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1. Introduction

Bringing a coil fed with alternating current closer to conductive
material results in the induction of eddy currents. The presence
of defects in the tested object disturbs the flow of eddy currents,
which brings about changes in the impedance of the coil. The
correct interpretation of these changes allows detecting flaws
and estimating their geometric dimensions. What has proved to
be extremely useful for this purpose are mathematical models.
The employment of them makes it possible to carry out both
the analysis of the obtained coil impedance components and
a simulation of the measurement process. According to the
author, analytical models are particularly effective, since they
can be implemented in any programming language and used
for calculations made directly in the measuring instrument
during the test.

In a series of articles, non-destructive and semi-destructive
diagnostics of concrete structures [1–3], steel elements [4, 5]
and composites [6] were discussed in detail. In non-destructive
testing, the inspection of materials is usually carried out with
the employment of probes containing coils. The probe in the
form of filamentary coil [7–10], rectangular coil [11, 12], air-
cored coil [13–18], I-cored coil [19–22] and iron core coil [23]
were studied. In eddy current testing, pot core probes are very
frequently utilized [24, 25]. The closure of the magnetic flux
inside the core makes the flux take direction towards the tested
surface, which in turn causes an increase in its intensity in the
near vicinity of the workpiece. The analytical model of the coil
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with such a core, placed over the conductive half-space was
developed in [26]. However, the presented solution is insuffi-
cient because it facilitates making calculations only for objects
of infinite thickness and containing an easily detectable surface
hole. A comprehensive mathematical model intended for prac-
tical use in eddy current defectoscopy should allow us to model
multilayer materials of finite geometric dimensions and con-
taining a hole that may be situated anywhere in the workpiece.
The novelty of this paper is an analytical solution that meets
the aforementioned requirements. The developed mathematical
model is designed for calculating the impedance components
of an E-cored coil located above a three-layer plate with an
inner hole (Fig. 1). A proper selection of workpiece param-
eters facilitates making calculations for both a magnetic and
a non-magnetic plate containing an inner, a through, a surface
or a subsurface hole.

Fig. 1. E-cored coil located above a conductive plate with an inner hole

2. Methods

The cross-section of a pot-cored coil of relative magnetic per-
meability µ f has been shown in Fig. 2. The coil was placed
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developed in [26]. However, the presented solution is insuffi-
cient because it facilitates making calculations only for objects
of infinite thickness and containing an easily detectable surface
hole. A comprehensive mathematical model intended for prac-
tical use in eddy current defectoscopy should allow us to model
multilayer materials of finite geometric dimensions and con-
taining a hole that may be situated anywhere in the workpiece.
The novelty of this paper is an analytical solution that meets
the aforementioned requirements. The developed mathematical
model is designed for calculating the impedance components
of an E-cored coil located above a three-layer plate with an
inner hole (Fig. 1). A proper selection of workpiece param-
eters facilitates making calculations for both a magnetic and
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Fig. 2. Rectangular cross-sectional E-cored coil located above a three-
layer conductive plate with an inner hole

at a distance l1 from the surface of a three-layer plate of mag-
netic permeability of µ6, µ7, µ8 and electrical conductivity σ6,
σ7, σ8. A hole with radius g and depth l3 − l2 was made in
the middle layer of the plate. The solution domain was ra-
dially limited up to the value of parameter b. On the outer
boundary r = b, the component of the magnetic vector po-
tential Aϕ(b,z) = 0 satisfies the Dirichlet boundary condition.
While using the cylindrical coordinate system, the problem was
divided into 10 regions (towards component z) and 5 subre-
gions (I–V). For the purpose of the analysis, a filamentary coil
(r2−r1 → 0, h2−h1 → 0) was employed, whose all turns coiled
in a circle of radius r0 were located at the distance h0 from the
surface of the plate. The expressions concerning the magnetic
vector potential Aϕ(r,z) around such a coil were derived for
each region with the employment of the truncated region eigen-
function expansion (TREE) method [27, 28] and expressed in
the form of matrix notation. The number of the elements of vec-
tors and matrices is determined by the parameter Ns. By denot-
ing the row vectors with index T, and the column vectors of
unknown coefficients as Ci, Bi, the following expressions were
obtained:

A1(r,z) = J1
(
qTr

)
q−1e−qzC1 , (1)

