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1. Introduction

The finite difference method (FDM) is an important approach to
solving partial differential equations (PDEs). In this approach,
partial derivatives are approximated using finite-difference op-
erators (FDOs) that engage the solution values at adjacent
points, and finite-difference equations (FDEs) are created based
on such operators. A wide variety of such discrete operators ex-
ists and has been presented in several books on numerical meth-
ods [1–6].

The FDM is still the subject of investigation of several works;
a few exemplary works conducted over the past few years are
mentioned below. The FDM was used in [7] to solve the three-
dimensional (3D) magnetic-field problem. In [8], it was proved
that the FDM with hexahedral elements and the edge-element
method, when applied to magnetic-field 3D problems, exhib-
ited common features. The new structures of finite-difference
schemes were proposed in [9, 10]. In [11], high-order finite-
difference schemes were proposed for the Navier–Stokes two-
dimensional (2D) equations. Combinations of the FDM with
other approaches have also been observed. The FDM and the
finite-element method were combined in [12]. However, in the
above-mentioned books and papers, the FDOs were defined
based on the solution values at points adjacent to the point
at which the derivative was determined. New types of FDOs
were developed and tested to solve the steady-state solutions
of nonlinear dynamic systems directly when the solutions were
periodic [13–15] or double-periodic [16]. These operators re-
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lated the values of the derivatives at each point to the values of
the function, at all points distributed uniformly over the func-
tion domain. The same types of FDOs were adapted to solve
the one-dimensional (1D) boundary-value problems of ordinary
differential equations [17, 18] if the solution in the function do-
main repeated outside, i.e. it is periodic.

A previous study [19] extended that type of operators to
2D problems for second-order PDEs. In such cases, solutions
were predicted as two-variable functions over the rectangu-
lar domain which repeated outside that area. Thus, solutions
could be predicted as two-variable functions that are periodic
with respect to each variable. The first and second-order partial
FDOs were presented in [19]. They combined the values of par-
tial derivatives and two-variable functions for points distributed
uniformly over a rectangular area. The values of derivatives at
each point were related to the values of the function at all points
over the area. However, those FDOs had structures in which the
unknown values of the solution were arranged in a vector hav-
ing a dimension equal to the product of the numbers of points
in each direction. The relative FDEs for 2D problems were ex-
pected to have the same dimensions.

A modified FDO is presented in this paper. The difference
follows from the arrangement of the unknown values, both of
a solution and its derivatives, onto rectangular matrices, and
not vectors as before. The elements of those matrices correlate
strictly with the locations of individual points in the rectangu-
lar area. It significantly reduces the dimensions of the FDOs
to the numbers of points in each direction in the 2D area. The
FDEs are crating based on new operators for exemplary ellip-
tic equations. The matrices in such equations have significantly
smaller dimensions. An original iterative algorithm is proposed
for reducing the solving process to the multiplication of matri-
ces only.
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2. Novel discrete differential operators

The discrete 2D differential operators have been developed
in [19] for the two-variable double-periodic function z(x,y) =
z(x+2π,y) = z(x,y+2π) if it can be approximated by a Fourier
series with a limited number of terms:

z(x,y) =
R

∑
r=−R

S

∑
s=−S

zr,s · ejrx · ejsy. (1)

When this function is determined in the area −π < x < π ,
−π < y < π , unique relations between function values and
their Fourier coefficients can be found by choosing a set of
(2R+1) · (2S+1) points, located regularly in the function do-
main:

xn = n ·α, −R < n < R, α = 2π/(2R+1),

ym = m ·β , −S < m < S, β = 2π/(2S+1).

The function values zn,m = z(xn,ym) are determined by the
quadratic forms:

zn,m =




b−S·m

...
b−1·m

1
b1·m

...
bS·m




T

·




z−R,S · · · z−1,S z0,S z1,S · · · zR,S
...

...
...

...
...

...
...

z−R,1 · · · z−1,1 z0,1 z1,1 · · · zR,1

z−R,0 · · · z−1,0 z0,0 z1,0 · · · zR,0

z−R,−1 · · · z−1,−1 z0,−1 z1,−1 · · · zR,−1
...

...
...

...
...

