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On the region of attraction of dynamical systems:
Application to Lorenz equations

M.A. HAMMAMI and N.H. RETTAB

Many nonlinear dynamical systems can present a challenge for the stability analysis in
particular the estimation of the region of attraction of an equilibrium point. The usual method
is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the
initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a
class of dynamical systems where the origin is not necessarily an equilibrium point. In this case,
a small compact neighborhood of the origin can be estimated as an attractor for the system. We
give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov
function. Furthermore, an application to Lorenz system is given to verify the effectiveness of
the proposed method.

Key words: nonlinear dynamical systems, Lyapunov function, Basin of attraction, Lorenz
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1. Introduction

Given an ordinary differential equation, the problem of Lyapunov stability has
attracted the attention of serval authors and has produced a large important results
(see [1–3,7–15]). The two major approaches for Lyapunov stability analysis [12,
17] are the linearization method and the direct method. Stability of a system can be
investigated via the first linearization method, but in general and the most powerful
technique is the second direct method. For this method one usually assumes the
existence of the so called Lyapunov function which is a positive definite function
with negative derivative along the trajectories of the system motivated by some
earlier works (see [4,9,16,18–20]). Another important problem is to estimate the
region of attraction around the equilibrium, that is, the problem of finding a set
which contains the origin such that the limit of every trajectory starting inside
is the equilibrium point. Usually this problem is attacked by using a Lyapunov
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surface as an estimate for the region of attraction. Noting that the asymptotic
stability is more important than stability, also the desired system may be unstable
and yet the system may oscillate sufficiently near this state that its performance is
acceptable, thus the notion of ultimate boundedness of solutions is more suitable
in several situations (see [5,6,10]). Frequently, chaos in many systems is a source
of instability and a source of the generation of oscillation where chaotic systems
commonly exist in various fields of application [21]. Quite often, one also desires
that the state approaches the origin (or some sufficiently small neighborhood of
it) in a sufficiently fast manner. In this paper, we study the problem of finding
a suitable Lyapunov function to estimate the region of attraction for differential
equations which don’t admit necessarily the origin as an equilibrium point. We
provide a result which estimates the domain of attractivity using Lyapunov’s
techniques. This yields us to study some classes of Lorenz equations where some
numerical examples are given to show the effectiveness of the main result.

2. Problem formulation

Let consider the following differential equation: ẋ = F (x). Unless otherwise
stated, we assume throughout the paper that the function F (.) encountered is
sufficiently smooth. We often omit arguments of function to simplify notation,
Rn is the n-dimensional Euclidean vector space; R+ is the set of all non-negative
real numbers; ∥x∥ is the Euclidean norm of a vector x ∈ Rn. Br = {x ∈ Rn/∥x∥ ¬
r, r > 0} denotes the ball centered at the origin and of radius r > 0. For all
x0 ∈ Rn and t0 ∈ R+, we will denote by x(t, t0, x0), or simply by x(t), the
unique solution at time t0 starting from the point x0. In this situation, since the
considered equation is time-invariant, we can take t0 = 0. We recall now some
standard comparison functions which are used in stability theory to characterize
the stability properties and uniform asymptotic stability (see [11, 16]): K is the
class of functions R+ → R+ which are zero at the origin, strictly increasing and
continuous. K∞ is the subset of K functions that are unbounded. L is the set of
functions R+ → R+ which are continuous, decreasing and converging to zero as
their argument tends to +∞. KL is the class of functions R+ → R+ which are
class K on the first argument and class L on the second argument.

2.1. Basin of attraction

We consider the following system:

ẋ = F (x) , (1)

where x ∈ Rn and F : Rn → Rn is continuous and locally Lipschitz, we denote
by x(t) = Ft (x), t ­ 0, the solution of (1), which starts from x at t = 0, it means
that F0(x) = x.
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Definition 1 A set M is called positively invariant set of (1) if any solution x(t)
that belongs to M at some time t0 > 0 must belongs to it for all future time
(t ­ t0 ­ 0);

x(t0) ∈ M ⇒ x(t) ∈ M, ∀t ­ t0 ­ 0.

