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Abstract. In this work, we present a failure detection system in sensors of any robot. It is based on the k-fold cross-validation approach and 
built from N neural networks, where N is the number of signals read from sensors. Our tests were carried out using an unmanned aerial vehicle 
(UAV, quadrocopter), where signals were read from three sensors: accelerometer, magnetometer and gyroscope. Artificial neural network was 
used to determine Euler angles, based on signals from these sensors. The presented system is an extension of the system that we proposed in 
one of our previous papers. The improvement shown in this work took place on two levels. The first one was related to improvement of a neu-
ral network՚s reproduction quality – we have replaced a recurrent neural network with a convolutional one. The second level was associated 
with the improvement of the validation process, i.e. with adding some new criteria to check the values of Euler՚s angles determined by the 
convolutional neural network in subsequent time steps. To highlight the proposed system improvement we present a number of indicators such 
as RMSE, NRMSE and NDR (Normalized Detection Ratio).
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The aim of our work was to build a fast failure detection 
system (or rather to improve the existing one). The first problem 
faced in building this system was calculating the position of the 
considered object (in our case UAV – unmanned aerial vehicle) 
in space. Most of the solutions require computationally expen-
sive matrix calculations, which impede either software or hard-
ware implementation. That was one of the reasons why we have 
reached towards artificial neural networks (ANN), which are 
known from their many advantages. Among many other ANNs 
automatically detect the important features without any human 
supervision, which means that a designer does not have to know 
the specific relation between inputs and outputs of the system. 
Additionally we have decided to consider convolutional neural 
networks because of their computational simplicity, which is 
important in terms of real-time calculation either of position in 
space or of the sensor failure.

The final sensor failure detection system is built on the idea 
of k-fold cross-validation approach, composed from N neural 
networks, where N is a number of collected from sensors sig-
nals. Each of the neural network takes as an input N ¡ 1 signals. 
When all but one neural networks show incorrect values of 
Euler angles, than it is assumed that the sensor excluded in this 
very one sensor is somehow damaged. To confirm our assump-
tions about the quality of the proposed system we propose vari-
ous measures and visual characteristics, like root-mean-square 
error (RMSE), normalized root-mean-square error (NRMSE) 
and normalized detection ratio (NDR). Additionally we show 
standard summary of the convolutional neural network training 
overview.

The paper is organized as follows: Section 2 shows research 
related with determining an object՚s position in space. Section 3 
presents the mathematical background for the quaternions, 

1. Introduction

Nowadays, scientifically, the issue of failure detection is very 
interesting due to, among others, a wide use of multi-sensor sys-
tems. It is interesting not only from a UAV (Unmanned Aerial 
Vehicle) point of view but also from other devices [1] and sys-
tems like maritime and underground navigation or augmented 
reality systems.

Presented in this paper work describes the improvement of 
the previously presented system [2], which is based on k-fold 
cross-validation approach. Our new failure detection system 
uses a convolutional neural network (CNN) instead of recur-
rent one, as an approximator of the Euler angles. Another 
improvement is related with introduction of additional con-
ditions strengthening the system of failure detection. An 
undoubted advantage of our failure detection system is that 
sensors can be of any type, i.e. giving readings from different 
ranges.

The research presented in this article is a part of a larger 
project that includes issues related to determining the position 
of an object in space. In work [3], we started the research pre-
sentation by showing how to determine Euler angles using the 
Elman recurrent neural network. As a continuation, in [4] the 
Elman network structure was expanded with kinetic models of 
a biological neuron and the network thus created was tested on 
new data. The work [2] concerned the use of recurrent networks 
to detect damage in unmanned aerial vehicle sensors.
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which are commonly used for determining an object՚s position. 
Section 4 focuses on convolutional neural network for calcu-
lation of Euler angles, while Section 5 shows failure detection 
system based on these neural networks with some results of 
system՚s operation. Finally, in Section 6, a short summary is 
provided.