...
...

z−R,−S · · · z−1,−S z0,−S z1,−S · · · zR,−S




·

·




a−R·n

...
a−1·n

1
a1·n

...
aR·n




, (2)

where a = ej·α and b = ej·β . Consequently, the relations for the
whole point set can be written in the matrix form as:

z = B ·Z ·A. (3)

The explicit forms of these matrices are given in the Appendix.
The inverse relation can be obtained rather easily:

Z = B−1 · z ·A−1, (4)

because the matrices A and B are of the Hermitian type:

A−1 =
1

2R+1
(A∗)T , B−1 =

1
2S+1

(B∗)T .

2.1. First-order discrete partial differential operators. The
first partial derivatives, if they exist, have the Fourier series
forms of:

∂ z(x,y)
∂x

=
S

∑
s=−S

(
R

∑
r=−R

(
j · r ·Zr,s · ej·r·x

))
· ej·s·y, (5a)

∂ z(x,y)
∂y

=
R

∑
r=−R

(
S

∑
s=−S

(
j · s ·Zr,s · ej·s·y

))
· ej·r·x. (5b)

The relations between the Fourier coefficients of the function
and its first derivatives take the forms:

Z′
x = j ·Z ·R, Z′

y = j ·S ·Z. (6)

The matrices Z′
x and Z′

y are arranged similarly to the matrix Z.
Their detailed forms are provided in Appendix. The matrices R
and S are diagonal and take the forms of:

R = diag
[
−R · · · −1 0 1 · · · R

]
,

S = diag
[
−S · · · −1 0 1 · · · S

]
.

Combining (3), (4), and (6), we obtain:

z′x = z ·Dx , Dx = j · (A−1 ·R ·A), (7a)

z′y = Dy · z , Dy = j · (B ·S ·B−1). (7b)

The matrices Dx and Dy are square but have different dimen-
sions: 2R+1 and 2S+1, respectively. Both matrices are singu-
lar (because one from the eigenvalues equals zero) and skew-
Hermitian (because the other eigenvalues are purely imagi-
nary). The explicit forms of these matrices are presented in the
Appendix.

2.2. Second-order discrete partial differential operators.
The discrete partial differential operators of the second order
can be obtained by repeating the differentiating operations. The
operator with respect to “x” follows from the operation:

z′′xx = z′x · (j ·A−1 ·R ·A) =−z · (A−1 ·R ·A) · (A−1 ·R ·A),

z′′xx =−z · (A−1 ·R2 ·A),

where R2 = diag
[

R2 · · · 1 0 1 · · · R2
]
, and analogously,

the operator with respect to “y” follows from:

z′′yy = (j ·B ·S ·B−1) · z′y =−(B ·S ·B−1) · (B ·S ·B−1) · z ,

z′′yy =−(B ·S2 ·B−1) · z,

where S2 = diag
[

S2 · · · 1 0 1 · · · S2
]
.

The mixed operator follows from:

z′′xy = z′y · (j ·A−1 ·R ·A) =−(B ·S ·B−1) · z · (A−1 ·R ·A),

z′′yx = (j ·B ·S ·B−1) · z′x =−(B ·S ·B−1) · z · (A−1 ·R ·A).
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Finally, the following relations are obtained:

z′′xx = z ·Dxx, z′′yy = Dyy · z, z′′xy = Dy · z ·Dx . (8)

The operators Dxx and Dyy are defined as:

Dxx =−(A−1 ·R2 ·A) and Dyy =−(B ·S2 ·B−1). (9)

These two matrices are also square and have the same dimen-
sions as the first-order operators, i.e. 2R+1 and 2S+1, respec-
tively. They are singular and symmetrical because their eigen-
vectors are real. The explicit forms of the matrices Dxx and Dyy
are given in the Appendix.

All types of discrete operators for two-variable periodic func-
tion have been presented in [1]. They are based on the same
assumptions as that of the Fourier series limitations and are de-
termined for the same point set presented in this paper. How-
ever, the values of the function, its derivatives, and Fourier
coefficients have been arranged into vectors with dimensions
(2R+ 1) · (2S+ 1). Consequently, all discrete operators have
the form of square matrices with the same dimensions, which
can be rather high.

