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The diagnostics of track superstructure, which involves geometric measurements, direct observation and railroad 

surveillance, provides the basis for making decisions regarding the commencement of repair works. Planning 

repairs and increasing the probability of making the right decision at the right time also requires knowledge of the 

basic performance specifications of a given railway line, especially the maximum train speed and the permissible 

traffic volume. The article discusses a way to plan the repairs of track superstructure using artificial neural 

networks. It features a description of the process of designing, building and training a neural network, based on 

which a way to predict the degree of urgency of repairs has been discussed. The conclusions point towards the 

potential advantages of neurocomputers in the process of track superstructure maintenance.
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1. INTRODUCTION

The most common rail repairs include those requiring the tamping of sleepers using automatic sleeper 

tamping machines. The basis for making decisions on the commencement of repairs is diagnostics 

involving geometric measurements, performed to determine the condition of isolated  rail sections, 

and direct observation or surveillance of the track superstructure using video cameras installed with 

railroad survey vehicles. The diagnostics of track superstructure and the strategies of maintenance 

thereof are both issues raised in a number of studies. Sakuma et al. [1] discussed a railway line 

diagnostic system that does not require measurements to be performed by special survey 

vehicles,which are substituted in this system by devices installed in the wagons of passengertrains 

travelling according to timetables. The measurement results are sent in real time to the control centre 

and then processed automatically to be sent further to entities dealing with track superstructure 

repairs. I. Soleimanmeigouni et al. [2] performed a critical analysis of models of track geometry 

degradation, considering its non-homogeneity, and found that the evaluation of track condition based

only on vertical irregularities – without taking horizontal irregularities and track twist into account –

is insufficient. A.R.B. Berawi et al. [3] presented a set of methods to evaluate the track geometrical 

quality on the Lisbon – Porto line, where the Polish synthetic index of quality J was applied. T. Liden 

[4] conducted a critical analysis of models of track repair planning, and described some of their 

applications in Sweden. L. Rui et al. [5] developed models for predicting the necessity of ongoing 

track superstructure repairs. T. R. Jr. Susmann et al. [6] proposed a spectral method to test the track 

superstructure and rail bed condition, and described a device designed for such tests. 

Sadeghi and Askarenejad [7] proposed a qualitative evaluation of track superstructure, based only on 

the standard deviations of vertical irregularities. The above also made an attempt to substitute testing 

of the superstructure by means of geometric measurements with the application of Artificial Neural 

Networks [8].

Artificial neural networks were also applied by A. Meddah and M. Witty [9] to predict rail 

cracking. Three types of damage occurring in 136-type rails were considered – cracks from fishplate 

bolt holes, vertical longitudinal railhead cracks and railhead chipping. Based on data from the period 

1997-2015, a range of training and test sequences was developed (almost 100000 data entries). The 

input layer included 10 variables, such as weather conditions, line traffic loading, defect size, rail 

manufacturers, line and track category, etc. The highest accuracy (82%) was achieved with respect to 

railhead chipping in summer conditions, and the lowest accuracy concerned the same defect but in 

46 H. BA�UCH, I. NOWOSI�SKA



winter conditions, which was explained by less precise records of the conditions in which those 

defects occurred.

2. ASSUMPTIONS

Awareness of the track superstructure condition, essential for repair planning, is based on many 

equivalent and non-equivalent features. A proper track superstructure repair is one performed at the 

right time, in the right place, in the right scope, and up to the required standards. Determining the 

right time for repairs is a condition that greatly influences the fulfilment of other conditions. Planning 

such repairs requires the consideration of survey results in the form of numbers and visual inspections 

(observations) of the structure to be repaired, with the findings of such inspections usually described 

in words. The relative ease of making geometric measurements, i.e. measurements of track 

irregularities, and the difficulties in quantifying the structure condition lead to the situation that some 

studies describe the structure condition based only on the standard deviation of vertical irregularities 

Sz, and thus, in accordance with [6], the condition can be evaluated as follows: 

Sz ≤ 1.0 mm perfect,

1.0 mm < Sz ≤ 2.0 mm good,

2.0 mm < Sz ≤ 4.0 mm satisfactory,

Sz > 4.0 mm inadequate

R. A. Andrade and P. F. Teixeira [10] also tend to evaluate track superstructure condition using the 

standard deviation of vertical irregularities only.