Lyapunov’s direct method allows us to determine the stability of a system
without explicitly integrating the differential equation. We would like to estimate
the region of attraction of the system around the equilibrium, that is, we want
to find a set R, such that for every trajectory that starts in R, the limit is the
equilibrium point. We call such a set R an attraction region. The existence of
such region is ensured by using the following geometrical statement. Let R the
domain of attraction of (1), if the system (1) is asymptotically stable, then R is an
non empty, invariant, open, and it’s a connected set (see [14]). To approximate this
region, we shall find a suitable function V : R → R continuously differentiable,
such that V (0) = 0, V (x) > 0, ∀x ∈ R \ {0} and V̇ (x) < 0, ∀x ∈ R \ {0}.

Now, in order to estimate the region of attraction in the case when the origin
is not necessarily an equilibrium point, we shall introduce the following stability
result of a small ball. Let Br = {x ∈ Rn / ∥ x ∥¬ r, r > 0} denotes the ball
centered at the origin and of radius r > 0. The classic Lyapunov result for a
nonlinear non-autonomous system can found in [1, 3, 13].

Definition 2 The ball Br is said to be globally uniformly asymptotically stable for
(1), if there exists a class KL function β such that the solution of (1), from any
initial state x0 ∈ Rn and initial time t0 ∈ R+ satisfies the following estimation:

∥x(t)∥ ¬ β (∥x0∥, t − t0) + r, for all t ­ t0 ­ 0. (2)

Note that, in the above definition, if we take r = 0, then one deals with the
standard concept of the global asymptotic stability of the origin viewed as an
equilibrium point. Moreover, we shall study the asymptotic behavior of a small
ball centered at the origin for 0 ¬ ∥x(t)∥ − r , ∀t ­ t0 ­ 0 so that the initial
conditions are taken outside the ball Br .

The following theorem, (see [1]) gives a result on asymptotic behavior of
solutions when the origin is not necessarily an equilibrium point.

Theorem 1 Consider system (1) and suppose that there exist a continuously
differentiable function V : Rn → R, K∞ functions α1(.), α2(.), a class K α3(.)
and a small positive real number ϱ such that the following inequalities hold for
all t ∈ R+ and x ∈ Rn

α1(∥x∥) ¬ V (x) ¬ α2(∥x∥),

DVxF (x) ¬ −α3(∥x∥) + ϱ.
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Then, the ball Br is globally asymptotically stable with r = α−1
1 ◦ α2 ◦ α−1

3 (ϱ),

Br = {x ∈ Rn/∥x∥ ¬ α−1
1 ◦ α2 ◦ α−1

3 (ϱ)}.
In this case all solutions of (1) satisfy an inequality as in (2) with r =

α−1
1 ◦ α2 ◦ α−1

3 (ϱ). Remark that, if there exists an open connected set Dr ⊂ Rn

containing the origin such that Br ⊂ Dr and all the conditions of the above
theorem hold for all x ∈ Dr ⊂ Rn, then the region of attraction will be Dr \ Br .
Therefore, if Br is asymptotically stable, then ∀x ∈ Dr \ Br :

lim
t→+∞

d(Ft (x), Br ) = 0.

The region of attraction of the ball Br , r > 0, denoted by Rr , in this situation
Rr = Dr \ Br , is defined as the set of all points x ∈ Rr , such that

∀ x ∈ Rr , lim
t→+∞

d(Ft (x), Br ) = 0,

which is defined by the property that every trajectory of the corresponding system
starting from x ∈ Rr reaches the ball. Therefore, Rr is defined as:

Rr = {x ∈ Rn \ Br / ∀ ε > 0, ∃T > 0, ∀ t ­ T, d(Ft (x), Br ) < ε}.
Here, we deal with the situation that every trajectory approaches the ball Br
without crossing the sphere Sr = {x ∈ Rn/∥x∥ = r, r > 0}. We have the
following properties concerning the last domain.
Proposition 1 If Br is asymptotically stable with respect the system (1), then Rr
is a non empty, invariant, open and it is a connected set.

