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1. Introduction

The superficial layer of articular cartilage and the overlaying
phospholipid bilayer membrane, only several nanometres thick,
shape the height of the human joint gap [1–3]. Based on the nu-
merous recent studies conducted with the use of an atomic force
microscope (AFM), it was established that the phospholipid
layer is not static [4]. The dimensions of the surface coated with
phospholipids (PLs) and total joint gap height εT are generally
subject to several unforeseeable repeated stochastic changes
in relation to the nominal mean value. Random changes can
be caused by micro vibrations, discrete joint load, or changes
in roughness geometry. Another cause of random gap height
changes is also the genetic and volumetric growth of live cells
on the surface of cartilage with a phospholipid layer. Such small
random changes are very significant [5–7]. The numerous pre-
vious experimental studies on the scope of the influence of the
phospholipid membrane on the hydrodynamic process of sur-
face lubrication were mainly focused on non-stochastic the-
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ory and experiments in the field of chemistry, without taking
into account random changes [8–19]. There has been no previ-
ous stochastic research concerning frictional forces and coeffi-
cients of friction based on experimental methods and analytical-
numerical hydrodynamics for lamellar and laminar biological
flows [12, 17, 20, 21].

Occasional and few research efforts to date have been lim-
ited only to the influence of random joint gap height changes
on pressure distribution. This fact inspired the authors to con-
duct bio-tribological research with a comprehensive approach
to the stochastic changes in gap height as well as the velocity
and viscosity of synovial fluid affecting pressure, load-carrying
capacity of the joint, frictional force, and coefficient of friction.

Random studies require the selection of the most probable
value for the changes under consideration. For this purpose, the
expected value is determined for the gap height function, the
surface coated with a phospholipid bilayer, and viscosity. The
expected value is then the most probable value for joint gap
height and viscosity. This value is necessary to determine joint
lubrication parameters, in particular the hydrodynamic pres-
sure, frictional forces, and coefficient of friction. The proba-
bilistic description of the friction and lubrication process still
requires the determination of standard deviations for the param-
eters discussed above.
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Standard deviation intervals provide information about the
possible range within which the location of the expected value
may change. Random joint gap height changes have a direct
and indirect influence on lubrication parameters such as pres-
sure, joint load-carrying capacity, and friction forces. The di-
rect influence is demonstrated by integral formulas determining
lubrication parameters in the area of the lubricating layer. The
indirect influence of random gap height changes on the value of
lubrication parameters takes place through random changes in
the dynamic viscosity of synovial fluid, which randomly affects
changes in friction forces and pressure. In order to explain this
phenomenon, it is necessary to take into account the fact that
together with a random increase (decrease) in gap height, the
flow velocity of synovial fluid in the gap decreases (increases).
This results in a decrease (increase) in shear rate. Since syn-
ovial fluid has non-Newtonian properties, dynamic viscosity
will eventually increase (decrease). Moreover, the indirect in-
fluence of random changes in the surface of articular cartilage
coated with PLs on the value of lubrication parameters takes
place through random changes in the dynamic viscosity of syn-
ovial fluid, which randomly affects changes in friction forces
and pressure. In order to explain this phenomenon, it is neces-
sary to consider the fact that apparent viscosity of synovial fluid
ηT in the joint gap increases (decreases) together with increas-
ing (decreasing) surface of cartilage coated with PLs [3,22–24].

The concentration of PLs in the superficial layer of the sur-
face flowed around and the degree of wettability of these sur-
faces has a significant influence on the change of the viscos-
ity of the physiological fluid accumulated in the boundary ar-
eas as well as on the changes in the values of the frictional
forces, load-carrying capacity of the joint, and coefficient of
friction [13]. Viscosity changes not only in the direction of the
length and width of the flow – significant changes in viscosity
are also revealed in the direction of the nanometre thickness of
the layer.

The aim of the research undertaken in this work is the fol-
lowing:
1) to directly and indirectly explain the influence of the ran-

domly changing gap height of human joints on the values of
the viscosity and flow velocity of synovial fluid as well as
on the values of hydrodynamic pressure and friction forces,

2) to show the analytical and numerical solutions for stochas-
tic hydrodynamic lubrication of human joint with the use
of experimental measurements implementation of random
changes of joint gap height,

3) to present and to specify the inequalities, which determine
the estimated values of the expected functions describing
the basic bio-tribological parameters.

2. Random tools and materials for the performed
research

The variety of curvature shapes of the analysed joint surfaces
dictates the description of the surface in a curvilinear orthogo-
nal coordinate system: α1, α2, α3, where α1 – circumferential
direction of the rotational surface, α3 – longitudinal direction,
α2 – gap height direction.

