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Abstract. The paper proposes an adaptation of mathematical models derived from the theory of deterministic chaos to short-term power fore-
casts of wind turbines. The operation of wind power plants and the generated power depend mainly on the wind speed at a given location. It is
a stochastic process dependent on many factors and very difficult to predict. Classical forecasting models are often unable to find the existing
relationships between the factors influencing wind power output. Therefore, we decided to refer to fractal geometry. Two models based on
self-similar processes (M-CO) and (M-COP) and the (M-HUR) model were built. The accuracy of these models was compared with other short-
term forecasting models. The modified model of power curve adjusted to local conditions (M-PC) and Canonical Distribution of the Vector of
Random Variables Model (CDVRM). Examples of applications confirm the valuable properties of the proposed approaches.
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1. Introduction

Over the last decades, there has been a turnabout in the produc-
tion of energy towards renewable energy sources. It has hap-
pened due to the gradual run-out of fossil fuel resources as
well as growing activities to minimize the human impact on
the natural environment and climate change. The consequence
is the growing number of energy production facilities based
on renewable resources. The greatest dynamics of growth has
been recorded in the construction of new wind power plants.
The World Wind Energy Association (WWEA) that has over
600 members from more than 100 countries reported that at
the end of 2018 the wind power industry had 597 GW of in-
stalled power. The problem is that wind energy is the least pre-
dictable form of energy currently used for the needs of power
supply systems. It depends strongly on many environmental
conditions. The main factor is the wind speed, but other factors,
such as the wind direction, atmospheric pressure, air temper-
ature, terrain configuration, local terrain obstacles, height of a
nacelle installation, etc. have a strong impact on the operation
of wind power plants. Significant variations of possible power
production in time enforce local power transmission operators
to maintain power reserves in case of power production drop or
even cut due to low wind speeds.

To reduce the potential negative effects of increasing con-
tribution of wind power to the total power production, the de-
velopment of special forecasting tools dedicated specifically to
the wind power industry has been initiated [1-3]. The devel-
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oped methods can be divided into two groups representing a
different approach to the problem. The first group is based on a
statistical approach and uses historical data to find out relation-
ships between the power generated by a wind power plant and
the corresponding wind speed [4-8]. The second group repre-
sents a physical modeling approach and is based on using infor-
mation on global and local geographic and atmospheric condi-
tions to develop a model that gives the best solution [9—11].
Developers of physical models try to recreate physical con-
ditions that affect power generation and use forecasting tools
only during the final stage. It should be noted, however, that
the above division is not strict. Over the years methods that use
both approaches have been worked out as well as complex tech-
niques based on many methods and several data sources, but the
common goal is always to minimize the resulting forecast error
[12-14].

In the initial period of development of forecasting models for
wind power plants researchers concentrated on tools utilizing
time series analysis. This research has yielded several methods
based on autoregressive (AR), moving average (MA), autore-
gressive moving average (ARMA), or autoregressive integrated
moving average (ARIMA) models [1, 6-8].

The next widely developed groups have been models based
on artificial neural networks working as independent prediction
tools or linked with other forecasting methods [11-14]. The de-
veloped models were configured in diverse ways, had differ-
ent numbers of inputs and outputs, hidden layers, and neurons.
They were tuned to make predictions for various time hori-
zons [15-20]. Complementary to power production forecasting
methods, tools for wind strength estimation for a given area
have been developed. All this research was significant from an
economic point of view because it supported making decisions
on the location of individual wind power farms.
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Currently, the most developed and used technique for wind-
generated power forecasting is combining various models and
creating complex systems based on several independent data
sources. One of such methods, applied in Denmark, used the
weather forecast delivered by the Danish Institute of Meteorol-
ogy and based on the HIRLAM model as an input [21]. The
forecast was processed by the WASsP software, the industry-
standard for wind resource assessment, to take into account
local conditions, and by the PARK application [22] to take
into account the shadowing effect between wind turbines at the
farm. After processing the data were passed to power produc-
tion forecast models.