An alternative form of discrete operators developed in this
section is based on the arrangement of those values in the ma-
trices. The values of the function and its derivatives, as well as
the respective Fourier coefficients, constitute rectangular matri-
ces with dimensions related to the numbers of points for the “x”
and “y” directions. All matrices in relations (7) and (8) have di-
mensions 2R+1 or 2S+1, or combinations of those numbers.
Thus, the new discrete operators have relatively smaller dimen-
sions.

3. Application examples

3.1. Elementary linear equation. Let us consider a linear el-
liptical equation:

ax
∂ 2z(x,y)

∂x2 + ay
∂ 2z(x,y)

∂y2 = g(x,y), (10)

with constant coefficients ax and ay. Application of the second-
order differential operators (8) leads to finite-difference equa-
tions of the form:

ax · z ·Dxx + ay ·Dyy · z = g . (11)

The matrices Dxx and Dyy are square, but have different di-
mensions 2R+1 and 2S+1, as mentioned in Section 2, and are
singular because each of them has one eigenvalue that equals
zero. The matrices z and g are rectangular (see Appendix) with
dimensions (2R+1)×(2S+1). Equation (11) cannot be solved
directly because of the different location of the matrix z with re-
spect to the matrices Dxx and Dyy. To solve the equation, it is
modified into the form:

ax · z ·Dxx + ay ·Dyy · z+ ax · z ·Dx0 = g+ ax · z ·Dx0 ,

ax · z ·Dxx + ay ·Dyy · z+ ay ·Dy0 · z = g+ ay ·Dy0 · z.

In the first equation, the term ax · z ·Dx0 has been added to both
sides of (11). Analogously, the term ay ·Dy0 ·z has been added to
create the second equation. The matrices Dx0 and Dy0 change
the zero’s eigenvalues to non-zero values, when added to the
matrices Dxx and Dyy.

D0x = −(A−1 ·R0 ·A), D0y =−(B ·S0 ·B−1), (13)

where

R0 = diag
[

0 · · · 0 d0 0 · · · 0
]
,

S0 = diag
[

0 · · · 0 d0 0 · · · 0
]
,

and have the forms:

D0x =
−d0

2R+1
·




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




;

D0y =
−d0

2S+1
·




1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1



.

An arbitrary value, d0, is the new eigenvalue, substituting for
the zero eigenvalue of the matrices Dxx and Dyy. It leads to two
equations with non-singular matrices (Dxx +D0x) and (Dyy +
D0y), which can be solved iteratively in a sequence:

zi+1
x · (Dxx +D0x) = (g+ zi

x ·D0x − (ay/ax) · zi
y ·Dyy),

(Dyy +D0y) · zi+1
y = (g+D0y · zi

y − (ax/ay) · zi+1
x ·Dxx).

The new values zi+1
x and zi+1

y allow for repeated iteration. The
variables of those equations are denoted as zx and zy, respec-
tively. Iterations should be completed when zx = zy = z at a
predefined accuracy. However, it is not necessary to solve them
because the inverse matrices (Dxx +D0x)

−1 and (Dyy +D0y)
−1

can be determined analytically. Using Eqs. (9) and (13), it fol-
lows that:

Dxx +D0x =−(A−1 · (R2 +R0) ·A),

Dyy +D0y =−(B · (S2 +S0) ·B−1),

where

R2 +R0 = diag
[

R2 · · · 1 d0 1 · · · R2 ],
S2 +S0 = diag

[
S2 · · · 1 d0 1 · · · S2 ].

Thus, the inverse matrices take the forms:

(Dxx +D0x)
−1 = Cxx +C0x ,

(Dyy +D0y)
−1 = Cyy +C0y ,
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with:

Cxx =−A−1 ·diag
[

1/R2 · · · 1/1 0 1/1 · · · 1/R2 ] ·A,

Cyy =−B ·diag
[

1/S2 · · · 1/1 0 1/1 · · · 1/S2 ] ·B−1,

C0x =
−1

(2R+1) ·d0
·




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




;

C0y =
−1

(2S+1) ·d0
·




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1



.

The matrices Cxx and Cyy have exactly the same forms as the
matrices Dxx and Dyy. Their detailed forms are described in the
Appendix.