Proof. Since Br is asymptotically stable, then it is attractive and then,

∃ ρ > r, ∀ x ∈ Bρ \ Br, ∀ ε > 0, ∃ T > 0, ∀ t ­ T, d(Ft (x), Br ) < ε,

this implies that x ∈ Rr which gives that Rr , Ø.
To show that Rr is invariant, we shall prove that,

x ∈ Rr ⇒ Fs (x) ∈ Rr, ∀s ­ 0.

Let x ∈ Rr . For s ∈ R+, we have: ∀ ε > 0, ∃T > 0, ∀t ­ T, d(Ft (x), Br ) < ε.
Since d(Ft (Fs (x)), Br ) = d(Ft+s (x), Br ) and t + s ­ T , then d(Ft+s (x), Br ) < ε.
This implies that

Fs (x) ∈ Rr, ∀s ­ 0.
To show that Rr is open, we shall prove that for any point x ∈ Rr , every point in
a neighborhood of x belongs to Rr . Let x ∈ Rr . Since Br is attractive, then there
exists ρ > r such that ∀z ∈ Bρ \ Br , limt→+∞ d(Ft (z), Br ) = 0. Thus, for

η = r + θ(ρ − r) > 0, θ ∈]0, 1[,
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there exists T1 > 0, such that

∀t ­ T1, d(Ft (x), Br ) <
1
2
η.

If Rr = Bρ then Rr will be open. We take y outside Bρ, y close to x, y ∈ V (x) a
neighborhood of x such that by using the continuity of the solutions we get:

d(Ft (y), Ft (x)) <
1
2
η, for all t ­ T2 ,

for a certain T2 > 0. Applying the triangular inequality, for all t ­ sup(T1,T2),

d(Ft (y), Br ) ¬ d(Ft (y), Ft (x)) + d(Ft (x), Br ) < η.

This implies that, Ft (y) ∈ Bρ \Br and hence, the solution starting at y approaches
Br as t → +∞. Thus, y ∈ Rr , this implies that V (x) ⊂ Rr and the set Rr is an
open set. Finally, by invariance, Rr can not be the union of two open non-empty
disjoint sets. This can be proven by using a contradiction. □

Let us now propose the main problem we are concerned with: Find a function
V such that Rr will be the domain of attraction of (1). Let V : Rr → R be a
continuously differentiable function, then we have V (0) = 0, V (x) > 0, ∀ x ∈ Rr
and V̇ (x) < 0, ∀x ∈ Rr .

The problem of finding a Lyapunov function of a given non-linear ordinary
differential equation that captures the non-linear behavior of F around a small
ball centered at the origin is highly non-trivial and usually relies on engineering
intuition. Note that the above statement is non-constructive, that is, it only ensures
the existence of an attraction region, but does not provide it. In the sequel,
we consider the constructive version of the theorem to estimate the region of
attraction, that is, the problem of finding such an attraction region. The set Ωc is
given by

Ωc = {x ∈ Rn \ Br / V (x) ¬ c}
with c > 0, which provides an interesting method to estimate the domain of
attraction via an invariant set. A closed set Ωc ⊂ Rr is an estimation of region of
attraction of an asymptotic stable ball centered at the origin Br , r > 0, if there
exists a Lyapunov function V (x) such that V (x) is positive definite on Ωc, V is
proper (lim∥x∥→+∞ = +∞) and V̇ (x) is negative definite on Ωc.

For r > 0, the problem is to find a suitable Lyapunov function V (.) and a
positive c, such that Ωc is an invariant set which is contained inside Rr and the
estimate of the domain of attractivity is maximized by solving the following two
problems:

i) finding max c > 0 such that, Ωc ⊂ Rr .
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ii) Ωc is an invariant set, such that,

• V (x) > 0, ∀ x ∈ Ωc,
• V̇ (x) < 0, ∀ x ∈ Ωc.

Lyapunov function allows to gain some information about the global behavior of
orbits. the problem is to expect that if V is strict in Ωc for c > 0, then Ωc ⊂ Rr .
The set Ωc can be any compact positively invariant set. So we have to find three
things: First, find where V is positive. Second, find where V̇ is strictly negative
and third find the largest level curve V (x) = c of V such that Ωc is inside the
region when V̇ < 0.

