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A new strongly predefined time sliding mode controller
for a class of cascade high-order nonlinear systems

ALI SOLTANI SHARIF ABADI, POOYAN ALINAGHI HOSSEINABADI,
SAAD MEKHILEF and ANDRZEJ ORDYS

Many real-time systems can be described as cascade space-state models of different orders.
In this paper, a new predefined controller is designed using a Strongly Predefined Time Sliding
Mode Control (SPSMC) scheme for a cascade high-order nonlinear system. The proposed control
scheme based-on SMC methodology is designed such that the system states reach zero within
a determined time prior to performing numerical simulation. Moreover, Fixed Time Sliding
Mode Control (FSMC) and Terminal Sliding Mode Control (TSMC) schemes are presented and
simulated to provide a comparison with the proposed predefined time scheme. The numerical
simulation is performed in Simulink/MATLAB for the proposed SPSMC and the other two
existing methods on two examples: second and of third order to demonstrate the effectiveness of
the proposed SPSMC method. The trajectory tracking of the ship course system is addressed as
an example of a second-order system. Synchronization of two chaotic systems, Genesio Tesi and
Coullet, is considered as an example of a third-order system. Also, by using two performance
criteria, a thorough comparison is made between the proposed predefined time scheme, SPSMC,
and the two no predefined time schemes, FSMC and TSMC.
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1. Introduction

Sliding Mode Control (SMC) method is a well-known nonlinear control
method. Many control methods have been presented based-on this control scheme.
This method has been used, combined with other control concepts such as fuzzy
logic [1–3], backstepping [4], adaptive concept [5–7] in different studies. This
control method has also been also used to address different real-time control prob-
lems. In [8], a combination of optimization control method, adaptive concept, and
SMC method has been proposed to control the photovoltaic system in the smart
grid system. In [9], the event-triggered control is addressed for fuzzy systems
by utilizing observer-based SMC method. In [10], an adaptive robust finite-time
controller has been proposed based-on SMC method to address chaos control.
In [11], an adaptive backstepping SMC method has been proposed to develop an
equilibrium position controller for an electrohydraulic elastic manipulator.

Promoting the concepts of stability has been the focus of much research for
many years. Initially, the concepts of finite-time stability have been introduced
by Bahat et al. [12] and used for different systems [13]. Subsequently, the fixed-
time stability concept has been presented [14]. Recently, predefined time stability
concepts have been introduced which has attracted the attention of researchers in
different fields [15]. Different systems have been controlled by utilizing predefined
time stability concepts [16–18].

By combining the predefined time stability concept and SMC method, a
predefined SMC scheme has been introduced. This method is able to ensure
system stability within a determined time prior to system control [19, 20]. Also,
this method provides a robust control methodology to control those systems
which are challenging to control using direct Lyapunov theorem. Indeed, SMC
methodology provides a two-step control method such that it leads the system
states to reach and remain zero; after ensuring the system convergence to a specific
sliding surface. The combination of the SMC method and predefined time stability
concepts are also used to control a variety of systems [21–24]. In [23], a novel
controller based-on predefined time SMC method has been presented practically
for an electro-pneumatic actuator.

Two concepts very closely related to each other have been presented as weakly
predefined time and strongly predefined time stability, that researchers in the
fields of control engineering use them according to the application. In the weakly
predefined time method, the upper bound of the system stability time is presented.
Also, in the strongly predefined time method, the stability time is clearly and
precisely specified.

In this paper, a combination of the SMC method and predefined time stability
concept is proposed based-on a strongly predefined time concept for a class of
cascade high-order systems. the existing FSMC and TSMC methods are pre-
sented and simulated to provide no predefined time methods for comparing with
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the proposed predefined time method and to demonstrate the effectiveness of
the predefined stability concept in the proposed SPSMC method. Furthermore,
trajectory tracking and synchronization are addressed in the first and second
examples, respectively, to reveal the proposed control method is proper and ad-
justable for different control problems. Our proposed controller can be used for a
huge range of real-time applications, because the presented mathematical model
of cascade high-order systems in this paper can describe many real-time systems.
For example, it can describe the systems such as all double integrator systems
such as ship course system [25], MEMS system [26], and Quadrotor [27], as well
as other types of physical systems with cascade dynamics.