Finally, the iterations reduce to multiplications of matrices:

zi+1
x = (g+ zi

x ·D0x − (ay/ax) · zi
y ·Dyy) · (Cxx +C0x), (14a)

zi+1
y = (Cyy +C0y) · (g+D0y · zi

y − (ax/ay) · zi+1
x ·Dxx). (14b)

The starting matrix z0
x can be determined by solving the 1D

equation:

ax
∂ 2zm(x)

∂x2 = g(x,ym),

with respect to variable x for individual values of ym. Analo-
gously, the matrix z0

y can be determined solving the 1D equa-
tion:

ay
∂ 2zn(y)

∂y2 = g(xn,y),

with respect to variable y for individual values of xm. The values
z0

x = z0
y = 0 can also be considered.

3.2. Non-linear equation. Many engineering problems lead
to non-linear elliptical equations of the form:

∂
∂x

(
ax(z,x,y)

∂ z(x,y)
∂x

)

+
∂
∂y

(
ay(z,x,y)

∂ z(x,y)
∂y

)
= g(x,y). (15)

In such cases, the problem of solving should be stated as fol-
lows: introducing functions u(x,y) and v(x,y)

∂ z(x,y)
∂x

= z′x(x,y) =
u(x,y)

ax(z,x,y)
, (16a)

∂ z(x,y)
∂y

= z′y(x,y) =
v(x,y)

ay(z,x,y)
, (16b)

Equation (15) can be written as:

∂u(x,y)
∂x

+
∂v(x,y)

∂y
= g(x,y). (16c)

Equations (16) constitute a set of three first-order partial differ-
ential equations with three unknown functions u(x,y), v(x,y),
and z(x,y). The respective finite-difference equations take the
forms:

z ·Dx = z′x , (17a)

Dy · z = z′y , (17b)

u ·Dx +Dy ·v = g, (17c)

when using the first-order operators (7). The matrices z′x and
z′y contain quotients on the right-hand sides in (16a) and (16b),
calculated at the grid points and arranged as in matrix z.

To solve equation set (17), Eq. (17c) should be written in two
forms, analogously, similar to Eq. (11).

u · (Dx +Dx0) = g+u ·Dx0 −Dy ·v,

(Dy +Dy0) ·v = g+Dy0 ·v−u ·Dx .

The matrices (Dxx+D0x) and (Dyy+D0y) are now nonsingular;
thus, these equations can be solved iteratively:

ui+1 · (Dx +D0x) = (g+ui ·D0x −Dy ·vi), (18a)

(Dy +D0y) ·vi+1 = (g+D0xvi −ui ·Dx). (18b)

Repeating the considerations in Section 3A, the final solutions
can be presented in direct forms, corresponding to (14):

ui+1 = (g+ui ·D0x −Dy ·vi) · (Cx +C0x), (19a)

vi+1 = (Cy +C0y) · (g+D0y ·vi −ui+1 ·Dx), (19b)

where

Cx =−j ·A−1 ·R−1 ·A, Cy =−j ·B ·S−1 ·B−1.

The matrices Cx and Cy have exactly the same forms as the
matrices Dx and Dy. Their detailed forms are described in the
Appendix.

Before starting a new iteration, Eqs. (17a) and (17b) should
be used to recalculate the values of the functions ax(z,x,y) and
ay(z,x,y) in (16a) and (16b), if they depend on the function
z(x,y). For this, Eqs. (17a) and (17b) should be modified into
the forms:

zi+1
x · (Dx +D0x) = z′i+1

x + zi
x ·D0x , (20a)

(Dy +D0y) · zi+1
y = z′i+1

y +D0y · zi
y. (20b)
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The elements z′i+1
x,n,m and z′i+1

y,n,m of matrices z′i+1
x and z′i+1

y
should be calculated from the relationships:

z′i+1
x,n,m =

ui+1
n,m

ai
x,n,m

=
ui+1(xn,ym)

ax(zi
n,m,xn,ym)

, (21a)

z′i+1
y,n,m =

vi+1
n,m

ai
y,n,m

=
vi+1(xn,ym)

ay(zi
n,m,xn,ym)

. (21b)

The explicit solutions of Eq. (20) have the forms:

zi+1
x = (z′ix + zi

x ·D0x) · (Cx +C0x), (22a)

zi+1
y = (Cy +C0y) · (z′iy +D0y · zi

y). (22b)

The matrices zi+1
x and zi+1

y can differ in successive iterations.
The iterations should be stopped when zx = zy = z, at a prede-
fined accuracy.