2. Related work

We are, even unconsciously, used to the sensors that surround 
us. They are everywhere, in cars, smartphones, watches, home 
appliances [5], industrial machines, even clothes are equipped 
with sensors [6], etc. Sensors usually determine measurable 
physical parameters such as temperature, pressure, acceleration, 
speed, direction and many others.

To determine the position of any object relative to the start 
point of the reference system, it is necessary to choose one of 
the measuring techniques used for this. The most commonly 
used measurement techniques are global navigation satellite 
systems (GNSS), heterogeneous wireless sensors [7], inertial 
sensors, radiolocation, vision systems and many others. The 
most commonly used techniques for determining the object՚s 
position are combining these systems, which results in accuracy 
improvement and weaknesses elimination of a particular mea-
surement method [8]. For example a navigation system based 
on a radio signal from GNSS will not work properly in a tunnel 
or underground [9].

The latest works on determining an object՚s position in space 
are still based on the technique that uses small and cheap inertial 
sensors made in Micro Electro-Mechanical Systems (MEMS) 
technology and GNSS system receivers [10, 11].

Because in general the computational and process complex-
ity of industrial machines elimination, reliability and security 
become more and more important. Diagnostics of industrial 
processes deals with the recognition of changes in the states of 
these processes, where industrial processes are understood as 
a series of intentional activities implemented at a set time by 
a specific set of machines and devices with specific available 
resources. Diagnosis is treated as a process of detecting and dis-
tinguishing object damage as a result of collecting, processing, 
analyzing and evaluating diagnostic signals. The diagnosis can 
be carried out at different levels of detail. Depending on the 
type of object and knowledge available about it, the result of 
the diagnosis may be a detailed identification of the damage or 
only a general definition of the condition class [12].

It is possible to list a lot of papers on failure detection in 
sensor systems [13‒16], as many researchers look for a perfect 
solution for this problem – usually for a specific device. Many 

of the presented solutions assume that the device is equipped 
with at least several sensors, which is an undoubted problem 
due to universality of the proposed failure detection systems. 
A great comparison of available solutions of this problem is 
analysed in [17].

The failure detection in sensor signals was for the first time 
introduced in space mission projects, where small changes in 
the state variables significantly affected the subsequent stages 
in the object control [18, 19]. Soon after those first trials Kal-
man filters were proven to be an optimal solution for hidden 
variables state estimation in the space systems [20, 21]. In fact 
Kalman filters are still very successfully used in technical solu-
tions [22‒25].

Nowadays the use of non-conventional, non-deterministic 
methods in any real-life problem has become very popular. 
Finding solution of this problem without designing a determin-
istic model, i.e. without the precise knowledge of the relation 
between inputs and outputs of the model, has become very 
desirable, especially if this solution can work in real-time. For 
the problem of sensor failure detection it is possible to find 
a wide variety of papers that as a solution propose machine 
learning algorithms [26] and statistical methods [27, 28]. 
A novel approach for AHRS (Attitude Heading Reference 
System) based on artificial neural networks (a part of machine 
learning field) is presented in [29], which is focused on better 
estimation of the orientation of the mobile platform. It is also 
possible to find many solutions based on artificial neural net-
works, that focus mainly on maintenance of the flight direction 
and height [30‒33].

3. Mathematical background

To make it possible to work with artificial neural networks, 
sample sets for learning, validation and testing data should be 
prepared. An algorithm was used to determine position in space 
based on a series of measurement samples from a multi-sensor 
system. For this purpose the extended Kalman filters and qua-
ternions were used to simplify the matrix calculus.

The position of an navigated object can be calculated in 
few different ways. One of the common ways is designating 
a displacement between two coordinate systems (frames of ref-
erence), where the first one is centered on the Earth՚s surface or 
the starting point of the calibrated sensors, while the second one 
is the position of the navigated object, e.g. quadrocopter. The 
rotation of a vector in the Euclidean space is obtained by mul-
tiplying by the rotation matrix R (see Eq. (1)) where φ – Roll, 
θ – Pitch, ψ  – Yaw, and represent rotations in longitudinal, 
transverse, and vertical axes, respectively.