The remaining of this paper is organized as follows. In the second section, the
mathematical preliminaries required for our proof are given. Then, the problem
formulation is presented. In the third section, controller design by using SPSMC
is given. Also, the other two no predefined time methods, FSMC and TSMC,
are given. Section four provides two simulation examples with different control
problems including trajectory tracking, and chaotic synchronization. The first
numerical simulation example is considered for trajectory tracking of a cascade
second-order (double integrator) of the ship course system. The second simulation
example is considered for the synchronization of two chaotic Genesio Tesi and
Coullet systems as cascade third-order systems. The last section is the conclusions
of this paper.

2. Preliminaries

2.1. Fundamental definitions

Some standard definitions and lemmas are provided here that are used through-
out the paper. Note that throughout the paper, the dot means differential with re-
spect to time, and sign function signifies the signum function. Consider a system

ẋ = f (x; a), (1)

where x ∈ Rn is the state of the system and f : Rn → Rn and a ∈ Rb are the
system parameters. Also, the system initial conditions are as x(0) = x0.

Definition 1 If the origin of Eq. (1) has global asymptotic stability as well as
any solution x(t, x0) of (1) converges to the equilibrium point in a finite time, i.e.
∀ t ­ T (x0) : x(t, x0) = 0, where T : Rn → R­0 is said settling time function, the
origin of Eq. (1) has global finite-time stability [28].

Definition 2 If the origin of Eq. (1) has Finite-Time stability as well as the settling
time function is bounded, i.e. ∃ Tmax ­ 0: ∀ x0 : T (x0) ¬ Tmax, then origin has
fixed-time stability [29].
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Definition 3 For the Fixed-Time stability when the parameters a of the system of
Eq. (1) could be expressed in terms of bound of the settling time function Tmax, it
is said the origin of Eq. (1) has predefined-time stability [30].

Definition 4 For the system parameters a and a non-empty set M ⊂ Rn is called
globally strongly predefined-time attractive for Eq. (1), if any solution x(t, x0)
converges to M at a finite time t = t0 + T (x0), where the settling time function is
supT (x0) = Tc ∀ ∈ Rn and Tc is said the strong predefined-time [17].

Lemma 1 Assume there exists a continuous radially unbounded Lyapunov func-
tion V : Rn → R­0 and real number Tc > 0 and 0 < q ¬ 1 such that V (0) = 0,

V (x) > 0, ∀ x , 0, if the derivative of V is as V̇ = − 1
qTc

exp (V q) V 1−q, subse-

quently the origin of Eq. (1) is globally strongly Predefined-Time stable and the
strong predefined time is T (x0) = Tc [17].

Definition 5 Consider h ­ 0 for x ∈ Rn, define the function below:��⌊x⌉��h = x
∥x∥1−h , (2)

where ∥x∥ the norm of x and this function for h > 0 is continuous and for h = 0
in x = 0 is discontinuous [21].

Definition 6 For x ∈ Rn, the predefined-time stabilizing function is defined as:

Φq (x;Tc) =
1

Tcq
exp
(∥x∥q) ��⌊x⌉��1−q, (3)

where Tc > 0 and 0 < q ¬ 1 also Φ̇q (x;Tc) =
dΦq (x;Tc)

dt
is available [21].

Lemma 2 For every initial condition x0, the system:

ẋ = −Φq(x;Tc), (4)

where Tc > 0 and 0 < q ¬ 1 has global strong predefined-time stability with
strong predefined-time Tc. That is, x(t) = 0 for all t ­ t0 +Tc in spite of the value
of x0 [21].