The starting matrices z0, u0, and v0 are necessary for this
case. The starting matrix z0 can be determined by solving a 1D
equation with respect to the variable x:

ax(zm,x,ym)
∂ zm(x)

∂x
= g(x,ym), (23a)

or with respect to the variable y:

ay(zn,xn,y)
∂ zn(y)

∂y
= g(xn,y). (23b)

The matrices u0 and v0 can be determined based on solutions
(23a) or (23b), respectively. The starting matrices can be pre-
dicted heuristically.

4. Conclusions

The paper presented a new type of finite-difference operator
designed to solve 2D problems described by second-order par-
tial differential equations. The novelty of the operators followed
from the arrangement of the unknown values of the solution
as rectangular matrices covering the locations of discretization
points exactly in the rectangular area of the solution. The finite-
difference operators for all partial derivatives, both the first and
second orders, were presented. They constituted singular square
matrices with reduced dimensions, related to the numbers of
discretization points in each direction. Two examples showed
how to create finite-difference equations for typical second-
order elliptic equations. Although those equations had dimen-
sions that were reduced almost twice, they had specific struc-
tures that could not be solved directly. This paper proposed al-
gorithms dedicated to solving them, which reduced the problem
to the multiplication of matrices.

However, the algorithm should be numerically tested, and re-
sults should be compared with other methods. The aim of this
paper was to present only the idea of the algorithm based on
new finite-difference operators.

Appendix

Detail forms of matrices
The matrix of function’s values

z =




z−R,S · · · z−1,S z0,S z1,S · · · zR,S
...

...
...

...
...

...
...

z−R,1 · · · z−1,1 z0,1 z1,1 · · · zR,1

z−R,0 · · · z−1,0 z0,0 z1,0 · · · zR,0

z−R,−1 · · · z−1,−1 z0,−1 z1,−1 · · · zR,−1
...

...
...

...
...

...
...

z−R,−S · · · z−1,−S z0,−S z1,−S · · · zR,−S




;

z′x, z′y, z′′xx, z′′yy and z′′xy have the same structures.

The matrix of function’s Fourier coefficients

Z =




Z−R,S · · · Z−1,S Z0,S Z1,S · · · ZR,S
...

...
...

...
...

...
...

Z−R,1 · · · Z−1,1 Z0,1 Z1,1 · · · ZR,1

Z−R,0 · · · Z−1,0 Z0,0 Z1,0 · · · ZR,0

Z−R,−1 · · · Z−1,−1 Z0,−1 Z1,−1 · · · ZR,−1
...

...
...

...
...

...
...

Z−R,−S · · · Z−1,−S Z0,−S Z1,−S · · · ZR,−S




;

Z′
x, Z′

y, Z′′
xx, Z′′

yy and Z′′
xy have the same structures.

Matrices of transformations

A =




aR2 · · · aR 1 a−R · · · a−R2

...
...

...
...

...
...

...
aR · · · a1 1 a−1 · · · a−R

1 · · · 1 1 1 · · · 1
a−R · · · a−1 1 a1 · · · aR

...
...

...
...

...
...

...
a−R2 · · · a−R 1 aR · · · aR2




,

a = ej·α , α = 2π/(2R+1);

B =




bS2 · · · bS 1 b−S · · · b−S2

...
...

...
...

...
...

...
bS · · · b1 1 b−1 · · · b−S

1 · · · 1 1 1 · · · 1
b−S · · · b−1 1 b1 · · · bS

...
...

...
...

...
...