A2(r,z) =

{J1(mTr)} 0 ≤ r ≤ a1

{L1(mTr)}m−1(e−mzC2 − emzB2) a1 ≤ r ≤ c2

{L′
1(m

Tr)} c2 ≤ r ≤ b

, (2)

A3(r,z) =

{J1(pTr)} 0 ≤ r ≤ a1

{R1(pTr)} a1 ≤ r ≤ a2

{R′
1(p

Tr)}p−1(e−pzC3 − epzB3) a2 ≤ r ≤ c1

{R′′
1(p

Tr)} c1 ≤ r ≤ c2

{R′′′
1 (p

Tr)} c2 ≤ r ≤ b

, (3)

A4(r,z) =

{J1(pTr)} 0 ≤ r ≤ a1

{R1(pTr)} a1 ≤ r ≤ a2

{R′
1(p

Tr)}p−1(e−pzC4 − epzB4) a2 ≤ r ≤ c1

{R′′
1(p

Tr)} c1 ≤ r ≤ c2

{R′′′
1 (p

Tr)} c2 ≤ r ≤ b

, (4)

A5(r,z) = J1(qTr)q−1(e−qzC5 − eqzB5), (5)

A6(r,z) = J1(qTr)s−1
6 (e−s6zC6 − es6zB6), (6)

A7(r,z) =
{J1(uTr)R1(vg)} 0 ≤ r ≤ g

{R1(vTr)J1(ug)}u−1(e−uzC7 − euzB7) g ≤ r ≤ b
, (7)

A8(r,z) = J1(qTr)s−1
8 (e−s8zC8 − es8zB8), (8)

A9(r,z) =−J1(qTr)q−1eqzB9 . (9)

The discrete eigenvalues were written in the form of diagonal
matrices q, m, p, sn, u, v. For the purpose of calculating them,
the employment of boundary conditions and continuity condi-
tions of the magnetic vector potential for neighbouring subre-
gions is the most convenient. In regions consisting exclusively
of air (1, 5, 9), subregions do not exist. The discrete eigenval-
ues qi of these regions are the positive real roots of the equation
J1(qib) = 0, where J1(x) is the Bessel function of the first kind.
Subregions do not occur also in the upper and lower layers of
the plate (6, 8). The eigenvalues s6i, s8i of these regions may
be calculated from the expression sn = (q2 + jωµnµ0σn)

1/2. In
the case of region 3, discrete eigenvalues mi were determined
through solving the equation L′

1(mib) = 0, which had been for-
mulated using the Bessel Jn(x), Yn(x) function:

L′
1(mir) =

π
2

mic2
[
B′

2FJ1(mir)+C′
2FY1(mir)

]
, (10)

C′
2F =

1
µ f

J1(mic2)L0(mic2)− J0(mic2)L1(mic2), (11)

B′
2F =− 1

µ f
Y1(mic2)L0(mic2)+Y0(mic2)L1(mic2), (12)

Ln(mir) =
π
2

mia1 [B2FJn(mir)+C2FYn(mir)] , (13)

C2F = (µ f −1)J0(mia1)J1(mia1), (14)

B2F = J1(mia1)Y0(mia1)−µfJ0(mia1)Y1(mia1). (15)

Regions 3 and 4 consist of 5 subregions each. The eigenval-
ues of these regions were marked as pi and calculated from the
equation:

R′′′
1 (pib) = 0 (16)

where

R′′′
n (pir) =

π
2

pic2
[
B′′′

3FJn(pir)+C′′′
3FYn(pir)

]
, (17)

C′′′
3F =

1
µ f

J1(pic2)R′′
0(pic2)− J0(pic2)R′′

1(pic2), (18)
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B′′′
3F =− 1

µ f
Y1(pic2)R′′

0(pic2)+Y0(pic2)R′′
1(pic2), (19)

R′′
n(pir) =

π
2

pic1
[
B′′

3FJn(pir)+C′′
3FYn(pir)

]
, (20)

C′′
3F = µ fJ1(pic1)R′

0(pic1)− J0(pic1)R′
1(pic1), (21)

B′′
3F =−µ fY1(pic1)R′

0(pic1)+Y0(pic1)R′
1(pic1), (22)

R′
n(pir) =

π
2

pia2B′
3FJn(pir)+C′

3FYn(pir), (23)