Definition 7 The definition of sgn(x) function is given as sgn(x) =


1 x > 0,
0 x = 0,
−1 x < 0

;

and |x | = xsgn(x) is always true.

Definition 8 The sig(x) function is mathematically related to the sgn(x) function
as siga (x) = |x |asgn(x) [31].
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2.2. Problem formulation

Consider a class of cascade high-order nonlinear systems, as follows

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = x4 ,

...

ẋn = f (t, x) + g(t, x)u,

(5)

where x = [x1, x2, . . . , xn]T is the vector of the system states. Also, u is the only
control input of the system. The following assumptions are considered for the
system (5):

Assumption 1 f (t, x), g(t, x) are nonlinear smooth functions (which means “suf-
ficient differentiable function”).

Assumption 2 g(t, x) are bounded and invertible; i.e. the function g(t, x) has a
constant sign for all t, x.

Assumption 3 x = [x1, x2, . . . , xn]T all states of the system (5) are measurable.

Note that the goal of this paper is to design the control input u using the SMC
method such that the system is strongly predefined time stable.

3. Main results

Generally, two steps are required to achieve the predefined time stabilization
of a nonlinear system by using the SMC technique. In the first step, the defined
control input should ensure the existence of predefined time sliding motions,
sn−1 = 0. Indeed, the system states reach sliding mode sn−1 = 0 in the predefined
convergence time T1(x0). Therefore, sn−1 = 0 is fulfilled for t ­ T1(x0). In the
second step, the strongly predefined time stability of sliding motion sn−1 = 0
should be proved. In other words, the system states (which have been proved to
reach sn−1 = 0 for t ­ T1(x0), in the first step) converge to zero in the predefined
convergence time T2(x0).
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The sliding surfaces are given as follows

s1 = ẋ1 + Φq0

(
x1;Tc0

)
,

s2 = ṡ1 + Φq1

(
s1;Tc1

)
,

s3 = ṡ2 + Φq2

(
s2;Tc2

)
,

...

sn−1 = ṡn−2 + Φqn−2

(
sn−2;Tcn−2

)
,

(6)

where we have 0 < qi ¬ 1, Tci > 0, i = (0, 1, 2, . . . , n−2). Also, the designed
control input is as below

u = g−1(t, x)

*......,

− f (t, x) − Φ(n−1)
q0

(
x1;Tc0

) − Φ(n−2)
q1

(
s1;Tc1

)
− . . . − Φ̈qn−3

(
sn−3;Tcn−3

) − Φ̇qn−2

(
sn−2;Tcn−2

)
− 1

(2)(γ+1)/2Tcf q f
e(Vqf )sigγ (sn−1)

+//////-
, (7)

where we have 0 < q f ¬
1
2

, Tcf > 0, 0 ¬ γ = 1− 2q f < 1. Also, V is the defined

candidate Lyapunov function as V =
1
2

s2
n−1 (which satisfies the given conditions

in Lemma 1).

Theorem 1 Consider the system (5) with Assumptions 1 to 3, sliding surface (6).
If designed control input (7) is applied to the system (5), then all system states
reach zero as strongly predefined time. Also, strong predefined convergence time

is as T (x0) =
n−1∑
i=0

Tci + Tcf .

Proof. To prove the stability of the system as strongly predefined time by using
SMC technique, two aforementioned steps are obtained as follows

Step 1. It is first necessary to prove that, by applying the control input of
Eq. (7) to the system of Eq. (5), it reaches the sliding surface i.e. sn−1 = 0.
For this purpose, the candidate Lyapunov function is defined as V =

1
2

s2
n−1. By

differentiating of this candidate function with respect to time we have

V̇ = sn−1 ṡn−1 . (8)

Prior to proceeding further, note that the time derivative of the sliding surface
of Eq. (6) is as below



A NEW STRONGLY PREDEFINED TIME SLIDING MODE CONTROLLER
FOR A CLASS OF CASCADE HIGH-ORDER NONLINEAR SYSTEMS 605

ṡn−1 = f (t, x) + g(t, x)u + Φ(n−1)
q0

(
x1;Tc0

)
+ Φ

(n−2)
q1

(
s1;Tc1

)
+ . . .