...
b−S2 · · · b−S 1 bS · · · bS2




,

b = ej·β , β = 2π/(2S+1).
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The elements z′i+1
x,n,m and z′i+1

y,n,m of matrices z′i+1
x and z′i+1

y
should be calculated from the relationships:

z′i+1
x,n,m =

ui+1
n,m

ai
x,n,m

=
ui+1(xn,ym)

ax(zi
n,m,xn,ym)

, (21a)

z′i+1
y,n,m =

vi+1
n,m

ai
y,n,m

=
vi+1(xn,ym)

ay(zi
n,m,xn,ym)

. (21b)

The explicit solutions of Eq. (20) have the forms:

zi+1
x = (z′ix + zi

x ·D0x) · (Cx +C0x), (22a)

zi+1
y = (Cy +C0y) · (z′iy +D0y · zi

y). (22b)

The matrices zi+1
x and zi+1

y can differ in successive iterations.
The iterations should be stopped when zx = zy = z, at a prede-
fined accuracy.

The starting matrices z0, u0, and v0 are necessary for this
case. The starting matrix z0 can be determined by solving a 1D
equation with respect to the variable x:

ax(zm,x,ym)
∂ zm(x)

∂x
= g(x,ym), (23a)

or with respect to the variable y:

ay(zn,xn,y)
∂ zn(y)

∂y
= g(xn,y). (23b)

The matrices u0 and v0 can be determined based on solutions
(23a) or (23b), respectively. The starting matrices can be pre-
dicted heuristically.

4. Conclusions

The paper presented a new type of finite-difference operator
designed to solve 2D problems described by second-order par-
tial differential equations. The novelty of the operators followed
from the arrangement of the unknown values of the solution
as rectangular matrices covering the locations of discretization
points exactly in the rectangular area of the solution. The finite-
difference operators for all partial derivatives, both the first and
second orders, were presented. They constituted singular square
matrices with reduced dimensions, related to the numbers of
discretization points in each direction. Two examples showed
how to create finite-difference equations for typical second-
order elliptic equations. Although those equations had dimen-
sions that were reduced almost twice, they had specific struc-
tures that could not be solved directly. This paper proposed al-
gorithms dedicated to solving them, which reduced the problem
to the multiplication of matrices.

However, the algorithm should be numerically tested, and re-
sults should be compared with other methods. The aim of this
paper was to present only the idea of the algorithm based on
new finite-difference operators.

Appendix

Detail forms of matrices
The matrix of function’s values

z =




z−R,S · · · z−1,S z0,S z1,S · · · zR,S
...

...
...

...
...

...
...

z−R,1 · · · z−1,1 z0,1 z1,1 · · · zR,1

z−R,0 · · · z−1,0 z0,0 z1,0 · · · zR,0

z−R,−1 · · · z−1,−1 z0,−1 z1,−1 · · · zR,−1
...

...
...

...
...

...
...

z−R,−S · · · z−1,−S z0,−S z1,−S · · · zR,−S




;

z′x, z′y, z′′xx, z′′yy and z′′xy have the same structures.

The matrix of function’s Fourier coefficients

Z =




Z−R,S · · · Z−1,S Z0,S Z1,S · · · ZR,S
...

...
...

...
...

...
...

Z−R,1 · · · Z−1,1 Z0,1 Z1,1 · · · ZR,1

Z−R,0 · · · Z−1,0 Z0,0 Z1,0 · · · ZR,0

Z−R,−1 · · · Z−1,−1 Z0,−1 Z1,−1 · · · ZR,−1
...

...
...

...
...

...
...

Z−R,−S · · · Z−1,−S Z0,−S Z1,−S · · · ZR,−S




;

Z′
x, Z′

y, Z′′
xx, Z′′

yy and Z′′
xy have the same structures.

Matrices of transformations

A =




aR2 · · · aR 1 a−R · · · a−R2

...
...

...
...

...
...

...
aR · · · a1 1 a−1 · · · a−R

1 · · · 1 1 1 · · · 1
a−R · · · a−1 1 a1 · · · aR

...
...

...
...

...
...

...
a−R2 · · · a−R 1 aR · · · aR2




,

a = ej·α , α = 2π/(2R+1);

B =




bS2 · · · bS 1 b−S · · · b−S2

...
...

...
...

...
...

...
bS · · · b1 1 b−1 · · · b−S

1 · · · 1 1 1 · · · 1
b−S · · · b−1 1 b1 · · · bS

...
...

...
...

...
...

...
b−S2 · · · b−S 1 bS · · · bS2




,

b = ej·β , β = 2π/(2S+1).
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The first order discrete differential operators

Dx =−




0 −d(1)1 −d(1)2 · · · −d(1)R d(1)R · · · d(1)2 d(1)1

d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)R d(1)R · · · d(1)2

d(1)2 d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)R · · · d(1)3
...