 R = 

Ã
 cosθ cosψ  sinφ sinθ cosψ  ¡ cosφ sinψ  cosφ sinθ cosψ  + sinφ sinψ

 cosθ sinψ  sinφ sinθ sinψ  + cosφ cosψ  cosφ sinθ sinψ  ¡ sinφ cosψ

 – sinθ  sinφ cosθ  cosφ cosθ

!
 (1)
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The AHRS (Attitude and Heading Reference System) makes 
it possible to calculate the position of an object in space. The 
system consists of sensors that provides information about the 
three degrees of freedom related with circular motion along 
axes x, y and z. It consists of the accelerometer, gyroscope 
and magnetometer [10] – sensors created in the MEMS (Micro 
Electro-Mechanical Systems) technology1. The system makes 
it possible to determine the position of an object in space based 
on linear and angular acceleration, direction and the magnitude 
of Earth՚s magnetic field [34]. An example data obtained from 
such set of sensors are presented in Figs. 1, 2 and 3 for accel-
erometer, magnetometer and gyroscope, respectively, collected 
during a random flight and hand maneuver of the quadrocopter. 
As we describe more precisely in the Section 4, various signals 
that we use to train and test our neural network are prepared not 
only during a standard flight but also by maneuvering in slow 
and fast motion of robot. Analysing these waveforms of few 
seconds of quadrocopter flight, we can see that between 2 and 4 
seconds there was a change in flight altitude, while between 8 
and 20 there was a displacement with rotation around its axis.

Matrix operators are often used in robotics transformations 
[35], without which it is impossible to imagine navigating the 

1  As a sample recording device, a dedicated embedded system based on the 
STM32 Cortex M4 microcontroller was built. The system was built from 
Atmel ATAVRSBIN1 IMU (Inertial Measurement Unit), composed from 
accelerometer BMA150, gyroscope ITG3200 and magnetometer AK8975.

Fig. 1. Sample measurement signal from the accelerometer for 3 axes 
(X, Y and Z)
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Fig. 2. Sample measurement signal from the magnetometer for 3 axes 
(X, Y and Z)
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Fig. 3. Sample measurement signal from the gyroscope for 3 axes 
(X, Y and Z)
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manipulator՚s kinematic chain or even to solve a simple kine-
matics problem. Quaternions are known since 1853, thanks to 
William R. Hamilton [36] and are commonly used for calcula-
tion of an object՚s position in space [10]. Many modern com-
puter graphics systems work with quaternions, and they are used 
for making rotations in three-dimensional space. It is possible 
to mention many advantages of quaternions that make them so 
useful:
● they are not sensitive to the phenomenon of loss of free-

dom called ՚՚gimbal lock՚՚ but their normalization is rec-
ommended,

● they are represented by four numbers, not nine as in the case 
of a rotation matrix,

● they ensure easy transition from Euler angles to the axis of 
rotation and vice versa,

● interpolation of two quaternions is easier than of a matrix,
● normalization of quaternions is easier than orthogonaliza-

tion of a matrix (the case of removing the accumulation of 
increasing errors of many calculations performed),

● turnover submission is done by multiplication (similar to 
matrices).
In order to simplify all the necessary matrix calculations 

we have decided to perform part of them by convolutional neu-
ral network (CNN). In our previous research [2] we focused 
on recurrent neural networks and now decided to improve the 
structure with convolutional layers. Computational simplicity of 
convolutional layers enables making more sophisticated, exten-
sive structures and at the same time we can gain on speed of 
calculations.

4. Convolutional neural network for calculation 
of Euler angles

Based on the research presented in [2], the data obtained from 
the sensors underwent the normalization process using the 
function tanh (ax), where a = 0.001 for the accelerometer and 
a = 0.01 for other sensors.

For the calculation of Euler angles we have used a convo-
lutional neural network (CNN), with the structure presented in 
Table 1, implemented in MATLAB 2018a environment. The 
CNN is built of one convolutional layer, after which we have 

used the ReLU activation layer and the MaxPooling layer, after 
which we have added the fully-connected layer after which we 
used the common method for regularization, namely dropout. 
The output layer predicting the Euler angles values is of the 
form of a regressor.