+ Φ̈qn−3

(
sn−3;Tcn−3

)
+ Φ̇qn−2

(
sn−2;Tcn−2

)
. (9)

Also, by substituting the designed control input of Eq. (7) into Eq. (9), we
have

ṡn−1 = −
1

(2)(γ+1)/2Tcf q f
e(Vqf )sigγ (sn−1). (10)

In consequence, by substituting Eq. (10) into Eq. (8), the Eq. (8) can be
re-written as below

V̇ = sn−1 *,− 1
(2)(γ+1)/2Tcf q f

e(Vqf )sigγ (sn−1)+-
→ V̇ = − 1

(2)(γ+1)/2Tcf q f
e(Vqf ) |sn−1 |γ+1. (11)

Since we have |sn−1 | =
√

2V , then, there comes

V̇ = − 1
(2)(γ+1)/2Tcf q f

e(Vqf ) (2V )(γ+1)/2

→ V̇ = − 1
Tcf q f

e(Vqf ) (V )(γ+1)/2. (12)

Let γ = 1 − 2q f be, then there is

V̇ = − 1
Tcf q f

e(Vqf ) (V )1−qf . (13)

As a result, according to Lemma 1, by applying the control input (7) to the
system (5), the system states reach the sliding surface; sn−1 = 0 as strongly
predefined time. Also, according to Lemma 1, the strong predefined stabilization
time is as T1(x0) = Tcf . Hence, the first step of the proof is obtained.

Step 2. To obtain the second step of the proof, Lemma 2 is used. Indeed,
according to Lemma 2 we have sn−2 = 0 as strongly predefined time. Similarly,
we have s2 = 0, and consequently we have s1 = 0. Finally, x1 reaches zero as
strongly predefined time. In other words, it can be explained mathematically as
follows

sn−1
T¬Tcn−1−−−−−−→ 0 → sn−2

T¬Tcn−2−−−−−−→ 0 → . . . → s1
T¬Tc1−−−−→ 0 → x1

T¬Tc0−−−−→ 0. (14)
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Also, by converging x1 to zero, it can be concluded that other states reach
zero as strongly predefined time. In other words, we have

x1
T¬Tc0−−−−→ 0 → ẋ1 = x2

T¬Tc0−−−−→ 0 → . . . → ẋn−1 = xn
T¬Tc0−−−−→ 0. (15)

In consequence, all system states reach zero as strongly predefined time. Also,

the strong predefined stabilization time is as T2(x0) =
n−1∑
i=0

Tci . This concludes the

proof. □

Remark 1 The strong predefined time stability is fulfilled for the system (5) at

T (x0) = T1(x0) + T2(x0) =
n−1∑
i=0

Tci + Tcf , according to Steps 1 and 2 of the above

Proof. Indeed, all system (5) states converge zero for t ­ T (x0).

Remark 2 The control parameters 0 < qi ¬ 1, Tci > 0, 0 < q f ¬
1
2

, Tcf > 0,
and 0 ¬ γ = 1 − 2q f < 1 in the sliding surface, the control input, and inequality
related to T1(x0) and T2(x0) are arbitrary constants and chosen by the designer.
Therefore, the control efforts and predefined stabilization time of the system is
adjustable by selecting them properly.