Remark that when the system is globally asymptotically stable with respect
Br , the region of attraction is the region of the space Rn \Br . So, local asymptotic
stability of the origin can be studied when global Lyapunov function may not
be possible to find. Of course global asymptotic stability is very desirable, but
in many applications it is difficult to achieve. We are therefore interested in
determining how far from a small ball the trajectory can be and still converge to
it. In the next section, we will give an application to Lorenz equations in order
to obtain a more accurate estimate of the basin of attraction which is contained
inside a region bounded by a certain surface.

3. Lorenz system

The Lorenz system has played a fundamental role in the area of nonlinear
science and chaotic dynamics. Although everyone believes the existence of the
Lorenz attractor, no rigorous mathematical proof has been given so far. This
problem has been listed as one of the fundamental mathematical problems. This
problem is extensively discussed with the aid of numerical computation. It has
been realized that it is extremely difficult to obtain the information of the chaotic
attractor directly from the differential equation (3). Most of the results in the
literature are computer simulations even based on computation of Lyapunov
exponents of the system, one needs to assume the system being bounded in
order to conclude that the system is chaotic. Therefore, the study of the globally
attractive set of the Lorenz system is not only theoretically significant, but also
practically important. The Lorenz equations is one of the most famous models
of nonlinear dynamics, which is a nonlinear system that evolves in R3 whose
equations are given by: 

ẋ = a(y − x)

ẏ = cx − xz − y

ż = xy − bz
(3)
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where the parameters a, b and c are assumed positive real numbers. We will first
of all specify the physical origin of this system of equations. Lorenz arrived at
these equations when modeling a two-dimensional fluid cell between two parallel
plates which are at different temperatures. To simplify the problem, he expanded
the unknown functions into Fourier series with respect to the spacial coordinates
and set all coefficients except for three equal to zero: the variable x, which equals
the convective flow; y, which equals the horizontal temperature distribution; and
z, which equals the vertical temperature distribution. The resulting equation is (3),
where a represents the ratio of fluid viscosity to thermal conductivity, c represents
the difference in temperature between the top and bottom of the system and b is
an aspect ratio.

3.1. Fixed points

For the remainder of this paper, the dot notation will be used to denote the
derivative with respect to time, the system is then written as

ẋ = a(y − x)

ẏ = cx − xz − y

ż = xy − bz

if X = *.,
x
y
z

+/- and F = *.,
a(y − x)

cx − xz − y
xy − bz

+/-
in vector form the system becomes

Ẋ = F (X ).

The fixed points are given by F (X ) = 0, solving this system reveals that the fixed
points are: 

a(y − x) = 0
cx − xz − y = 0
xy − bz = 0

⇐⇒


x = y

x(c − 1 − z) = 0
x2 = bz

.

If
x = 0

then
p(0, 0, 0)

is a stationary point.
If

z = c − 1, x = y = ±
√

b(c − 1)

then

q+ =
(√

b(c − 1),
√

b(c − 1), c − 1
)
,
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q− =
(
−
√

b(c − 1), −
√

b(c − 1), c − 1
)

are stationary points (for c > 1).

3.2. Stability analysis

The Jacobian matrix of the Lorenz system at critical point p(0, 0, 0) is given by:

J0 =


−a a 0
c −1 0
0 0 −b


with characteristic polynomial of the form:

λ3 + (a + 1 + b)λ2 + (b(a + 1)a(1 − c))λ + ab(1 − c) = 0.

Then,

λ1 = −b ,

λ2 =
1
2

(
−1 − a +

√
4ac + a2 − 2a + 1

)
,

λ3 =
1
2

(
−1 − a −

√
4ac + a2 − 2a + 1

)
.

In the neighborhood of the origin:

• For c < 1; λ1 < 0, λ2 < 0, λ3 < 0 then, the system (3) is asymptotically
stable.

• For c = 1; λ1 < 0, λ2 = 0, λ3 < 0 then, we have a critical case.

• For c > 1; λ1 < 0, λ2 > 0, λ3 < 0 then, the system (3) is unstable.