There also exist hybrid systems that combine several mod-
els and give reliable forecasts with smaller prediction error [13,
14, 23]. Other examples are methods that simultaneously use
data delivered by a numerical weather forecast and a SCADA
system [24] or a solution based on combining several weather
forecasts. In general, one can observe a tendency to centralize
prediction systems. The forecasts are created not for individual
wind turbines or farms, but for groups of farms or even on the
level of national power systems. These activities have led to the
development of systems such as Predictor, WPPT, Sipreolico,
LocalPred, Previento or eWind, whose forecasts cover areas of
whole countries [13].

It is becoming increasingly difficult to classify systems de-
veloped nowadays. Nonetheless, in each of them one can iden-
tify the components presented in Fig. 1. A forecast system can
utilize input data from one of the presented sources, their com-

Formulation of the
prognostic task

Providing prognostic
premises

Selection of forecasting
models

Setting the forecast

Assessment admissibility
assessment

Forecast verification

Fig. 1. Diagram of the stages of the construction process and tests of
the forecasting models described in the article
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bination, or all available types of information. There exists also
a vast diversity of models. The use of a single model is becom-
ing occasional due to the high probability of a major forecast
error. The most popular end effective solutions include several
forecast tools to average and reduce prediction errors. The hori-
zon of the produced forecast is determined by the two sources
mentioned earlier. Systems based on a statistical approach and
using data from SCADA systems generate short-term forecasts
with satisfactory accuracy, but in general the longer the time
horizon is, the less accurate prediction one can make. If a nu-
merical weather forecast is used, its horizon determines the pre-
diction horizon for the wind power plant operation.

Initial attempts to create forecasts for the needs of the wind
power production industry date back to the turn of the the 1970s
and 1980s, but rapid progress in the development of prediction
methods and systems has been observed only over the recent
20 years. It is associated with the dynamic growth of the new
installed wind power units and increasing participation of wind
power in total power production. Therefore, despite all the pre-
vious work and progress in this field, researchers are still look-
ing for new solutions that would improve the forecast accuracy.
One of the promising directions of research that gives hope for
a better description of the investigated phenomena is determin-
istic chaos.

In our initial research experiments we employed various fore-
cast models based on autoregressive and moving average mod-
els and other econometric models, e.g. those implemented in
the CDVRM application. Unfortunately, these attempts were
labor-consuming and did not bring satisfactory results coincid-
ing with the accuracy of well-known forecast models dedicated
to wind power plants [1-3].

Currently, one of the new directions in the research of non-
stationary time series that portends well for the future is the
deterministic chaos theory [25-27]. Models that employ deter-
ministic chaos and specific properties of fractal series create
quite a new and separate group of forecast methods. Attempts
of using fractal properties for long-term forecasting were de-
scribed in [26], but they were more frequently used for short-
term forecasting [25, 28, 29]. This paper is a continuation of
the Authors” work on improving methods that use elements of
fractal geometry. Fractal geometry is employed to build fore-
cast models based directly on the self-similarity properties of
time series or on the fractal measure. Two models based on self-
similar processes are presented: (M-CO) and (M-COP) as well
as the (M-HUR) model that uses relationships associated with
a fractal dimension.

2. Fractal analysis and statistical processes

The fractal analysis is based on the idea of a fractal. There is
no precise definition of a fractal, it is defined by its properties
[30-32]. The most mentioned properties of fractals are:
e Nontrivial structure;
e Difficulty to describe a fractal using traditional geometry;
e Self-similarity in the exact, approximate, or stochastic
sense;

Bull. Pol. Ac.: Tech. 68(6) 2020
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e The Hausdorff dimension of a fractal exceeding its topolog-
ical dimension,;

e Relatively simple recursive definition;

e Natural (jagged, billowy, etc.) look.

The results presented in the paper are based on using the frac-
tal properties described in the context of time series analysis,
e.g. in [25-35], whose plots can be compared to a sea coastline.
The greater is the magnification of a coastline, the more details
are visible. This can also be applied to some time series. If they
are observed over increasingly shorter time intervals, they may
exhibit a very interesting property of a statistical self-similarity
in different scales.