Proposition 1 Consider the system (5) with Assumptions 1 to 3, sliding surface
(16). If designed control input (17) is applied to the system (5), then all system
states reach zero as fixed time (based-on previous study in [32]).

s1 = ẋ1 + A1(x1) + B1(x1),
s2 = ṡ1 + A2(s1) + B2(s1),
s3 = ṡ2 + A3(s2) + B3(s2),
...

sn−1 = ṡn−2 + An−1(sn−2) + Bn−1(sn−2),

(16)

where we have Ai (ξ) = a2i−1ξ
p2i−1
q2i−1 , Bi (ξ) = a2iξ

p2i
q2i , a j > 0, 0 < q2i−1 < p2i−1 <

2q2i−1 and 0 < p2i < q2i. Also, p j , qj are odd numbers.

u = g−1(t, x)

*.........,

− f (t, x) − A(n−1)
1 (x1) − B(n−1)

1 (x1)

−A(n−2)
2 (s1) − B(n−2)

2 (s1)

− . . . − Än−2(sn−3) − B̈n−2(sn−3)

−Ȧn−1(sn−2) − Ḃn−1(sn−2)
−r1sigγ1 (sn−1) − r2sigγ2 (sn−1)

+/////////-
, (17)

where r1,2 > 0 and 1 < γ2, 0 < γ1 < 1.



A NEW STRONGLY PREDEFINED TIME SLIDING MODE CONTROLLER
FOR A CLASS OF CASCADE HIGH-ORDER NONLINEAR SYSTEMS 607

Its proof is similar to the proof of Theorem 1, and is omitted because of space
limitations.

Proposition 2 Consider the system (5) with Assumptions 1 to 3, sliding surface
(16). If designed control input (17) is applied to the system (5), then all system
states reach zero as fixed time (based-on previous study in [33]).

s1 = ẋ1 + A1(x1),

s2 = ṡ1 + A2(s1),

s3 = ṡ2 + A3(s2)
...

sn−1 = ṡn−2 + An−1(sn−2),

(18)

where we have Ai (ξ) = a2i−1ξ
p2i−1
q2i−1 , a2i−1 > 0, and 0 < p2i−1 < q2i−1.

u = g−1(t, x)
(
− f (t, x) − A(n−1)

1 (x1) − A(n−2)
2 (s1) − . . . − Än−2(sn−3)

− Ȧn−1(sn−2) − r1sigγ1 (sn−1)
)
, (19)

where r1 > 0, and 0 < γ1 < 1.

The proof is analogous to the proof of Theorem 1.

Remark 3 Many practical systems in real-time are described by a cascade model
as Eq. (5) such as ship course system [25, 34], Genesio Tesi and Coullet systems
[35, 36], planetary gear-type inverted-pendulum (PIP) mechanism [37], van
der Pol chaotic oscillator [38], etc. Indeed, the proposed method in this paper
can be applied for a huge group of systems (described by cascade high-order
model similar to Eq. (5)). Accordingly, the proposed method is simulated on two
examples of cascade systems in the next section.

4. Simulation and comparison

In this section, two simulation examples of second-order, and third-order (with
different control goals) are simulated to verify the correctness of our proposed
designs in the previous section. The simulation is done for the proposed SPSMC
method and the FSMC and TSMC methods to demonstrate the effectiveness of
predefined time stability concepts compared with fixed time and finite-time stabil-
ity concepts. Additionally, trajectory tracking and synchronization are considered
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in the first and second examples, respectively, to demonstrate the proposed con-
troller is proper and adjustable for different control problems. For the numerical
simulation in this section, the Simulink environment of MATLAB software is uti-
lized with numerical solver ode3 and step-size 0.01. Note that all simulations are
performed in such a way that the settling time of all methods is almost identical.
Also, all simulation conditions are considered identically. Hence, their control
inputs and their errors are compared correctly.

In addition, two performance criteria are utilized to make a thorough com-
parison between the proposed SPSMC scheme and the other two schemes. The
criteria Integral of the Square Value (ISV) and Integral of the Absolute value of
the Error (IAE) have been defined in [6, 39, 40]. IAE is presented as below

I AEei =

t f∫
0

|ei |dt, (20)

whereas, ISV is presented as below

ISVui =

t f∫
0

u2
i dt, (21)

where t f denotes the total running time. The IAE is utilized to numerically
measure the tracking performance for a total error curve. The ISV signifies
energy consumption.