C′
3F =

1
µ f

J1(pia2)R0(pia2)− J0(pia2)R1(pia2), (24)

B′
3F =− 1

µ f
Y1(pia2)R0(pia2)+Y0(pia2)R1(pia2), (25)

Rn(pir) =
π
2

pia1 [B3FJn(pir)+C3FYn(pir)] , (26)

C3F = (µ f −1)J0(pia1)J1(pia1), (27)

B3F = µ fJ0(pia1)Y1(pia1)− J1(pia1)Y0(pia1). (28)

The presence of the hole in the conductive material results
in the fact that the discrete eigenvalues ui of region 7, and the
values vi = (u2

i – jωµ7µ0σ7)
1/2 are complex numbers. In order

to calculate them, it is necessary to solve (29). For this pur-
pose, one of the methods for finding complex roots of a com-
plex function [29-33], which are based on the Cauchy argument
principle, may be used:

ui [Y1(vib)J1(vig)− J1(vib)Y1(vig)]J0(uig) =

=
1
µ7

viJ1(uig) [Y1(vib)J0(vig)− J1(vib)Y0(vig)] . (29)

After all discrete eigenvalues had been determined, a sys-
tem of 16 interface equations was created for the neighbouring
regions. Solving this system made it possible to obtain the un-
known coefficients Ci, Bi which appear in expressions (1)–(9).
Subsequently, these values were normalized to B9 and written
down in the form of Bx9 = Bx/B9 and Cx9 = Cx/B9.

B29

C29
= e∓md1F−1

[
(H±G)epd1B49 +(H∓G)e−pd1C49

]
, (30)

B49

C49
= D−1 [(H′ ±G′)B59 +(H′ ∓G′)C59

]
, (31)

B59

C59
= e±ql1

[(
1
µ6

±qs−1
6

)
e−s6l1B69 +

+

(
1
µ6

∓qs−1
6

)
es6l1C69

]
, (32)

B69

C69
=∓e±s6l2

[
−
(
s6u−1K±µ6V

)
e−ul2B79 +

+
(
s6u−1K∓µ6V

)
eul2C79

]
, (33)

B79

C79
=∓e±ul3

[
−
(

s−1
8 uK−1 ± V−1

µ8

)
e−s8l3 B89 +

+

(
s−1

8 uK−1 ∓ V−1

µ8

)
es8l3C89

]
, (34)

B89

C89
= e±s8l4

(
±s8q−1 +µ8

)
, (35)

where exponentials are diagonal matrices, q, u, s6, s8 are vec-
tors and the matrices F, H, G, D, H′, G′, K, V are defined in
the Appendix.

The calculation of the coefficients Ci, Bi enables determin-
ing the magnetic vector potential for each region of the system
shown in Fig. 2 [34]. Through integrating over the cross section
of the coil, the expression describing the potential of region 3–
4, the formula for the impedance of the E-cored coil placed over
the three-layer plate with the inner hole was derived:

Z =
jωπµ0N2

[(r2−r1)(h2−h1)]2
χ(pT)p−1

{[
e−ph2eph1 −eph2e−ph1+

+2p(h2−h1)
]
+
[
−
(

eph2 − eph1
)

B49 +
(

e−ph1 − e−ph2
)

C49

]
·

·
(
−B29 +

T−U
T+U

e−2md2C29

)−1(
λλλ 1 −

T−U
T+U

e−2md2 λλλ 2

)}
·

D−1χ(p), (36)

where

χ(x) =
xr2∫

xr1

rR′
1(xr)dr, (37)

λλλ 1

λλλ 2
= F−1

[
(H∓G)e−pd1

(
eph2 − eph1

)
+

+(H±G)epd1
(

e−ph1 − e−ph2
)]

e∓md1 , (38)

T = [ti j] = [µ f a1J1(qia1)J0(m ja1)− c2J1(qic2)L0(m jc2)]

qi

q2
i −m2

j

(
1

µ f
−1

)
, (39)

U = [ui j] = [a1J0(qia1)J1(m ja1)− c2J0(qic2)L1(m jc2)]

qi

q2
i −m2

j

(
1

µ f
−1

)
. (40)