Making a decision to repair some section of a track superstructure based on such a simplified 

judgement may lead to premature or late repairs. Premature repairs increase the already high costs of 

railroad maintenance and renewal, which in the case of Europe with its approx. 300 000 km of tracks 

amount to 15–25 billion euro per year, according to [4]. Late repairs may, in turn, deteriorate the 

conditions of interfacing between railborne vehicles and tracks, and make the condition of the track 

superstructure unrepairable to some extent [11].

Evaluating the superstructure condition based on standard deviation values only can be 

considered an absolute evaluation, i.e. independent of the maximum train speed. It also weakens the 

significance of the linguistic evaluation of the condition of particular tracks, and so, for example, a 

rail considered good (Sz = 2.0 mm) at a velocity of 250 km/h is not a model example. Meanwhile, 

when considering a track with a standard deviation of Sz = 4.6 mm, an inadequate track at a maximum 
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velocity of 40 km/h seems to be an excessively harsh judgement. Hence, it is absolutely crucial to 

take the velocity V and traffic volume q into consideration in superstructure repair planning as well.  

Increasing the likelihood of accurate decisions being made regarding repairs also requires the 

adoption of additional geometric parameters of track condition and consideration of the most 

important structural feature of the superstructure, i.e. the one that determines the effectiveness of 

sleeper tamping – the condition of the railway ballast. Including the ballast condition in the full 

numerical description is a complex task, requiring many specialised measurements, so extending the 

scope of the usual diagnostic activities. Taking this regularity into account, the criterion adopted for 

the evaluation of the railway ballast condition is the occurrence of easily noticeable wet-beds. Based 

on the above, 4 ballast states have been differentiated, considering the number n of all wet-beds along 

200 m of track, the number of their clusters m, and the number of the adjacent sleepers in cluster k.

1. Very good condition: no wet-beds (n = 0)

2. Good condition: not more than 5 in total and not more than 2 clusters with 2 sleepers each, 

(n ≤ 5, m ≤ 2, k < 3)

3. Sufficient condition: not more than 8 in total and not more than 2 clusters with 3 sleepers each,

(n < 8, m ≤ 2, k < 3)

4. Inadequate condition: numbers exceeding the limit value of 3.

The described parameters make it impossible to determine a function on the basis of which a 

decision regarding repairs could be made. Yet, the issue can be solved by taking advantage of artificial 

neural networks. 

3. NETWORK STRUCTURE, NETWORK TRAINING,

AND THE OUTCOMES OBTAINED 

3.1 THE CONCEPT OF THE NETWORK MODEL STRUCTURE 

The application of artificial neural networks in diagnostics raises new possibilities of problem 

solving, particularly when a diagnosed problem cannot be formalized in numerical space or additional 

factors affecting its final outcome could not be taken into consideration [13]. 

It is an entirely different approach to diagnostics in reference to highly detailed expert systems based 

on detailed calculations [13-15] supporting decisions relating to the action plans, mainly concerning 

repairs.
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Forecasting the durability of selected railway superstructure parts, taking into account the highest 

number of examples, is possible with the application of artificial neural networks. It means that 

artificial neural networks do not require programming and learn on a certain set of examples 

describing a phenomenon, called a training sequence. The outcome of the training process is to 

generate complemented relations in the form of interpolation as well as extrapolation [13]. This 

process allows taking into account indefinable factors. 

‘With the application of artificial neural networks, the nature of the task makes it possible to 

solve it if defined as a predictive problem considered as either classification or regression. The main 

difference between regression and classification is that in the case of the latter the predicted variable 

assumes a categorical value (discrete qualitative variable – classes), and in the case of the former, its 

aim is to predict the value of a variable assuming a continuous value (numerical – continuous –

variable). In the case of classification, decisions are based on assigning a new case to one of the 

known categorical values of the training set, and in the case of regression, prediction involves

calculating a new decision value for a given case [16].