4.1. Trajectory tracking of ship course system

Consider the mathematical model of the second-order nonlinear ship course
system given in [25, 34], as follows

ẋ1 = x2

ẋ2 =
1
τ

(−H (x2) + Ku) ,
(22)

where τ = 0.21 is the system time constant and K = 78.41 is the rudder gain and
we have H (x2) = 2.2386x2 + 1988.4x3

2. In accordance with Eqs. (6) and (7), the
sliding surface and the control input of the system Eq. (22), will be as follows

s1 = ė1 + Φq0

(
e1;Tc0

)
,

u =
τ

K
*,1
τ

H (e2) − Φ̇q0

(
e1;Tc0

) − 1
(2)(γ+1)/2Tcf q f

e(Vqf )sigγ (s1) + ẋ2d
+- ,

(23)
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where the trajectory tracking errors are defined as e1 = x1 − x1d , e2 = x2 − ẋ1d .
The control parameters are considered as γ = 1 − 2q f , q0 = 0.09, Tc0 = 3.5,
q f = 0.09, Tcf = 3.5. By using the sliding surface in Eq. (23) and by applying the
control input in Eq. (23) to the system in Eq. (22); the system (22) is controlled
within a strong predefined convergence time with trajectory tracking goal. Also,
both system states reach the desired tracking trajectories as x1d = sin

(
5t +

π

3

)
,

x2d = 5 cos
(
5t +

π

3

)
, within strongly predefined time. Also, the initial conditions
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of the system states are chosen as x1(0) = 0.5, x2(0) = 0. Figs. 1 and 2 show
time responses of the system states along with the desired tracking trajectory, after
applying the proposed controller and the other two controllers. Fig. 3 represents
time responses of the trajectory tracking errors, after applying the proposed
controller and the other two controllers. Fig. 4 displays time responses of the
designed control input effect, after applying the proposed controller and the other
two controllers. It can be seen from Figs. 1 to 4 that the time responses of the
proposed predefined time scheme, SPSMC, is more satisfactory with a better
tracking performance than the no predefined time schemes, FSMC and TSMC.
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Figure 3: Time responses of e1(t) and e2(t)
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Table 1 and Fig. 5 provides a comparison of the performance indices. It can be
clearly observed that the proposed predefined time scheme, SPSMC, gives lower
numerical values for ISV and IAE, compared with the no predefined time schemes,
FSMC and TSMC. In consequence, the proposed SPSMC scheme outperforms
the other two schemes in terms of ISV and IAE.

Table 1: Comparison of the performance indices

ISVu × 108 I AEe1 I AEe2

SPSMC 1.8834 20.3221 14.9090

FSMC 2.0384 25.3626 18.0809

TSMC 2.2759 34.8989 22.7365
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Figure 5: Comparison of the performance indices

4.2. Synchronization of two chaotic systems of Genesio Tesi and Coullet

In this section, two three-order chaotic nonlinear systems Genesio Tesi and
Coullet gave in [35, 36], are synchronized with predefined convergence time. The
mathematical model of Genesio Tesi is given as follows

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = −0.45x3 − 1.1x2 − 1x1 + x2
1 .

(24)
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The Genesio Tesi system is considered as the master system. The mathematical
model of the Coullet system is given in Eq. (25) as the slave system, as follows

ẏ1 = y2 ,

ẏ2 = y3 ,

ẏ3 = −0.45y3 − 1.1y2 + 0.8y1 − y3
1 + u.