Performing the Dickey-Fuller tests for nonstationarity of the
time series shown in Fig. 2 and inferring with 5% signifi-
cance level, we obtained p-values much higher than 0.05 for
a one-day waveform (p-value = 0.5651) and for a one-week
waveform (p-value = 0.3201). Only for a four-week wave-
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Fig. 2. Time series of electric power produced by wind farm F3 in
different time scales: four weeks, one week and one day, respectively
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form, p-value = 0.0002696 is less than the test level, which
may prove the stationarity of this time series. For better confi-
dence, we also performed the Kwiatkowski—Phillips—Schmidt—
Shin (KPSS) tests for the presented time series. In this case,
inferring with 5% significance level as before, all the test statis-
tics, with or without trend, turned out to be higher than the crit-
ical value, which shows the nonstationarity of all three-time se-
ries.

Time series possessing such a property are called fractal se-
ries. It is worth adding that self-similar fractal time series ex-
hibit long-term correlations. One of the important analysis tools
of a fractal time series is determining its fractal dimension,
which is a measure of how much the series plot line is jagged.

The fractal dimension can be evaluated graphically starting
from the definition of the compass dimension or the box di-
mension, but this method is time-consuming. Instead, the Hurst
exponent is used in the paper to determine the fractal dimension
of a time series. The relationship between the fractal dimension
and the Hurst exponent is [31]:

D =2H, ey

where: D — fractal dimension; H — Hurst exponent.

Using Eq. (1) it is possible to determine the fractal dimen-
sion of a time series from its Hurst exponent. It is useful in a
time series analysis for distinguishing their statistical proper-
ties. Depending on the Hurst exponent value, a time series can
be assigned to one the following three classes:

1. 0 < H < 0.5 — antipersistent series,
2. H = 0.5 — random series, no correlations,
3. 0.5 < H < 1 — persistent series.

The statistical analysis and modeling with the use of the
Hurst exponent or chaos theory was applied with positive re-
sults in financial management and capital markets [29, 32, 33]
but also in other strictly technological [28] or medical and bio-
logical [36, 37] processes.

2.1. Hurst model (M-HUR). Based on Hurst’s results, we as-
sume that most natural time series processes are no random
walks. Since there exist similarities between a time series of
wind plant power production and share prices, e.g. on the War-
saw stock exchange, we decided to adopt the method of Hurst
exponent evaluation used for a financial time series [28].
For a given time series X;, the mean m is calculated and re-
moved from the series:
Y, =X, —m, t=1,2,...,n. 2)

Next, the zero-mean series Y; is cumulated:
t
ZIZZYH t:172a"'an7 (3)
i=1

and the series R; of the maximum deviation of the cumulated
series Z; until ¢ is calculated:

R,:max(Zl,ZL ...7Z,)—min(Zl,Zz,...,Z,)7

t=1,2,....n. (4
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The standard deviations of the original series X; until ¢ are cal-
culated as:

1¢ 2
t t l:ZI ( 1 I/l) 9 < y 1, ( )
where: u — mean of the series X; to X;.
The mean rescaled range for subsets:
[XlaXt]v [Xt+1>X21] e [X(mfl)(tJrl)?th] ) (6)

where: m — rounding down to integer of the ratio 2 is calcu-

t
lated as:
RY _R
S), S’

The mean rescaled range is a power function of time with Hurst
exponent H, given as:

R
<> =", r=1,2,....n, (8)
S t

t=1,2,...,n. 7)

where: ¢ — constant.
In the logarithmic scale formula (8) can be rewritten as:

log <I;> =logc+ Hlogt. ©)
1

The slope, i.e. Hurs exponent H, of the above linear function
of the rescaled range log(R/S), versus logt can be determined
using linear regression and the least squares method.

The top graph in Fig. 3 depicts an example time series of
power generated by a single wind turbine, recorded at 10-
minute sampling interval, and the top graph in Fig. 4 shows
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Fig. 3. Time series of power generated by wind turbine W5 (at 10-
minute sampling interval) (top) and plots of the corresponding Hurst
exponent calculated using 60, 80 and 100 samples (bottom)
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the power generated by a whole wind power farm at 10- minute
sampling interval. The bottom graphs in Figs. 3 and 4 show
plots of the Hurst exponent calculated for the corresponding
power time series using 60, 80 and 100 samples. The samples
were chosen to check properties of the time series at a short
time interval and, at the same time, provide a minimum number
of samples necessary for the correct work of the Hurst exponent
determination algorithm.

x10%
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Power [kKW]
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0 . . . . . . .