. . . . . . . . . . . . . . . . . . . . .
...

d(1)R · · · d(1)2 d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)R

−d(1)R d(1)R · · · d(1)2 d(1)1 0 −d(1)1 · · · −d(1)R−1
...

. . . . . . . . . . . . . . . . . . . . .
...

−d(1)2 · · · −d(1)R d(1)R · · · · · · d(1)1 0 −d(1)1

−d(1)1 −d(1)2 · · · −d(1)R d(1)R · · · d(1)2 d(1)1 0




;

d(1)r =
2

2R+1

R

∑
k=1

k · sin
(

k · r · 2π
2R+1

)
;

Dy =




0 −d(1)1 −d(1)2 · · · −d(1)S d(1)S · · · d(1)2 d(1)1

d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)S d(1)S · · · d(1)2

d(1)2 d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)S · · · d(1)3
...

. . . . . . . . . . . . . . . . . . . . .
...

d(1)S · · · d(1)2 d(1)1 0 −d(1)1 −d(1)2 · · · −d(1)S

−d(1)S d(1)S · · · d(1)2 d(1)1 0 −d(1)1 · · · −d(1)S−1
...

. . . . . . . . . . . . . . . . . . . . .
...

−d(1)2 · · · −d(1)S d(1)S · · · · · · d(1)1 0 −d(1)1

−d(1)1 −d(1)2 · · · −d(1)S d(1)S · · · d(1)2 d(1)1 0




;

d(1)s =
2

2S+1

S

∑
k=1

k · sin
(

k · s · 2π
2S+1

)
.

The matrices Cx and Cy have the same structures with the
elements

c(1)r =− 2
2R+1

R

∑
k=1

1
k
· sin

(
k · r · 2π

2R+1

)
,

c(1)s =− 2
2S+1

S

∑
k=1

1
k
· sin

(
k · s · 2π

2S+1

)
.

The second order discrete differential operators

Dxx =




d(2)0 d(2)1 d(2)2 · · · d(2)R d(2)R · · · d(2)2 d(2)1

d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)R d(2)R · · · d(2)2

d(2)2 d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)R · · · d(2)3
...

. . . . . . . . . . . . . . . . . . . . .
...

d(2)R · · · d(2)2 d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)R

d(2)R d(2)R · · · d(2)2 d(2)1 d(2)0 d(22
1 · · · d(2)R−1

...
. . . . . . . . . . . . . . . . . . . . .

...

d(2)2 · · · d(2)R d(2)R · · · d(2)2 d(2)1 d(2)0 d(2)1

d(2)1 d(2)2 · · · d(2)R d(2)R · · · d(2)2 d(2)1 d(2)0




;

d(2)r =− 2
2R+1

S

∑
k=1

(
k2 · cos

(
k · r · 2π

2S+1

))
;

Dyy =




d(2)0 d(2)1 d(2)2 · · · d(2)S d(2)S · · · d(2)2 d(2)1

d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)S d(2)S · · · d(2)2

d(2)2 d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)S · · · d(2)3
...

. . . . . . . . . . . . . . . . . . . . .
...

d(2)S · · · d(2)2 d(2)1 d(2)0 d(2)1 d(2)2 · · · d(2)S

d(2)S d(2)S · · · d(2)2 d(2)1 d(2)0 d(22
1 · · · d(2)S−1

...
. . . . . . . . . . . . . . . . . . . . .

...

d(2)2 · · · d(2)S d(2)S · · · d(2)2 d(2)1 d(2)0 d(2)1

d(2)1 d(2)2 · · · d(2)S d(2)S · · · d(2)2 d(2)1 d(2)0




;

d(2)s =− 2
2S+1

S

∑
k=1

(
k2 · cos

(
k · s · 2π

2S+1

))
.

The matrices Cxx and Cyy have the same structures with the
elements

c(2)r =
2

2R+1

R

∑
k=1

1
k2 · sin

(
k · r · 2π

2R+1

)
,

c(2)s =
2

2S+1

S

∑
k=1

1
k
· sin

(
k · s · 2π

2S+1

)
.
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