Decisions regarding repairs will be made based on an analysis of regression, which is the most 

appropriate statistical method for the task in question, as it makes it possible to describe the 

relationships occurring between the input variables and the output variables.

The process of building a regression model consists of the following stages:

a) compiling a data set and determining the nature of variables,

b) selecting the type and determining the structure of the neural network – followed by its 

training, 

c) evaluating and utilising the model in practice.

The aim of the task is to develop a model that can be used to predict the degree of repair urgency N.

The regression model was built using the collected data, divided into three sets (SSN sequences): a 

training set, a test set, and a validation set.

The training set is used directly to modify network weights, i.e. to teach the model. The test set is 

used to monitor the training process. It determines the quality (accuracy) of the prediction of N, and 

re-evaluates the quality of the model after the training stage. It is not, however, involved in the process 

of network training. The validation set is a completely independent set, i.e. not involved in the stage

of either training or testing. It is used as the basis to determine if the model works correctly.
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3.2 DATA SET USED TO BUILD A NETWORK MODEL 

The preparation of a training set consists in collecting examples, i.e. specific and verified cases and 

possibly data coding (the input values are to be presented as numbers). In the analyzed task all the 

input data have numerical features [12]. The set of data to construct a model consists of randomly 

selected cases from track geometry measurements data gathered over several years and carried out 

and made available by PKP PLK SA within commissioned tasks in the area of railway lines 

diagnostics. They include descriptive data and results of measurements performed with the use of 

electronic track gauge and a measurement handcar on the railway network in Poland. Particular 

attention has been drawn to the data related to track sections differing in terms of maintenance status, 

speed and transport volume.

The cases define selected characteristics of tracks, described by means of six parameters referred to 

by default as the input layer and of the number N assigned to them, being a decision value defined as 

the output layer (Fig. 1).

A training sequence covering information concerning 100 sample track characteristics drawn 

from randomly selected railway lines in different condition has been developed (the data concerning 

a given single railway line is included in one row). Each row features values of the seven variables 

(Table 1). 

Table 1. Fragment of training sequence defining the level of repair urgency- N

No.
Input layer Output layer

Sample
Sz Sy Se w b Id N

1 4.43 3.76 3.56 5.34 4 1.8 5 U

2 1.04 1.32 0.89 2.14 1 0.6 1 U

3 1.95 2.14 1.06 2.45 2 1.1 2 U

Two of them: the ballast condition b and the degree of repair urgency N have been determined 

by the authors based on the following classification:  

b – railway ballast condition: 1 – very good, 2 – good, 3 – satisfactory, 4 – inadequate,

N – degree of repair urgency: 1 – repair unnecessary, 2 – planned in a normal mode, 3 – urgent 

planning, 4 – emergent repair, 5 – emergent repair and speed restriction. 

The transport intensity Id comprises the maximum speed V and transport volume q on railway lines 

of the analyzed tracks. The other four, i.e. standard deviations of vertical Sz, horizontal Sy unevenness, 

track gauge Se and maximum track twist w, are results of measurements of track geometry performed 

on PKP PLK S.A. lines network by special measurement hand cars (EM-120).
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Based on the adopted principles of building a training sequence (Sample U) consisting of 100 

cases, two independent sequences have been developed: a test sequence (Sample T) consisting of 40 

cases and a validation sequence (Sample W) including 55 cases. Special emphasis has been placed 

on making sure that each sequence contains different cases. 

3.3 NETWORK BUILDING AND TRAINING 

There are many types and kinds of neural networks, different in terms of their structures and principles 

of functioning. Two kinds of neural networks have been developed to predict the repair urgency 

degree N, each of them utilising a different architecture: 

- MLP: a multi-layer perceptron feed-forward network, 

- RBF: a radial basis function network. 

The diagram of the multi-layer perceptron feed-forward (MLP) network is featured in Figure 1. 

Fig. 1. Designed neural network, MLP 6-6-1

The main features of an MLP-type network are an input layer, a hidden layer (one or several), an 

output layer, and a set of connections between each of these layers. This means that the network 

model is formed of neurons arranged in layers with signals transmitted from the input to the output. 