Hurst exponent

0 6 12 18 24 30 36 42 48
Hours [h]

Fig. 4. Time series of power generated by wind power farm F3 (at 10-
minute sampling interval) (top) and plots of the corresponding Hurst
exponent calculated using 60, 80 and 100 samples (bottom)

The plots of the Hurst exponent depend on the length of the
time interval over which the exponent was determined (i.e. the
number of samples taken for calculation). It does not change
the fact that the obtained range of the Hurst exponent allows
us to claim that the power production plots represent persistent
time series. Most of the time the Hurst exponent is above 0.8,
which means that the process has a strong tendency to enhance
its trend.

The Hurst exponent is also a measure of how much time the
series plot is jagged. The greater is the Hurst exponent, the
smoother is the process plot, and the time series gains deter-
ministic properties. It was confirmed by an analysis carried out
both for single wind turbines and for wind power farms. Data
recorded at shorter time intervals exhibit much higher variation
of generated power. It results from the fact that the factors af-
fecting the instant power generated by wind turbines are mostly
short-time disturbances (e.g. rapid wind gusts). Recording data
at a greater sampling interval reduces the impact of such short-
time disturbances.

It should be noted that a high value of the Hurst exponent
not always indicates the persistency of the corresponding time
series. According to [31, 32], there are two ways of explaining

Bull. Pol. Ac.: Tech. 68(6) 2020
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a situation when the Hurst exponent significantly differs from
0.5: a given series exhibits the memory effect and each obser-
vation is correlated with the preceding ones or the conducted
analysis is incorrect and the obtained exponent value does not
prove that the corresponding process exhibits the memory ef-
fect. Fortunately, there is a method to verify the obtained results
[31, 32]. After determining the Hurst exponent for a given sam-
ple series, the observations should be mixed so that their order
in the new series is different from the original one. Then, the
Hurst exponent is determined again for the mixed series. If the
original series is independent, the exponent value should be the
same, because the memory effect does not occur. If the Hurst
exponent of the mixed series is much closer to 0.5, it indicates
that the original series exhibits the memory effect, and the pro-
cess structure was destroyed after mixing.

The evaluation of the Hurst exponent was accompanied by
the verification of the statistical hypothesis about the corre-
lations existing in the analyzed time series. Such correlations
might reveal memory effects in processes that model the oper-
ation of wind turbines and power plants.
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Fig. 5. Hurst exponent evaluated from a part of the time series (original
and mixed) of power generated by wind turbine W5, recorded at 10-
minute sampling interval
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Fig. 6. Hurst exponent evaluated from a part of the time series (original

and mixed) of power generated by wind power farm F3, recorded at
10-minute sampling interval

The example results of linear regression, calculated accord-
ing to (9) for a single wind turbine and for a wind power plant

Bull. Pol. Ac.: Tech. 68(6) 2020

and shown in Figs. 5 and 6, respectively, confirm observations
from the research. In both cases, the Hurst exponent values de-
termined from the original empirical data (slopes of blue linear
regression fits) are greater than 0.5. The Hurst exponents deter-
mined for time series obtained after random mixing of the orig-
inal data (slopes of red linear regression fits) are significantly
smaller. The series after data mixing do not exhibit dependen-
cies between successive observations and data correlations are
significantly smaller. The presented results prove that the pro-
cess memory occurs in the original time series.

Model building (M-HUR) has been implemented in the CD-
VRM prognostic tool. Assume that a given process is de-
scribed with a random vector X, for which the components X;
(i=1, 2, ..., m) are correlated with each other. Transform-
ing a vector X having components correlated to another vec-
tor V with uncorrelated components, which are linear functions
of vector X components, may be performed using the method
of canonical distribution. This method is described in detail
in [25].

Generally, when using the CDVRM two possibilities may oc-
cur:

1. Only the realization of the first component X; is known, and
all the remaining components X, ..., X,,—1, X,, are fore-
casted.

2. The realizations of the p components are known, then (m —
p) variables are forecasted.

In the described case, option 2 was used in the article. Vari-
ables X1, X5 up to X, in the forecast are considered as explana-
tory variables, components X, and further are endogenous
variables.