The obtained expression makes it possible to calculate the
coil impedance components for various configurations. An ap-
propriate selection of the parameters of the modelled system
allows taking into consideration the following cases:
• the absence of a conductor (σ6 = σ7 = σ8 = 0),
• a plate without a hole (g = 0),
• a plate with a surface hole (σ6 = 0),
• a plate with a through-hole (σ6 = σ8 = 0),
• a plate with an air gap between the layers (σ7 = 0),
• a plate with a subsurface hole (σ8 = 0),
• an air-cored coil (µ f = 1).
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3. Results and discussions

In order to determine the component values of the coil
impedance, (36) was implemented in Matlab. The eigenvalues
mi and pi were calculated with the employment of the fzero( )
procedure, whereas ui – with the MCCE method [35]. The inte-
gral (37) was calculated by using the expansion of the Bessel
and Struve functions [28]. The geometric dimensions of in-
dividual elements of the system, and parameter values used
in the calculations have been presented in Table 1. The ob-
tained results were verified experimentally and with the em-
ployment of the finite element method (FEM) in the COM-
SOL Multiphysics package. The mesh used in the numerical
model contained: 28774 triangular elements, 14576 mesh ver-
tices, 1171 edge elements and 30 vertex elements. The highest
density of mesh elements was used around the hole and under
the coil. The time necessary to calculate components of the coil
impedance was about 3.5 seconds for the TREE method and
9 seconds for the FEM method, using a computer with an In-
tel Core i5 processor equipped with the 6 GB RAM. For the
needs of the research, a measurement system consisting of the
Agilent E4980A precision LCR meter, an eddy current probe,
material samples and a PC computer was built. The measure-
ments of the electrical conductivity of materials were carried
out with the employment of the Foerster Sigmatest 2.069 de-
vice. The upper layer of the tested object was a brass plate of

Table 1
Parameters of the coil, core and plate used in calculations

Number of turns N 646

Inner column radius a1 1.5 mm

Outer column radius a2 3.9 mm

Inner core radius c1 7.6 mm

Outer core radius c2 9 mm

Inner core height d1 4.2 mm

Outer core height d2 5.3 mm

Inner coil radius r1 4.4 mm

Outer coil radius r2 7.5 mm

Offset h1 0.2 mm

Parameter h2 4.1 mm

Radius of the hole g 1.375 mm

Liftoff l1 0.2 mm

Parameter l2 0.48 mm

Parameter l4 15.48 mm

Conductivity σ6 14.3 MSm−1

Relative permeability µ6, µ7, µ8 1

Relative permeability µ f 3000

Radius of the domain b 20r2

Summation terms Ns 90

the conductivity of σ6 = 14.3 MSm−1, which was placed on the 
plates of the thickness of l4 − l2 = 15 mm made of aluminium 
(σ7 = σ8 = 20.5 MSm−1) or copper (σ7 = σ8 = 58.9 MSm−1). 
In these plates a hole of the diameter of 2g = 2.75 mm and the 
depth of l3 − l2 = 10.3 mm (aluminium) and l3 − l2 = 10.1 mm 
(copper) was made. What was accepted as the final results was 
the arithmetic mean determined for 3 measurement series.

The values of the changes of the coil impedance compo-
nents ∆Z = R − R0 + jω(X − X0) after bringing it closer to the 
plate with an inner hole, were normalized with respect to the 
coil reactance in the air space X0, and shown in Figs. 3 and 4. 
The calculations and measurements were made for 50 values 
of frequency in the range from 500 Hz to 20 kHz. The values 
of the coil impedance changes in the case of the copper and the 
aluminium plates for frequency f = 1 kHz and f = 20 kHz 
have been shown in Table 2. The maximum values of the er-
ror concerning δR resistance and δX reactance in the TREE and

Fig. 3. Changes of the coil resistance normalized with respect to X0 for
frequencies from 500 Hz to 20 kHz

Fig. 4. Changes of the coil reactance normalized with respect to X0 for
frequencies from 500 Hz to 20 kHz
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Table 2
Values of the changes in coil impedance ∆Z = ∆R+ j∆X

Material f [kHz] Experiment TREE FEM

Aluminium
1 17.08− j18.40Ω 17.10− j18.74Ω 16.85− j18.46Ω

20 191.3− j1022.3Ω 189.4− j1000.7Ω 191.3− j989.7Ω

Copper
1 15.58− j30.27Ω 15.82− j30.87Ω 15.64− j30.40Ω

20 125.4− j1046.9Ω 125.4− j1030.5Ω 128.1− j1022.6Ω

FEM methods obtained in the tested frequency range have been
shown in Table 3.