An MLP-type neuron is determined by its weights and threshold value which, when combined, create 

an equation of a line and indicate the rate of changes in the value of the transfer function (activation 

function). Determining the right number of layers and neurons and the activation function that 

Legend:

w1 – input layer

w2 – hidden layer

w3 – output layer

Sz – standard deviation of vertical irregularities

Sy – standard deviation of horizontal irregularities

Se – standard deviation of track width

w – maximum track twist

b – railroad ballast condition

Id – travel intensity 

N – degree of repair urgency

n – number of neurons

APPLICATION OF ARTIFICAL NEURAL NETWORKS IN PLANNING TRACK SUPERSTRUCTURE... 51



calculates a neuron’s output value is a very important element of the process of building such a

network [16, 17].

Training multi-layer networks takes place in the ‘teacher’ mode, which means that the training 

set will include values entered at the network input and a range of corresponding output values. 

The training aims to minimise the rate of occurrence of network error, calculated based on the output 

values and the values arrived at using the network. The error is calculated by means of a square sum 

function [12, 16, 17].

RBF networks make it possible to model more complex functions. In order to build an effective 

model, it is necessary to determine a greater number of neurons in the hidden layer. The main 

unique feature of this network type is that its hidden layer is formed of so-called radial neurons. 

A radial neuron is defined by its centre and the radius parameter, and the Gaussian activation 

function [16, 17].

Training an RBF network involves three stages:

- determining the radial centres (points), determining the weights for each radial neuron through 

points of the maximum output value of a given neuron,

- determining the radial deviations (radii), adopting the parameter determining the shape of the 

activation function, mapped as the threshold value of a given radial neuron,

- determining the weight of the output layer neuron.

3.4 NETWORK DESIGN AND TRAINING 

The network design involved building models using a module of automatic network architecture 

search and indicating the parameters enabling determination of the search range. This made it possible 

to determine the nature and number of the input (n = 6) and output (n = 1) variables, the activation 

functions for the neurons of the hidden and output layers as: linear, logistic, tanh, and exponential, 

and to define the minimum and maximum number of neurons in the hidden layer, i.e. from 3 to 11. 

The number of the built networks (12) and of the best networks saved (40) was determined as well. 

Training each of the built networks involved taking advantage of the available solutions, which 

included a random selection of the network typology and the indicated activation functions. This 

involves choosing the weight values and the threshold values of all neurons in a way that ensures the 

minimisation of network error occurrence. The process of training involving the automatic 

modification of weights and thresholds is based on the data entered, i.e. the parameters of the input 

layer and the correct solutions thereto [13, 16, 17].
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From among the 120 generated networks, there were three best networks bearing the following 

numbers: 105 (MLP 6-6-1), 11 (MLP 6-6-1) and 35 (MLP 6-5-1) (Table 2) left for further analysis.

In the case of the RBF-type network, the minimum and maximum numbers of neurons in the 

hidden layer were defined; the defined range was 3 to 25. The numbers of built networks (80) and 

best networks saved (40) were determined. 

From among the 80 generated networks, there were three best networks bearing the following 

numbers: 20 (RBF 6-14-1), 41 (RBF 6-19-1) and 38 (RBF 6-22-1) (Table 2) left for further analysis.

Table 2. Best MLP - and RBF - type neural networks

No.
Network 

number

Network 

name

Quality

Training 

Sample

Quality

Testing 

Sample

Activation 

Function 

w2

Activation 

Function 

w3

1 105 MLP 6-6-1 0.978 0.925 Tanh Logistic

2 11 MLP 6-6-1 0.979 0.921 Exponential Logistic

3 35 MLP 6-5-1 0.973 0.920 Exponential Tanh

4 20 RBF 6-14-1 0.906 0.912 Gaussian Linear

5 41 RBF 6-19-1 0.909 0.911 Gaussian Linear

6 38 RBF 6-22-1 0.945 0.909 Gaussian Linear

3.5 MLP - AND RBF – TYPE NETWORKS – TESTS AND RESULTS

In the task in question, the best results were achieved for the MLP-type network group. The built 

networks were evaluated based on Quality, determined on the basis of the test sample, which was not 

involved in the network training stage. The results are provided in Table 2. It appeared that the best 

network in the MLP group network was network no. 105, MLP 6-6-1, composed of 6 neurons in the 

input layer, of 6 neurons in the hidden layer, and of 1 neuron in the output layer (Fig. 1). 