Theorem 2 The zero solution of the Lorenz system has the following cases:

i) If c < 1, system (3) is asymptotically stable on the hole space.

ii) If c = 1, there exists r1 > 0 such that system (3) is globally asymptotically
stable on Rr1 = R

3 \ Br1 .

iii) If c > 1, there exists r2 > 0 such that system (3) is globally asymptotically
stable on Rr2 = R

3 \ Br2 .
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Proof.
Case i) for c < 1, let consider the quadratic form defined by:

V (x, y, z) =
1
2

XT PX =
1
2
(
cx2 + ay2 + az2

)
,

where

P =

c 0 0
0 a 0
0 0 a


is a real symmetric positive definite matrix. V (x, y, z) > 0 for all x ∈ R3 \ {0}.
V (x, y, z) → ∞ as ∥x∥ → ∞ and

1
2
λmin(P)∥(x, y, z)∥2 ¬ V (x, y, z) ¬

1
2
λmax(P)∥(x, y, z)∥2.

The derivative of V along the trajectories of the system (3) is given by:

V̇ (x, y, z) =
[
cx ay az

] 
a(y − x)

cx − xz − y
xy − bz


= acxy − acx2 + acxy − ay2 − axyz + axyz − abz2

= −acx2 − ay2 − abz2 + 2acxy

= −a(x y z)T


c −c 0
−c 1 0
0 0 b

 (x y z)

= −aXT BX .

B is a real symmetric positive definite matrix (∆1 = c > 0, ∆2 = c − c2 > 0,
∆3 = b(c − c2) > 0). Then, V̇ (x, y, z) < 0 for all (x, y, z) ∈ R3 \ (0, 0, 0). We
conclude that the origin is globally asymptotically stable with R0 = R

3 \ (0, 0, 0)
is the domain of attraction.
Case ii) for c = 1, let consider the Lyapunov function defined by:

V (x, y, z) =
1
2

XT PX =
1
2

(x2 + ay2 + a(z − 1)2).

It’s clear that V is a positive definite function, V (x, y, z) → ∞ as ∥x∥ → ∞.
One has

1
2
λmin(P)∥(x, y, z)∥2 ¬ V (x, y, z) ¬

1
2
λmax(P)∥(x, y, z)∥2.
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The derivative of V along the trajectories of the system (3) is given by:

V̇ (x, y, z) =
[
x ay a(z − 1)

] 
a(y − x)

x − xz − y
xy − bz


= axy − ax2 + axy − ay2 − axyz + axyz − abz2 − axy + abz

= −ax2 − ay2 − abz2 + axy + abz

= −a(x y)T


1 −1

2

−1
2

1


(x y) − abz2 + abz.

We have,

P̃(x, y) =


1 −1

2

−1
2

1


¬ λmax(P̃)∥(x, y)∥2 = 3

2
∥(x, y)∥2.

Introduce the function: f (z) = −abz2+abz. We have f ′(z) = −2abz+ab. When
f ′(z) = 0, this yields z0 =

1
2

, then f ′′(z0) = −2ab < 0. Thus supz∈R f (z) =

f (z0) =
ab
4

. So, we obtain

V̇ (X ) = −a(x y)t


c −−1

2

−−1
2

1


(x y) + f (z)

¬ −a
1
2

(√
2
√

c2 + 1 + c + 1
)
∥X ∥2 + f (z0)

= −a
1
2

(√
2
√

c2 + 1 + c + 1
)
∥X ∥2 + ab

4
.

Thus, we obtain the following estimation:

V̇ (X ) ¬ −α3(∥X ∥) + ρ,
where

α3(∥X ∥) = a
1
2

(√
2
√

c2 + 1 + c + 1
)
∥X ∥2.

Now if we take,

α1(∥X ∥) = 1
2
λmin(P)∥X ∥2 and α2(∥X ∥) = 1

2
λmax(P)∥X ∥2,
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then by Theorem 1, it follows that Br1 is globally asymptotically stable with

r1 = α
−1
1 ◦ α2 ◦ α−1

3 (ρ), ρ =
ab
4
> 0 and Rr1 = R

3 \ Br1 estimates the region of
attraction.
Case iii) when c > 1. In the neighborhood of the origin the system (3) is
unstable. In this case, we need to determine a set and a real number r satisfying the
conditions of theorem (1) to characterize the asymptotic behavior of the solutions.
Let us define the following Lyapunov function candidate for the system (3):

V (x, y, z) =
1
2
(
cx2 + ay2 + a(z − c + 1)2

)
.