Table 3
The highest values of the errors δR and δX of coil impedance compo-

nents

Material
TREE FEM

δR [%] δX [%] δR [%] δX [%]

Aluminium 1.25 2.91 1.62 3.18

Copper 2.17 2.60 2.11 2.33

δR =

∣∣∣∣
Rmeasure −Rcalculate

Rmeasure

∣∣∣∣ ·100%, (41)

δX =

∣∣∣∣
Xmeasure −Xcalculate

Xmeasure

∣∣∣∣ ·100%. (42)

4. Conclusion

The developed mathematical model facilitates calculating the
components of the impedance of an E-cored coil located above
the surface of a three-layer plate with a hole. The employment
of the proposed solution enables modelling both magnetic and
non-magnetic materials containing a hole located in any layer
of the tested element. In this way it is possible to examine ma-
terials of any thickness, i.e. from thin foils to thick plates. What
is an unquestionable merit of the analytical model are the fi-
nal formulas presented in a closed form, thanks to which they
may be implemented in any programming language as well as
in mathematical packages, such as Mathematica and Matlab. By
replacing time-consuming integrals by the series, a short time
of calculations was obtained. The correct selection of the num-
ber of summation terms Ns and the constraints of the solution
domain g make it possible to effectively control the calculation
error and to determine the size of the matrices, so as to avoid ex-
cessive iterations. The verification of the results carried out with
the help of the experiment and finite element methods pointed
to good agreement. In the case of the changes of resistance and
the changes of reactance, the error did not exceed 2.17% and
2.91%, respectively.

Appendix

The matrices F, H, G, D, H′, G′, K, V were written in the fol-
lowing form:

F = [ fi] =
1
2

(
1
µ f

−1
){

a2
1
[
µ fJ2

0 (mia1)− J2
1 (mia1)

]
+

+ c2
2

[
L2

1(mic2)−
1
µ f

L2
0(mic2)

]}
+

b2

2
L′2

0 (mib), (43)

H = [hi j] =
[
a2L0(mia2)R1(p ja2) +

− c1L0(mic1)R′
1(p jc1)

] mi

m2
i − p2

j

(
1− 1

µ f

)
, (44)

G = [gi j] =

[
1
µ f

a2L1(mia2)R0(p ja2) +

− c1L1(mic1)R′
0(p jc1)

]
mi

m2
i − p2

j

(
1− 1

µ f

)
, (45)

D = [di] =
1
2

{
a2

1

[
J2

0 (pia1)+ J2
1 (pia1)−

1
µ f

Φ(pia1)

]
+

−a2
2

[
Φ′(pia2)−

1
µ f

Φ(pia2)

]
+ c2

1

[
Φ′(pic1)+

− 1
µ f

Φ′′(pic1)

]
− c2

2

[
Φ′′′(pic2)−

1
µ f

Φ′′(pic2)

]

+b2Φ′′′(pib)
}
, (46)

H′ = [h′i j] =
[
µ fa1J0(pia1)J1(q ja1)−a2R0(pia2)J1(q ja2) +

+ µ fc1R′
0(pic1)J1(q jc1)− c2R′′

0(pic2)J1(q jc2)
]
·

· pi

p2
i −q2

j

(
1− 1

µ f

)
, (47)

G′ = [g′i j] =
[
a1J1(pia1)J0(q ja1)−a2R1(pia2)J0(q ja2)+

+ c1R′
1(pic1)J0(q jc1)− c2R′′

1(pic2)J0(q jc2)
]
·

· pi

p2
i −q2

j

(
1− 1

µ f

)
, (48)

K = [ki j] = βββ 1 +βββ 2 , (49)
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Table 2
Values of the changes in coil impedance ∆Z = ∆R+ j∆X

Material f [kHz] Experiment TREE FEM

Aluminium
1 17.08− j18.40Ω 17.10− j18.74Ω 16.85− j18.46Ω

20 191.3− j1022.3Ω 189.4− j1000.7Ω 191.3− j989.7Ω

Copper
1 15.58− j30.27Ω 15.82− j30.87Ω 15.64− j30.40Ω

20 125.4− j1046.9Ω 125.4− j1030.5Ω 128.1− j1022.6Ω

FEM methods obtained in the tested frequency range have been
shown in Table 3.