A synthesis of the results obtained for the MLP network (Figures 2 and 3) illustrates the dispersion 

of the repair urgency degrees (Nw) arrived at in relation to the values entered (NZm).
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Fig. 2. Dispersion of actual values NZm (Dependent variable) and predictions of NW (Output)

in network no. 105, MLP 6-6-1 in the test sample

Fig. 3. Dispersion of actual values NZm (Dependent variable) and predictions of NW (Output) 

in network no. 105, MLP 6-6-1 in the training sample
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Table 3. Network testing – results

No.
Network number 105 11 35 20 41 38

Network name MLP 6-6-1 MLP 6-6-1 MLP 6-5-1 RBF 6-14-1 RBF 6-19-1 RBF 6-22-1

Training Sample 

1 Mean absolute error 0.182 0.179 0.237 0.493 0.495 0.382

2 Mean relative deviation 0.082 0.086 0.130 0.241 0.237 0.216

Testing Sample

3 Mean absolute error 0.413 0.414 0.437 0.562 0.539 0.480

4 Mean relative deviation 0.193 0.198 0.212 0.273 0.249 0.250

Based on the results of tests of all types of networks, as shown in Table 3, it can be concluded that 

the best network is the one offering the smallest absolute error, determined on the basis of the test 

set. The mean absolute error in the test sample of network no. 105 is 0.413 (19.3%), which is the 

lowest value among the results for all other networks. The results are proven by a final evaluation of 

the network’s performance, based on the validation set. Based on the network check performed on 

the Validation Sample it can be argued that the model has been built properly and is stable.

When analysing the results for the predictions of the repair urgency degree N as shown in Figure 

3, we can notice that the network is relatively well suited to the task in question. The network performs 

best in the case of predictions for the numbers N = 1 and 5. The prediction N within the range of 2 to 

4 has caused some difficulties, which prompts a further discussion on the modification of the training 

sequence.

3.6 AN ATTEMPT TO IMPROVE THE NETWORK MODEL 

STRUCTURE

Based on sources [6] and [10] as well as my own professional experience, it appears that the standard 

deviation of vertical irregularities greater than 2.0 mm may not mark a good track, and a standard 

deviation of 4.0 mm means that the track is in bad condition. An analogical claim can be made 

regarding the standard deviation of horizontal irregularities. The values of track twist have

a completely different significance, and so w < 4 o/oo does not mean that a track is in bad condition

(Fig. 5). The condition becomes bad when the track twist value approaches the permissible limit 

value, i.e. 7 o/oo.
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To avoid a disproportionately large impact of track twist values lower than approx. 5 o/oo on the 

necessity to order repairs, a new experiment was conducted, which involved entering a default 

quantity t in the input layer to substitute the track twist w according to the following equation:   

(3.1) t = 0.1w2+ 0.02w

The relationship, lessening the significance of track twist (Fig. 4), was implemented in all SSN 

sequences, which was followed by the network being built again.

Fig. 4. Relationship between track twist w and its conversion value
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Fig. 5. An excerpt from track twist measurement results [mm/m] provided by a recording coach travelling 

along approx. 100 m of a railway line track with a maximum velocity of 200 km/h

By analogy, the processes of network building, testing and evaluation were repeated, designing new 

models as presented in Table 4. 

Table 4. Network testing – results for the network after modification of the input layer

No.
Network number 19 24 29 40 36 33

Network name MLP 6-5-1 MLP 6-8-1 MLP 6-7-1 MLP 6-5-1 RBF 6-16-1 RBF 6-9-1

Training Sample

1 Mean absolute error 0.163 0.156 0.195 0.159 0.295 0.380

2 Mean relative deviation 0.070 0.067 0.101 0.07 0.146 0.179

Testing Sample

3 Mean absolute error 0.358 0.392 0.426 0.407 0.490 0.501

4 Mean relative deviation 0.167 0.186 0.194 0.194 0.220 0.226

As a result of the change made in the input layer, the results for both network types were improved. 