It is clear that V is positive definite onR3. Therefore, the derivative of V along
the trajectories of the system (3) is given by:

V̇ (x, y, z) =
[
cx ay a(z − c + 1)

] 
a(y − x)

cx − xz − y
xy − bz


= acxy − acx2 + acxy − ay2 − axyz + axyz − abz2

− acxy + abcz + axy − abz

= −acx2 − ay2 − abz2 + acxy + abcz + axy − abz

= −acx2 − ay2 − abz2 + acxy + axy + abcz − abz

= −a(x y z)t


c −1

2
(c+1) 0

−1
2

(c+1) 1 0

0 0 0


(x y z) − abz2 + (abc − ab)z .

Let

P̂ =


c −1

2
(c + 1) 0

−1
2

(c + 1) 1 0

0 0 0


Then,

P̂(x, y) ¬ λmax(P̂)∥(x, y)∥2 = 1
2

(
√

2
√

c2 + 1 + c + 1)∥(x, y)∥2.

Introduce the function:

f (z) = −abz2 + (abc − ab)z.
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We have
f ′(z) = −2abz + abc − ab.

When f ′(z) = 0, this yields z0 =
abc − ab

2ab
. Then, f ′′(z0) = −2ab < 0. Thus,

sup
z∈R

f (z) = f (z0) =
ab(c − 1)

4
.

It follows that,

V̇ (X ) = −a(x y)t


c −1

2
(c + 1)

−1
2

(c + 1) 1


(x y) + f (z)

¬ −a
1
2

(√
2
√

c2 + 1 + c + 1
)
∥X ∥2 + f (z0)

= −a
1
2

(√
2
√

c2 + 1 + c + 1
)
∥X ∥2 + ab(c − 1)

4
.

Thus, we obtain the following estimation: V̇ (X ) ¬ −α3(∥X ∥) + ρ, with
α3(∥X ∥) = a

1
2
(√

2
√

c2 + 1 + c + 1
)
∥X ∥2. Hence, Br2 is globally uniformly

asymptotically stable, with

r2 = α
−1
1 ◦ α2 ◦ α−1

3 (ρ), ρ =
ab(c − 1)

4
> 0

and the set Rr2 = R
3 \ Br2 estimates the region of attraction. □

3.3. Illustrative example

Let consider the following special cases:

i)


ẋ = 12(y − x)
ẏ = 0.3x − xz − y

ż = xy − 8z
ii)


ẋ = 6(y − x)
ẏ = x − xz − y

ż = xy − 0.5z

iii)


ẋ = 5(y − x)
ẏ = 17x − xz − y

ż = xy − 3z
.

For each case, one has the following simulation – see figures.
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Figure 1: a = 12, b = 8, c = 0.3
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Figure 2: a = 6, b = 0.5, c = 1
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Figure 3: a = 5, b = 3, c = 17 a = 6, b = 0.5, c = 1
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3.4. A special case

We are often interested in determining how far from the origin the trajectory
can be and still converge to the origin as t approaches to infinity. Note that, finding
the exact region of attraction analytically might be difficult. However, Lyapunov
functions can be used to estimate the region of attraction, that is, to find the
optimal set contained in the region of attraction. We want to particularly study
Lorenz system (1) for a = 10, b = 8/3, c = 28. Therefore the new Lorenz system
is given by: 

ẋ = 10(y − x)
ẏ = 28x − xz − y

ż = xy − 8
3

z
. (4)

The stationary point are given by p(0, 0, 0), q± = (±6
√

2,±6
√

2, 27).

Figure 4: a = 10, b = 8/3, c = 28

Remark that, the line making up the curve never intersected itself and never
retraced its own path. Instead, it looped around forever and ever, sometimes
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spending time on one wing before switching to the other side. The main global
property that we shall address in the sequel is the property of being able to
guarantee that solutions of the system with sufficiently close initial values remain
close to each other over indefinite amounts of time in the future. It can also be
viewed as a result about the long term behavior of solutions in the sense that the
trajectories are bounded in a certain region of the space.

