torque influencing the
motor and the angular position. In an asymmetrical configura-
tion, the drive draws a positive current when lifting the heav-
ier side of the load (load acceleration) and a negative current
when the heavier side of the load falls (load deceleration). Fig-
ure 30 shows the waveforms of speed, control signal and motor
shaft positions for an unbalanced load. Based on the system’s
response, it can be concluded that the controller has correctly
adapted to the changes in system parameters. The relationship
between the control signal and the position of the motor shaft is
also clearly visible.

w [rad/s]

4 L I I I L L i
0 5 10 15 20 25 30 35 40

Time [s]

Fig. 30. Changing the symmetry of the moment of inertia: speed

and control signal waveforms after changing the moment of inertia

from Jmax t0 Jasym. The system initially adapted for the configuration
with Jmax

Figure 31 presents the results of neural controller adaptation
during the system start, for a mechanical configuration with an
asymmetric moment of inertia Jsym. Also, in this case the sys-
tem adapts the weights of the network in a correct way and
obtains an analogous dependency between the angular position
and the control signal.
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Fig. 31. Starting the system: speed and control signal waveforms at the
beginning of adaptation. Performance with an asymmetric moment of
inertia Jysym

7. Conclusion

The paper presents a method of designing a neural speed con-
troller with the use of Reinforcement Learning method. The
controlled object was an electric drive with a synchronous mo-
tor with permanent magnets, of a complex mechanical structure
and changeable parameters. The proposed method, by the prin-
ciple, does not require any information about the environment
to be able to change policies of the agent to realize given tasks.
The simulation and real tests show that proposed system can
control an object with variable inertia and load torque, which
correlate with the angle of the shaft (rotor). The presented critic
allows for a stable operation of the system even after a very long
adaptation time, which was also verified on a real stand. The
controller maintains the character of its response independently
to the changes in the object’s moment of inertia. Moreover, it is
more cost-saving than the PI controller. The obtained research
results encourage further work, which should focus on various
forms of the critic’s functions and the stability of solutions in
long time horizons.
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