Table 3
The highest values of the errors δR and δX of coil impedance compo-

nents

Material
TREE FEM

δR [%] δX [%] δR [%] δX [%]

Aluminium 1.25 2.91 1.62 3.18

Copper 2.17 2.60 2.11 2.33

δR =

∣∣∣∣
Rmeasure −Rcalculate

Rmeasure

∣∣∣∣ ·100%, (41)

δX =

∣∣∣∣
Xmeasure −Xcalculate

Xmeasure

∣∣∣∣ ·100%. (42)

4. Conclusion

The developed mathematical model facilitates calculating the
components of the impedance of an E-cored coil located above
the surface of a three-layer plate with a hole. The employment
of the proposed solution enables modelling both magnetic and
non-magnetic materials containing a hole located in any layer
of the tested element. In this way it is possible to examine ma-
terials of any thickness, i.e. from thin foils to thick plates. What
is an unquestionable merit of the analytical model are the fi-
nal formulas presented in a closed form, thanks to which they
may be implemented in any programming language as well as
in mathematical packages, such as Mathematica and Matlab. By
replacing time-consuming integrals by the series, a short time
of calculations was obtained. The correct selection of the num-
ber of summation terms Ns and the constraints of the solution
domain g make it possible to effectively control the calculation
error and to determine the size of the matrices, so as to avoid ex-
cessive iterations. The verification of the results carried out with
the help of the experiment and finite element methods pointed
to good agreement. In the case of the changes of resistance and
the changes of reactance, the error did not exceed 2.17% and
2.91%, respectively.

Appendix

The matrices F, H, G, D, H′, G′, K, V were written in the fol-
lowing form:

F = [ fi] =
1
2

(
1
µ f

−1
){

a2
1
[
µ fJ2

0 (mia1)− J2
1 (mia1)

]
+

+ c2
2

[
L2

1(mic2)−
1
µ f

L2
0(mic2)

]}
+

b2

2
L′2

0 (mib), (43)

H = [hi j] =
[
a2L0(mia2)R1(p ja2) +

− c1L0(mic1)R′
1(p jc1)

] mi

m2
i − p2

j

(
1− 1

µ f

)
, (44)

G = [gi j] =

[
1
µ f

a2L1(mia2)R0(p ja2) +

− c1L1(mic1)R′
0(p jc1)

]
mi

m2
i − p2

j

(
1− 1

µ f

)
, (45)

D = [di] =
1
2

{
a2

1

[
J2

0 (pia1)+ J2
1 (pia1)−

1
µ f

Φ(pia1)

]
+

−a2
2

[
Φ′(pia2)−

1
µ f

Φ(pia2)

]
+ c2

1

[
Φ′(pic1)+

− 1
µ f

Φ′′(pic1)

]
− c2

2

[
Φ′′′(pic2)−

1
µ f

Φ′′(pic2)

]

+b2Φ′′′(pib)
}
, (46)

H′ = [h′i j] =
[
µ fa1J0(pia1)J1(q ja1)−a2R0(pia2)J1(q ja2) +

+ µ fc1R′
0(pic1)J1(q jc1)− c2R′′

0(pic2)J1(q jc2)
]
·

· pi

p2
i −q2

j

(
1− 1

µ f

)
, (47)

G′ = [g′i j] =
[
a1J1(pia1)J0(q ja1)−a2R1(pia2)J0(q ja2)+

+ c1R′
1(pic1)J0(q jc1)− c2R′′

1(pic2)J0(q jc2)
]
·

· pi

p2
i −q2

j

(
1− 1

µ f

)
, (48)

K = [ki j] = βββ 1 +βββ 2 , (49)
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V = [vi j] = βββ 1 +
1
µ7

βββ 2 , (50)

βββ 1 = R1(v jg)
[
qiJ0(qig)J1(u jg) −

− u jJ1(qig)J0(u jg)
] g

u2
j −q2

i
, (51)

βββ 2 =−J1(u jg)
[
qiJ0(qig)R1(v jg) −

− v jJ1(qig)R0(v jg)
] g

v2
j −q2

i
. (52)
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