The equation to determine a forecast for the i-th component
(variable) is as follows:

|
_

i
Yi=) ai;jVi+Vi+x,
=1

(10)

where: a;; — canonical distribution coefficients selected to en-
sure lack of correlations for variables V;, V; — vector V com-
ponents after canonical distribution, \7l — components of the V
vector drawn from the conditional cumulative distribution func-
tion (in (M-HUR) model wind speed), X; — mean value of com-
ponent X;.

2.2. Self-similar process model (M-CO). Self-similar pro-
cess models are adequate when there exists a strong correla-
tion between the analyzed time series and/or autocorrelation in
historical data of the quantity to forecast. Direct and strong in-
fluence of wind speed on the power generated by a wind power
plant should find be reflected in the strong cross-correlation be-
tween the corresponding time series. In addition, the occurrence
of autocorrelation was found out in time series representing the
generated electric power. These observations were verified and
confirmed by the analysis presented below.

The corresponding parts (series over the same time interval)
of the time series representing the wind speed and the generated
power were selected randomly from the available data. Each
sample included 300 pairs of data points. The representative
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results of statistical tests carried out for single wind turbines
and for wind power farms are presented in Tables 1 and 2, re-
spectively. The results reveal a strong correlation between the
two-time series and justify the adoption of a model based on the
strong correlation between processes for prediction in the field
of wind power generation.

Table 1
Pearson correlation coefficient for selected parts of the time series
of wind speed and generated power for three wind power farms.
Source: own elaboration

Farm number Pearson correlation coefficient
1 0.9476
2 0.9088
3 0.9767
Table 2

Pearson correlation coefficient for selected parts of the time series
of wind speed and generated power for fifteen wind turbines.
Source: own elaboration

Turbine number Pearson correlation coefficient
1 0.9291
2 0.9186
3 0.9317
4 0.9734
5 0.9766
6 0.9498
7 0.9591
8 0.9686
9 0.9438

10 0.9271
11 0.9135
12 0.9264
13 0.9341
14 0.9211
15 0.9525

(M-CO) algorithm based on self-similar processes is defined
by the following equation:

Y =é§Xz+1, (11)
where: C L= self-similarity coefficient calculated as:
t
) vX;
="k (12)

~i~

Y, x?

i=t—k

In the context of wind power generation forecasting, a slight
modification of denotation was introduced in this paper and an
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estimate of the wind speed is used in Equation (13) because its
actual value at time 741 is unknown. The relationship between
the estimated wind speed and power is as follows:

b= CA‘;‘%H ; (13)
where: ¥; | — predicted wind speed, C: — self-similarity coeffi-
cient calculated as:

(14)

Numerical experiments showed that by using logarithms of the
data, fast changes of coefficient C; are significantly reduced.
Therefore, the final equations of ti1e (M-CO) forecast model
take the following form:

By =exp (c lnﬁ,H) , (15)
t
Z InP;Inv;
é% _ i:t:k (16)
(Inv;)?
i=t—k

2.3. Modified self-similar process model (M-COP). For the
correct work of (M-CO) algorithm, it is necessary that the co-
efficient Ct/, changes slowly and its sign does not change. It
can be ensured when the basic model (13) is modified to the
following form:

pt+l :é(f?)cgpﬁfﬁ'l? (17)

where: v,y — predicted wind speed, é(;)COP — corrected self-
t
similarity coefficient calculated as:
t
¢

(t)cor = (18)

where the new variables U; and W; are simply two-point means
of the original data:

U =05(B+P1).
W[ =0.5 (V[+V[71).

19)
(20)

After applying logarithms, the modified (M-CO) forecast model
takes the following form:

By =exp <é(%)copln\,/\l+])7 2D
where: V;,1 — predicted wind speed, CA(g )cop ~ corrected self-

similarity coefficient calculated from formula (18), where the

Bull. Pol. Ac.: Tech. 68(6) 2020
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logarithmic variables:

U, =05(nP+InP_y),
Wt = 05 (lnv, +lnv,_1) .