The best network, also in the MLP group, is network no. 19, MLP 6-5-1, composed of 6 neurons in 
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the input layer, of 5 neurons in the hidden layer, and of 1 neuron in the output layer. The mean 

absolute error for the Test Sample for network no. 19 is 0.358 (16.7%), which means a 3% 

improvement. 

4. CONCLUSIONS

The obtained results show that it is possible to plan track superstructure repairs while taking 

advantage of neural networks. At first, this could be applied to only the most frequent works, i.e. track 

tamping – preceded in some cases by ballast cleaning. Planning would be based on regular geometric 

measurements performed using a recording coach and on the outcomes of inspection tours aimed at 

determining the condition of features and structures, especially of ballast. 

Further steps, apart from developing the neural network models, could involve research into the 

automatic recognition of track superstructure images already recorded by a new recording coach 

currently in use in Poland. If this proved to be successful, it would legitimise the building of neural 

networks for hardware implementations, i.e. the employment of a neurocomputer. Such a solution

would open the door to the planning of not only retamping but also major repairs – meaning regular 

renewal of tracks. Feeding neurons with the results of mass defectoscopic tests of rails into a 

neurocomputer would not only lead to a substantial improvement of the level of rail traffic safety but 

also make it possible to increase the time of rail service to a great extent. 

REFERENCES

1. K. Sakuma, K. Takeda, J. Sato: Monitoring of track maintenance in pursuit of Condition Based Maintenance 

(CBM). Japanese Railway  Engineering 2018, No. 201, 9-12.

2. I. Solemaimanneigouni, A. Ahmandi, U. Kumar: Track geometry degradation and maintenance modeling –

A review. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of  Rail and Rapid Transid, 

pp. 59-63, July 2016.

3. A. R. B. Berawi. R. Delgado, R. Calcada, C. Vale.: Evaluating track geometrical quality through different 

methodologies. Journal of Technology, 38-47, 2010.

4. T. Liden: Railway infrastructure maintenance - A survey of planning problems and conducted research. 

Transportation Research Procedia, Vol.10, 574-583, 2015.

5. L. Rui, M. Wen, K. B. Salling, O. A. Nielsen, A. Landex, S. N. Madsen: A predictive maintenance  model for 

railway track. DTU – The Research Information System, Technical University of Denmark, 2015. 

6. J. Sadeghi, H. Askarenijad: Development of improved railway track degradation models. Structure and 

Infrastructure Engineering (6), 665-678, December 2010. 

7. T. R. Jr. Sussmannn, H. B. Thompson, T.D. Stark, S.T. Wilk, C.L. Ho: Use of seismic Surface wave testing to 

assess track superstructure condition. Construction and Building Materials, Vol. 155, 1250-1255, ELSEVIER,

November 2017.

8. J. Sadeghi, H. Askarinejad: Application of neural networks in evaluation of railway track quality condition. 

Journal of  Mechanical Science and Technology, Vol. 26, is. 1, 113 – 122, 2012.

9. A. Meddah, M. Witty: TTCI conducts neural network analysis for rail flow prediction. Railway Track and 

Structures 2019, No 4, 9-12.

58 H. BA�UCH, I. NOWOSI�SKA



10. R. A. Andrade, P. F. Teixeira: A. Bayesian model to assess rail track geometry degradation through its life-cycle. 

Research in Transportation Economics 36(1), 1-8 2012.

11. H. Bałuch: Determinanty wymian nawierzchni kolejowej (Determinants of railway superstructure replacement), 

Vol. 175, 7-14, 2017.

12. H. Bałuch, M. Bałuch: Sieci neuronowe jako narzędzie rozwiązywania problemów z zakresu dróg kolejowych 

(Neutral networks as tools to solve problems on Railway Lines). Problemy Kolejnictwa, Vol. 124, 35-62, 1997.

13. M. Bałuch: Interpretacja pomiarów i obserwacji nawierzchni kolejowej (Interpretation of railway superstructure 

measurements and observations). Technical University of Radom Publishing House 2005.