During training, we considered different sizes of the neural 
network՚s structure, we tried to add additional convolutional lay-
ers and increase the number of neurons in individual layers, but 
eventually we stayed with the structure with one hidden layer 
and 256 neurons, as larger structures did not improve results. In 
the training process, we examined three different training solv-
ers: SGDM, RMSProp and Adam. An example training progress 
of the CNN is presented in Fig. 4, from which it is possible 
to notice that training lasted for about 1.5 minutes (hardware 
specification: 64-bit Windows operating system, 32 GB RAM, 
processor i7, 2.8 GHz)). Because we used a regression layer as 
the output of the CNN, in the training progress window we can 
observe the plot of the root mean square error (RMSE) calcu-
lated on each individual mini-batch. We can then observe that 
the RMSE drops below 0.05 while loss – below 0.002. The 
results are not satisfactory enough for Euler angles calculation 
itself, but as we mentioned in our previous work [2] it is not 
necessary for this neural network to be very precise as it will be 
subsequently used in the failure detection system.

In Table 2 there are shown the RMSE (root-mean-squared 
error) and NRMSE (normalized root-mean-squared error) 
calculated between the values of Euler angles obtained from 
the prediction carried out by the CNN and the values of these 
angles obtained by means of quaternion calculations (i.e. AHRS 
algorithm). In the comparison we took into account the recur-
rent neural network (layrecnet) described in the article [2] as 
the best one and a new, convolutional neural network with three 
types of solver. To calculate the RMSE and NRMSE values, we 
used samples from eight different tests:

test_1:  test
test_2:  test
test_3:  oscillations along the X axis
test_4:  oscillations along the Y axis
test_5:  oscillations along the Z axis
test_6:  maneuvering in slow motion of robot in air
test_7:  maneuvering in fast motion of robot in air
test_8:  shaking a robot

Table 1 
Structure of the convolutional neural networked used in calculation of Euler angles

1 ‘input_layer’ Image Input 9£1£1 images

2 ‘convolution_layer’ Convolution 256 1£1 convolutions with stride [1 1] and padding [0 0 0 0]

3 ‘RELU_activation’ ReLU ReLU

4 ‘maxpooling_layer’ Max Pooling 1£1 max pooling with stride [1 1] and padding [0 0 0 0]

5 ‘dense_layer’ Fully Connected 3 fully connected layer

6 ‘dropout_layer’ Dropout 10% dropout

7 ‘regression_output_layer’ Regression Output mean-squared-error
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Fig. 4. Training progress of the convolutional neural network for Euler angles calculation

Table 2 
RMSE & NRMSE calculated between the values of  Euler angles obtained from the prediction carried out by the CNN & RNN  

and the values of  these angles obtained by means of  quaternion calculations

layer recurrent neural 
network

convolutional neural network
SGDM solver RMSProp solver ADAM solver

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

test_1
Roll 0.5319 0.0029 0.2616e-03 0.1454e-05 0.2578e-03 0.1433e-05 0.2654e-03 0.1475e-05
Pitch 0.1449 0.0017 0.0992e-03 0.1154e-05 0.1042e-03 0.1212e-05 0.1112e-03 0.1294e-05
Yaw 1.0837 0.0060 0.3863e-03 0.2147e-05 0.4001e-03 0.2223e-05 0.3625e-03 0.2014e-05

test_2
Roll 0.6335 0.00352 0.3968e-03 0.2206e-05 0.4029e-03 0.2240e-05 0.3891e-03 0.2163e-05
Pitch 0.1691 0.0019 0.1216e-03 0.1415e-05 0.1350e-03 0.1571e-05 0.1408e-03 0.1638e-05
Yaw 1.1938 0.0066 0.4102e-03 0.2279e-05 0.4348e-03 0.2416e-05 0.4062e-03 0.2257e-05