(22)
(23)

Both models described by Equations (17) and (21) have been
comprehensively tested for the accuracy of forecasts. These
tests were carried out on the same statistical data and for the
same forecast wind speed. However, due to the differences in
their equations, they might produce, in general, different re-
sults. Therefore, further research focused on the model de-
scribed by Equation (21) and all the results presented in the ar-
ticle relate to this model. By using several different basic mod-
els, one can develop more complex hybrid forecast methods and
create models that are adequate to the local operating conditions
of wind power plants.

3. Verification of the presented models

The three presented forecast models were verified using 105120
real world data points recorded over two years. Several hundred
forecasts were calculated, from which only a few representative
examples are presented in the paper. The forecast models were
tuned using 120-hour data sequences and their prediction accu-
racy was verified using 480-hour data sequences.

An (M-PC) model created based on a power curve matched
to local conditions was used as a reference model. The power
curve was created using historical data for better representation
of the actual work of a wind power plant. Next, the reference
model was used to obtain the reference forecasts.

3.1. Model input data. The research was carried out using
data from three wind farms of rated power 90MW, 50MW and
30MW. Detailed data were obtained from the 30MW farm,
made up of fifteen 2MW wind turbines. For practical reasons,
the research focused mainly on 3-hour and 24-hour forecasts. It
was due to the binding legal regulations in Poland. The operator
of the power distribution system allows for creating schedule
units for wind-based power sources. Making one day schedules
requires 24-hour forecasts. Moreover, the central power balanc-
ing system allows for correction of the power scheduled to be
delivered to the grid from wind-based sources no later than 2
hours before the power generation. This requires 3-hour fore-
casts for the purposes of potential schedule corrections.

In Table 3 above, there are presented classic statistical mea-
sures determined for the tested farms and individual power
plants. In the conducted research we tried to find the answer to
the following question: Can the same tested models be used for
both wind farms and individual power plants? The coefficient of
variation, which compares the variability of features in two dif-
ferent populations, was used for this. In the case of wind farms,
the value of this coefficient ranged from 35% to 45%, and in
the case of individual wind turbines its value ranged from 25%
to 35% (less than 45%). It follows from the fact that both the
tested wind farms and individual wind turbines belong to the
same range of the average wind variability. The same applies to

Bull. Pol. Ac.: Tech. 68(6) 2020

Table 3
Statistical measures for wind power farm F3 and wind turbine W5
Source: self-study

F3 W5

Statistical measure Wing Power Wini Power

il I A
Mean 7.24 26715.00 7.29 681.22
Median 6.90 20900.00 7.30 575.00
Minimum 1.70 0.00 4.00 42.00
Maximum 18.70 85600.00 12.80 2059.00
Standard deviation 2.92 21721.00 1.74 463.25
Coefficient of variation 0.40 0.81 0.24 0.68
Skewness 0.72 0.87 0.16 0.94
Kurtosis 0.27 -0.15 -0.44 0.24
S5%Percentile 3.20 2100.00 4.40 124.00
95%Percentile 12.80 72800.00 10.20 1625.70
Q3Q11Range 4.00 31600.00 2.40 602.50

the production of energy by a wind farm and by a single wind
turbine. Both belong to the same range of the strong power vari-
ability (Iess than 100%). Comparison of the median and average
values in the investigated processes showed that more extreme
cases occur in the case of wind farms. The determined kurtosis
coefficients testify to the difference in the flattening of distribu-
tions for farms and individual power plants.

The historical data encompassed actual wind speed data. To
carry out the power prediction procedure in practice, the wind
speed, which is the input data to the prediction models, also un-
dergoes prediction. Due to difficulties with access to metrolog-
ical forecasts including wind speed and concerning the same
area and the same period, which could be used as an input
to forecast models, the available actual wind speed data were
disturbed to obtain the required “predicted” time series. The
maximum relative value of the disturbance was +10% (the
range is 20%). This trick allowed us to simulate typical sit-
uations with the disturbance level corresponding to the wind
speed prediction error. In [38], which deals with modelling
accuracy of selected metrological parameters, two metrologi-
cal models are compared: the Atmosphere Mesoscale Predic-
tion System (COAMPS) and the integrated wave-current model
(WAM-POM). In the case of the wind speed, they show that the
differences between the models, in terms of the mean square
error, are less than 2 meters per second, and the coefficients
of variation are greater than 35%. There are high correlation
coefficients between the models, from 0.7 to 0.84, which in-
dicates that both (commonly used) models can provide good
forecasts. Meteograms for the COAMPS model are generated
in the nodes of the computation grid spaced 39 km apart. In ad-
dition, the UCM uses the UM model, which is based on the grid
nodes spaced 4 km apart. The area, in which the wind farms de-
scribed in this paper are located, is approximately of the same
size. Therefore, it is reasonable to assume that the wind speed
forecasts prepared for the models have enough error margin.
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The input data were investigated from the point of view of
their statistical measures. The list of these measures, calculated
for one wind farm and one wind turbine, is presented in Table 3.