Let consider the linearization of the system around the origin.

A =
∂ f
∂X
|X=0 =


−10 10 0
28 −1 0

0 0 −8
3


We can find a Lyapunov function for system (4) by solving the Lyapunov

equation
PA + AT P = −Q for Q = I .

The unique solution is the positive definite matrix:

P =

169/5940 −32/1485 0
−32/1485 −307/2970 0

0 0 3/16

 ≃


0.028 −0.021 0
−0.021 0.103 0

0 0 0.187


Now, we need to determine a domain D about the origin where V̇ (x) is negative
definite and a bounded set Ωc ⊂ D.

V (X ) = XT PX = 0.028x2 + 0.103y2 + 0.187z2 − 0.42xy .

We calculate its derivative with respect the time along the system trajectories.

V̇ (X ) = (0.056x − 0.042y) ẋ + (0.206y − 0.042x) ẏ + 0.374zż

= −0.56x2 − 1.176x2 − 0.206y2 − 0.42y2 − 0.99z2 + 0.042x2z
+ 6.328xy + 0.42xy + 0.042xy + 0.168xzy

= −1.736x2 − 0.626y2 − 0.99z2 + 0.042x2z + 6.79xy + 0.168xzy .

Since we can say nothing about the sign of the derivative we will search for it
with polar coordinates. Taking


x = ρ sin φ cos θ
y = ρ sin φ sin θ
z = ρ cos φ
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with 

ρ =
√

x2 + y2 + z2

θ = arctan
(
y

x

)
φ = arccos *, z√

x2 + y2 + z2
+-
.

We have

V̇ = −1.736(ρ sin φ cos θ)2 − 0.626(ρ sin φ sin θ)2 − 0.99(ρ cos φ)2

+ 0.042(ρ sin φ cos θ)2(ρ cos φ) + 6.79(ρ sin φ cos θ)(ρ sin φ sin θ)
+ 0.168(ρ sin φ cos θ)(ρ sin φ sin θ)(ρ cos φ)

= −1.736ρ2 sin2 φ cos2 θ − 0.626ρ2 sin2 φ sin2 θ − 0.99ρ2 cos2 φ

+ 0.042ρ3 sin2 φ cos2 θ cos φ + 6.79ρ2 sin2 φ cos θ sin θ

+ 0.168ρ3 sin2 φ cos θ sin θ cos φ

¬ −1.736ρ2 | sin2 φ cos2 θ | − 0.626ρ2 | sin2 φ sin2 θ | − 0.99ρ2 | cos2 φ|
+ 0.042ρ3 | sin2 φ cos2 θ cos φ| + 6.79ρ2 | sin2 φ cos θ sin θ |
+ 0.168ρ3 | sin2 φ cos θ sin θ cos φ|

¬ −1.736ρ2 − 0.626ρ2 − 0.99ρ2 + 0.007ρ3 + 2.17ρ2 + 0.03ρ3.

It follows that,

V̇ ¬ −1.182ρ2 + 0.037ρ3.

Then, V̇ < 0 for ρ < 31.94. So, the system is asymptotically stable. Hence,
there is an open set

D = {x ∈ R3/∥X ∥ ¬ r, r > 0}

such that V̇ < 0 in D. We can therefore estimate the domain of attraction by
choosing

c < min{V (X ), ∥X ∥ = r } ≃ λmin(P)r2.

Since λmin(P) ≃ 0.0225, c can be taken smaller than λmin(P).ρ2. Thus, the
set Ωc, with c = 22.95 is an estimate of the region of attraction.



ON THE REGION OF ATTRACTION OF DYNAMICAL SYSTEMS:
APPLICATION TO LORENZ EQUATIONS 407

Figure 5: a = 10, b = 8/3, c = 28

4. Conclusion

In this paper, a new method is proposed to estimate the basin of attraction
based on the construction of a suitable Lyapunov function. In particular, the
relationship between the initial conditions and the regions of attractions when the
origin is not necessarily an equilibrium point. Moreover, an numerical application
to Lorenz system is given to verify the validity of the proposed method.
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