test_3
Roll 1.0824 0.0060 0.5575e-03 0.3099e-05 0.5706e-03 0.3172e-05 0.5622e-03 0.3125e-05
Pitch 0.2068 0.0024 0.2318e-03 0.2696e-05 0.2420e-03 0.2816e-05 0.2323e-03 0.2703e-05
Yaw 1.0309 0.0057 0.4977e-03 0.2765e-05 0.5323e-03 0.2958e-05 0.4975e-03 0.2764e-05

test_4
Roll 1.1144 0.0061 0.4977e-03 0.2767e-05 0.4935e-03 0.2743e-05 0.5417e-03 0.3011e-05
Pitch 0.2437 0.0028 0.0662e-03 0.0771e-05 0.0746e-03 0.0869e-05 0.0501e-03 0.0584e-05
Yaw 0.9198 0.0051 0.6684e-03 0.3714e-05 0.7162e-03 0.3979e-05 0.6201e-03 0.3446e-05

test_5
Roll 1.4184 0.0078 0.0678e-03 0.0377e-05 0.0742e-03 0.0413e-0 0.0904e-03 0.0503e-05
Pitch 0.1915 0.0022 0.0497e-03 0.0579e-05 0.0780e-03 0.0908e-05 0.0735e-03 0.0855e-05
Yaw 0.6165 0.0034 0.4565e-03 0.2537e-05 0.4708e-03 0.2616e-05 0.3852e-03 0.2141e-05

test_6
Roll 0.4357 0.0024 0.1520e-03 0.0845e-05 0.1478e-03 0.0822e-05 0.1562e-03 0.0869e-05
Pitch 0.2569 0.0029 0.0972e-03 0.1132e-05 0.0856e-03 0.0996e-05 0.0899e-03 0.1047e-05
Yaw 1.5926 0.0088 0.2682e-03 0.1490e-05 0.2701e-03 0.1501e-05 0.2789e-03 0.1550e-05

test_7
Roll 9.5361 0.0530 0.3262e-03 0.1814e-05 0.3155e-03 0.1754e-05 0.3446e-03 0.1916e-05
Pitch 2.0287 0.0235 0.1642e-03 0.1910e-05 0.1504e-03 0.1750e-05 0.1596e-03 0.1857e-05
Yaw 9.2753 0.0515 0.2950e-03 0.1639e-05 0.3035e-03 0.1687e-05 0.2885e-03 0.1603e-05

test_8
Roll 9.8419 0.0547 0.4382e-03 0.2436e-05 0.4423e-03 0.2459e-05 0.4370e-03 0.2429e-05
Pitch 2.0391 0.0237 0.2167e-03 0.2521e-05 0.1947e-03 0.2265e-05 0.1988e-03 0.2313e-05
Yaw 9.7087 0.0539 0.4983e-03 0.2769e-05 0.4956e-03 0.2754e-05 0.5131e-03 0.2851e-05
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Test_1 and test_2 were collected during a standard check up of 
sensors, which were performed by moving the set of sensors 
to observe their correct work.

Reviewing Table 2 we can see that replacing the recur-
rent neural network with the convolutional one significantly 
improved the values of the RMSE and NRMSE coefficients – in 
both cases we can observe improvement of these coefficients 
by three orders, regardless of the chosen solver.

In Fig. 5 we present Euler angles calculated with use of the 
AHRS system (black line) and obtained with prediction func-
tion of the CNN for data from test_6. Additionally in Fig. 6 
we present the difference between plots presented in Fig. 5 for 
each of the Euler angles.

5. Sensor failure detection system

After designing the convolutional neural network for calcula-
tion of Euler angles it was then possible to design the failure 
detector for any number of the control signals with use of the 
k-fold cross-validation approach. The system is built from N 
approximators with N ¡ 1 inputs each, where N  is the number 
of signals obtained from robot՚s sensors. Each approximator 
– artificial neural network – has to exclude a different input sig-
nal. The value obtained with each approximator is then analysed 
in an additional block VB (Validation Block), which checks 
whether the output signal is outside of the assumed range. If one 
of the approximators does not report an error, while others do, 

then it is obvious that the excluded in the non-reporting error 
approximator signal comes from a damaged sensor. The whole 
Failure Detector is shown in Fig. 7.