3.2. Software tools used in research. The main tool used for
numerical implementation of the presented forecast models was
Matlab (ver. 2016b). In the case of three models (M-PC, M-CO,
M-COP), Matlab was the only programming environment used
to compute forecasts and present results. The first stage was
preparation of necessary time series of data, which included the
generated power, actual wind speed and simulated wind speed.
Functionally separate parts of the algorithms for three models
were coded as Matlab functions. These functions were called by
Matlab scripts that executed successive stages of the forecast-
ing, starting from reading the data series, next computing the
predicted power, comparing the predictions with actual data,
and finally storing the results.

In the case of the (M-HUR) model, Matlab was used to eval-
uate the Hurst exponents for a given time series. Next, the cor-
responding value of the exponent was evaluated for each mea-
surement point using data about power produced by the plants.
The results of these computations, together with the database
created earlier, were transferred to the MRK (canonical dis-
tribution model) software, where the block processing option
was selected to compute forecasts more than one-step ahead.
Depending on the selected option value the prediction horizon
changed from three to twenty-four hours. An example single
forecast is shown in Fig. 7.
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Fig. 7. Main window of MRK application that uses the canonical dis-
tribution of random variable vector for forecasting

3.3. Forecast results. In the case of wind generated power,
the traditional assessment of prediction quality does not fully
reflect the practical usefulness of forecasts due to the specific
character of wind power plants operation.

The forecasting performance of the considered models was
compared by calculating the NMAPE (Nominal Mean Absolute
Percentage Error) [19, 28, 39] errors defined as:

P—F

N

t
NMAPE = ) , t>n, (24)
i=1
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where: P, — actual power generated by a wind plant at i-th time
instant,

PB; — predicted power for this plant at i-th time instant,

Py — rated power of this plant at the wind speed, for which
the predicted power was calculated.

The use of normalized prediction errors in the forecasting of
wind power generation is currently common, so many authors
do not even emphasize this fact. However, in the article error
values determined in the classical way (MAPE) are also pre-
sented (Figs. 9, 11, 13 and 15).
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Fig. 8. Comparison of forecasting performance of the considered pre-

diction models. The bars show NMAPE errors obtained for three wind

farms F1-F3 and the average error for 3-hour ahead prediction; (M-
PC) is the reference model
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Fig. 9. Comparison of forecasting performance of the considered pre-

diction models. The bars show MAPE errors obtained for three wind

farms F1-F3 and the average error for 3-hour ahead prediction; (M-
PC) is the reference model

Figure 8 presents the NMAPE errors of the considered fore-
cast models, obtained for 3-hour ahead prediction using time
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Fig. 10. Comparison of forecasting performance of the considered pre-

diction models. The bars show NMAPE errors obtained for three wind

farms F1-F3 and the average error for 24-hour ahead prediction; (M-
PC) is the reference model
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Fig. 11. Comparison of forecasting performance of the considered pre-

diction models. The bars show MAPE errors obtained for three wind

farms F1-F3 and the average error for 24-hour ahead prediction; (M-
PC) is the reference model