(25)

The initial conditions for the two systems to be in a chaotic state are as
x1(0) = 0.22, x2(0) = 0.21, x3(0) = 0.61, y1(0) = 0.1, y2(0) = 0.41, y3(0) =
0.31. Tracking errors for synchronization of the two systems Eqs. (24) and (25)
are defined as

e1 = y1 − x1 ,

e2 = y2 − x2 ,

e3 = y3 − x3 .

(26)

By defining sliding surfaces and control input as Eq. (27), the two systems of
Eqs. (24) and (25) synchronize as strongly predefined time.

s1 = ė1 + Φq0

(
e1;Tc0

)
,

s2 = ṡ1 + Φq1

(
s1;Tc1

)
,

u = −
(
−0.45y3 − 1.1y2 + 0.8y1 − y3

1

)
+
(
−0.45x3 − 1.1x2 − 1x1 + x2

1

)
− Φ̈q0

(
e1;Tc0

) − Φ̇q1

(
s1;Tc1

) − 1
2(γ+1)/2Tcf q f

e(Vqf )sigγ (s2).

(27)

Also, the control parameters are chosen as q0 = 0.9, q1 = 0.9, q f = 0.1,
Tc0 = 0.5, Tc1 = 0.5, Tcf = 1, γ = 1 − 2q f . Figs. 6 to 8 represent time responses
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Figure 6: Time responses of y1(t), x1(t)
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Figure 7: Time responses of y2(t), x2(t)

of the system states of the master system (24) and the slave system (25) after
applying the proposed controller and the other two controllers. Fig. 9 displays
the time responses of the synchronization errors after applying the proposed
controller and the other two controllers. Fig. 10 represents time responses of the
designed control input effect, after applying the proposed controller and the other
two controllers. It can be observed from Figs. 6 to 10 that the time responses of
the proposed predefined time scheme, SPSMC, is more satisfactory with a better
tracking performance than the no predefined time scheme, FSMC and TSMC.
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Figure 8: Time responses of y3(t), x3(t)
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Figure 9: Time responses of e1(t), e2(t) and e3(t)
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Table 2 and Figs. 11 and 12 provide a comparison of the performance in-
dices. It can be clearly seen that the proposed predefined time scheme, SPSMC,
gives lower numerical values for ISV and IAE, compared with the no prede-
fined time schemes, FSMC and TSMC. Therefore, the proposed SPSMC scheme
outperforms the other two schemes in terms of ISV and IAE.
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Table 2: Comparison of the performance indices

ISVu I AEe1 I AEe2 I AEe3

SPSMC 158.1327 3.8099 4.2245 4.9800

FSMC 1018.5 3.8248 4.2250 5.4647

TSMC 310.5559 3.8348 4.2287 5.1033
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Figure 11: Comparison of the performance indices
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5. Conclusions

In this paper, a new predefined time controller is designed using the SPSMC
method for a class of cascade high-order nonlinear systems. Subsequently, the
simulation results for two simulation examples demonstrate the correctness and
effectiveness of our designs. Also, two no predefined time existing methods,
FSMC and TSMC are simulated for the two examples. The considered simulation
examples are in the form of cascade nonlinear systems with different control goals.
The first numerical example is trajectory tracking of the second-order ship course
system. The simulation results of the SPSMC method show a precise convergence
of the system states to the desired tracking trajectories, once the designed control
input applied to the system (see Figs. 1 to 3). The second numerical example is
the synchronization of two chaotic third-order nonlinear systems, Genesio Tesi
and Coullet. The simulation results of the SPSMC method for the second example
demonstrate accurate synchronization of the master system, Genesio Tesi, to the
slave system, Coullet, after applying the proposed controller (see Figs. 6 to 9).
Furthermore, the proposed predefined time method, SPSMC, outperforms the
no predefined time methods, FSMC and TSMC. The controller proposed in this
paper can be used to control a range of physical systems because the considered
mathematical model for cascade systems can describe many real systems. Further
work can be done on robust control of such systems and optimization of control
parameters.
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