Fig. 5. Euler angles (Roll, Pitch, Yaw) calculated with use of the AHRS 
system (black line) and obtained with prediction function of the CNN 
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Fig. 6. The difference between Euler angles (Roll, Pitch, Yaw) cal-
culated with use of the AHRS system and the ones obtained with 

prediction function of the CNN
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Fig. 7. Basic failure detector system – based on convolutional neural 
network
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To add a new functionality to the sensor failure detection 
system we propose to include a simple block which checks 
the changes between Euler angles in subsequent time steps. At 
this moment we propose a simple extension which monitors 
changes between two subsequent readings from sensors. The 
difference between two subsequent readings from sensors can 
be very high for example when the object reaches 16g acceler-
ation but it can also mean that something is wrong with one of 
the sensors or with the object itself. To make it clear our new 
failure detection system is presented in Fig. 8, where in block 
Extra Error Detector (EED) the comparison of two subsequent 
readings takes place.

To present how well does the sensor failure detection sys-
tem perform we have developed a measure NDR (Normalized 
Detection Ratio), which is calculated with respect to the vari-
ance of the noise added to the original value of the considered 
signal. For a noise signal we have decided to use Gaussian one. 
NDRs showed in Figs. 9 and 10 converges quite quickly to 

a maximal value of normalized detection rate for all the sensors. 
The figures differ in that in the first case (Fig. 9) the system 
did not include the EED block, while in the second one – the 
EED block was taken into account. It is important to notice 
that NDR improves in comparison to the results presented in 
the previous work [2], but also adding an EED to the system 
improves the NDR՚s convergence twice – maximal value of 
normalized detection rate is reached twice as fast.

6. Conclusions

In this research we have presented a new failure detection sys-
tem, which is built based on the system presented in one of our 
previous works [2]. As we already mentioned description of this 
system is a part of a bigger research project, which in general 
concerns the problem of unmanned aerial vehicles control.

Fig. 8. A full scheme of the new failure detecting system
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Fig. 9. Normalized Detection Ratio for failure detection system based 
on convolutional neural networks
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Fig. 10. Normalized Detection Ratio for failure detection system 
expanded with an extra error detector
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Our system is based on k-fold cross-validation approach. 
It is built from convolutional neural networks, which arranged 
in bigger structure allows for failure detection in any sensor 
signal, not only in UAVs. By adding an additional block, which 
checks deviations in changes between subsequent signal read-
ings, we achieved better metrics of the proposed system accord-
ing to the one presented in [2].

As we already mentioned we have decided to change recur-
rent neural networks from our previous solution to convolu-
tional ones because of their many advantages. One of them is 
simplicity of implementation (even in hardware), but surely the 
aspect of speed of training and obtaining values of Euler angles 
is one of the most important aspects. Training of the recurrent 
neural network can take 15‒18 min and retrieving the values 
of Euler angles takes around 0.15 s, while convolutional neu-
ral network trains for about 60‒80 s, and estimation of Euler 
angles takes around 0.01 s. This aspect in context of real time 
UAV control and fast failure detection gives a huge advantage 
of convolutional neural networks over the recurrent ones.

The area of the further research is very wide. It includes 
a comparison of our approach with other available solutions 
– which was not the subject of this paper and is considered 
as a part of our ongoing project. Another idea is related with 
testing our failure detection system on a completely different 
device. A good example can be the analysis of sensors asso-
ciated with some production line, which is usually equipped 
with many sensors, e.g. extensometer, pressure or position 
sensors. A thorough analysis of these sensors working together 
with the possibility of detecting their malfunction can be even 
used to predict the exact moment of failure [37]. Another, very 
important aspect to be considered as the subsequent research 
is to focus on the aspect of anomalies that can be produced by 
sensors [38, 39].
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