series data, with 10-minute sampling interval, from three wind
power farms. These results show that the two models, i.e. (M-
CO) and (M-COP), give clearly worse predictions than the ref-
erence model (M-PC). On the other hand, the prediction per-
formance of the Hurst model (M-HUR) is relatively best for
all three wind farms. Figure 9 shows the MAPE prediction er-
rors obtained for the same forecasts that are shown in Fig. 8.
In Figs. 10 and 11 there are presented the NMAPE and MAPE
errors obtained for 24-hour ahead prediction forecasts. Increas-
ing the forecast time horizon produces in an increase in the error
value. In addition, the MAPE error values are more than twice
as large as the NMAPE error determined for the same forecast.
This relationship is visible both for wind farms (Figs. 8-11) and
individual wind power plants (Figs. 12—-15).
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Fig. 12. Comparison of forecasting performance of the considered pre-

diction models for fifteen wind turbines installed on the same wind

farm. The points show NMAPE errors for wind turbines W1-W15 for
3-hour ahead prediction; (M-PC) is the reference model
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Fig. 13. Comparison of forecasting performance of the considered pre-

diction models for fifteen wind turbines installed on the same wind

farm. The points show MAPE errors for wind turbines W1-W15 for
3-hours ahead prediction; (M-PC) is the reference model
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Fig. 14. Comparison of forecasting performance of the considered pre-

diction models for fifteen wind turbines installed on the same wind

farm. The points show NMAPE errors for wind turbines W1-W15 for
24-hour ahead prediction; (M-PC) is the reference model

The NMAPE errors of the models shown in Figs. 12 and 14
were calculated for time series from fifteen wind turbines in-
stalled on the same farm (for 3 and 24-hours ahead prediction
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Fig. 15. Comparison of forecasting performance of the considered pre-

diction models for fifteen wind turbines installed on the same wind

farm. The points show MAPE errors for wind turbines W1-W15 for
24-hour ahead prediction; (M-PC) is the reference model

respectively and 10-minute sampling as before). In this case the
(M-CO) model gave the worst predictions for 9 turbines (per
15), but its results are only slightly worse than for the refer-
ence model (M-PC). Clearly, whereas the best results were ob-
tained for the (M-COP) model (for 13 turbines), with the per-
formance of the Hurst model (M-HUR) this time somewhere in
the middle.

The wind farm F3 consists of fifteen wind turbines. The lev-
els of the NMAPE errors shown in Figs. 8 and 10 (for the whole
wind farm) and in Figs. 12 and 14 (for the wind farm turbines)
are different. It is due to different approaches to the evaluation
of the forecast. The data for the wind farm F3 was aggregated
using data from 15 individual wind turbines. The power gener-
ated by the wind turbines was summed up, whereas the wind
speeds were averaged, and the average wind speed was dis-
turbed as described in Section 3.1. The forecast was evaluated
for the data prepared in this way. On the other hand, the forecast
for each wind turbine was evaluated using individual turbine
data, then the errors were determined for 15 turbine forecasts,
and finally the mean error was calculated.

4. Conclusions

The results of the research presented and discussed in the pa-
per allow us to formulate the following conclusions about the
performance of the considered forecast models based on the de-
terministic chaos theory:

e Because of the method of determining the error, in each
case the MAPE error value is greater than the NMAPE error
value.

e Prediction error value is smaller for the forecasts with 3-
hour ahead prediction than the forecasts with 24-hour ahead
prediction.

e For the time series from the wind power farms, only the
(M-HUR) model gave better predictions of the generated
power than the reference (M-PC) model for 3-hour ahead
prediction (Figs. 8, 9).

e For the time series from the wind power farms, the (M-
HUR) model gave better predictions of the generated power

1500

than the reference (M-PC) model for farms F1 and F2; in the
case of the farm F3 this value is slightly higher for 24-hour
ahead prediction (Figs. 10, 11).

e For the time series from single wind turbines, the most ac-
curate predictions were obtained for the (M-COP) model,
but the (M-HUR) model also exhibited reasonable forecast-
ing performance (Figs. 12—15).

e When power forecasts are required for a single wind turbine
(M-COP) model should be preferred, its average NMAPE
error for three wind farms was 6.38% for 3-hour ahead pre-
diction and 8.47% for 24-hour ahead prediction; nonethe-
less, the prediction accuracy evaluated for other considered
models does not disqualify any of the models.

e We recommend further work on the (M-HUR) model and
on more complex hybrid models combining methods of ar-
tificial intelligence (fuzzy logic, artificial neural networks)
that could make use of specific features of the (M-HUR)
model to reveal memory in time series.
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