14. H. Bałuch: System geometryczno-kinematycznej oceny toru kolejowego (Geometric-kinematic system of 

railway track assessment). Problemy Kolejnictwa, Vol. 136, 2002.

15. H. Bałuch: Systemy eksperckie w diagnostyce nawierzchni kolejowej (Expert systems in railway superstructure 

diagnostics). Problemy Kolejnictwa, Vol. 114, 1993.

16. StatSoft. Elektroniczny Podręcznik Statystyki PL (Electronic Statistics Textbook PL), Cracow, 2006.

WEB: http://www.statsoft.pl/textbook/stathome.html.
17. R. Tadeusiewicz, T. Gąciarz, B. Borowik, B Leper: Odkrywanie właściwości sieci neuronowych (Discovering 

Neural Networks’ Properties), Polska Akademia Umiejętności, Cracow 2007.

LIST OF FIGURES AND TABLES

Fig. 1. Designed neural network, MLP 6-6-1

Rys. 1. Projektowana sieć neuronowa, MLP 6-6-1

Fig. 2. Dispersion of actual values NZm (Dependent variable) and predictions of NW (Output) in network no. 

105, MLP 6-6-1 in the test sample

Rys. 2. Rozrzut rzeczywistych wartości NZm (Zmienna zależna) i prognozy NW (Wyjście) sieci nr 105, MLP 

6-6-1 w Próbie Testowej

Fig. 3. Dispersion of actual values NZm (Dependent variable) and predictions of NW (Output) in network no. 

105, MLP 6-6-1 in the training sample

Rys. 3. Rozrzut rzeczywistych wartości NZm (Zmienna zależna) i prognozy NW (Wyjście) sieci nr 105, MLP 

6-6-1 w Próbie Uczącej

Fig. 4. Relationship between track twist w and its conversion value

Rys. 4. Zależność między wichrowatością toru w oraz jej wartością przeliczeniową

Fig. 5. An excerpt from track twist measurement results [mm/m] provided by a recording coach travelling 

along approx. 100 m of a railway line track with a maximum velocity of 200 km/h

Rys. 5. Fragment wyników pomiarów wichrowatość toru [mm/m] z wagonu pomiarowego na długości ok. 

100 m toru na linii kolejowej o maksymalnej prędkości 200 km/h

Tab. 1. Fragment of training sequence defining the level of repair urgency- N

Tab. 1. Fragment ciągu uczącego określającego stopień pilności naprawy - N

Tab. 2. Best MLP - and RBF - type neural networks

Tab. 2. Najlepsze sieci neuronowe typu MLP i RBF

Tab. 3. Network testing – results

Tab. 3. Testowanie sieci – wyniki

Tab. 4. Network testing – results for the network after modification of the input layer

Tab. 4. Testowanie sieci – wyniki dla sieci po modyfikacji warstwy wejściowej

APPLICATION OF ARTIFICAL NEURAL NETWORKS IN PLANNING TRACK SUPERSTRUCTURE... 59



ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH

W PLANOWANIU NAPRAW NAWIERZCHNI KOLEJOWEJ

Słowa kluczowe: nawierzchnia kolejowa, planowanie napraw, sieci neuronowe

STRESZCZENIE

Diagnostyka nawierzchni kolejowej obejmująca pomiary geometryczne, obserwacje bezpośrednie lub obrazy wizyjne 

stanowi podstawę do podejmowania decyzji o przystępowaniu do napraw. Planowanie napraw i zwiększenie 

prawdopodobieństwa trafności podjętej decyzji o właściwym czasie wykonania wymaga też znajomości podstawowych

charakterystyk eksploatacyjnych określonej linii kolejowej, głównie zaś maksymalnej prędkości pociągów oraz natężenia 

przewozów. W artykule przedstawiono możliwość planowania napraw nawierzchni kolejowej przy zastosowaniu 

sztucznych sieci neuronowych. Scharakteryzowano proces projektowania, budowy i uczenia sieci neuronowej, na 

podstawie którego przedstawiono możliwość predykcji stopnia pilności naprawy. W podsumowaniu przedstawiono 

możliwości wykorzystania neurokomputerów w procesie utrzymania nawierzchni kolejowej.
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