The joint gap is filled with synovial fluid. We assume char-
acteristic constant dimensional joint gap height value ε0 and
dimensionless gap height function εT 1 dependent on variables
α1 and α3. This function is the sum of two parts described by
formula (1) [3]:

εT 1 = εT/ε0 = εT 1s(α1,α3) [1+δ1(α1,α3)] . (1)

The symbol εT 1s denotes the dimensionless gap height lim-
ited by the nominally smooth surfaces of articular cartilage.
The changes of the gap height εT are caused by random hyper-
elastic deformations of articular cartilage as well as random
protrusions of cartilage surface roughness. The dimensionless
random variable of corrections for gap height is marked with the
symbol δ1. The expected value for the random variable of cor-
rections δ1 is defined by formula (2a), and the expected function
for the entire gap height – by formula (2b) [25, 26]:

EX(δ1) =

+∞∫

−∞

(δ1)× f (δ1) dδ1 , (2a)

EX(εT 1) = EX [εT 1s (1+δ1)] = εT 1s [1+EX(δ1)] . (2b)

The symbol EX denotes the operator of the expected function.
Probability density function f assigns probability values to the
random variables of correction δ1.

The ordinates of density function f are probabilities estab-
lished for the random corrections δ1 of joint gap height. These
values were determined experimentally and take into account
the articular cartilage roughness.

Standard deviation σ , from random variable of corrections,
is determined with the use of the following formula [25, 26]:

σ ≡
√

EX(δ1)2 −EX2(δ1). (3)

Apart from gap height εT , phospholipid-coated surfaces, appar-
ent dynamic viscosity ηT , hydrodynamic pressure, temperature,
and other values are also subject to random change corrections.

The surface structure of the tested samples is irregular due
to the occurrence of random roughness (from 10 to 50 nm) or
disease [27].

Based on the comparisons made between the random
changes in the rough cartilage surface structure measured in
Cwanek’s research [1] and Dowson’s measurements [2], the
probability density function is found to be unsymmetrical. This
means that in most cases the probabilities of random increases
in gap height are not equal to the probabilities of decreases in
gap height.

The measurements of the random height changes in the sur-
face roughness on cooperating joint surfaces were conducted
using a sample (10 mm×10 mm) of diseased cartilage taken
from a human femoral head. See Fig. 1a, Fig. 1b. The measure-
ments were carried out using a laser micro-sensor installed in a
Rank Taylor Hobson-Talyscan 150 apparatus. The results were
compiled using TalymapExpert and Microsoft Excel computer
software. The measured gap height limited by the rough sur-
faces of the articular cartilage of the femoral head varied from
0.05 mm to 0.25 mm [1].
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Fig. 1. Random changes in the surface structure and height εT of the joint gap caused by hyper-elastic deformations, unsteady load, and diseases,
which enable the determination of random changes δ1 in joint gap height: for sample a) (10 mm×10 mm) and c) for sample (1.0 mm× 1.0 mm);
b) random joint gap changes for cartilage, d) random joint gap changes for endoprosthesis; 1 – central axis of the height of a gap with smooth

surfaces, 2 – smooth surface limiting the gap without random changes

3. Basic theoretical random methods

The stochastic vector equation for the conservation of mo-
mentum, continuity equation, energy conservation equation,
Maxwell equations, Young-Kelvin-Laplace equation are writ-
ten in the following directions: α1, α2, α3 see Appendix. We
take into account the expected functions of hydrodynamic pres-
sure EX [p(α1,α3)], temperature EX [T (α1,α2,α3)], velocity of
synovial fluid EX [vi(α1,α2,α3)], viscosity of lubricating fluid
EX [ηT (α1,α2,α3)], joint gap height EX [εT (α1,α3)]. We as-
sume the incompressibility of biological fluid and ignore the in-
fluence of changes in the density of bio-fluid on changes in the
equation for synovial fluid flow continuity. We use the known
dependences between interfacial energy γ [mN/m] and power
of hydrogen ion concentration pH and wettability We [14–18].
We take into account the influence of electrostatic field on the
viscosity of bio-fluids studied by the authors [23]. Then we
apply the classic simplification of hydrodynamic equations in
the boundary layer by omitting the terms of the order of rela-
tive radial clearance with a value of 10−4. Relative radial clear-
ance is defined as the ratio of the thickness of the thin bio-fluid
layer to the curvature radius of the rotational surface flowed
around. After performing the transformations and calculations,
we obtain the following stochastic equation system of hydro-
dynamic lubrication theory, taking PLs into account (44)–(49)
[3, 22, 23, 28]:

0 =− 1
h1

∂EX(p)
∂α1

+
∂

∂α2

{
EX [ηT (α1,α2,α3)]

∂EX(v1)

∂α2

}

+ρeE1 , (4)

0 =
∂EX(p)

∂α2
, (5)

−
ρEX

(
v2

1
)

h1h3

∂h1

∂α3
=− 1

h3

∂EX(p)
∂α3

+

+
∂

∂α2

{
EX [ηT (α1,α2,α3)]

∂EX(v3)

∂α2

}
+ρeE3 , (6)

1
h1

∂EX(v1)

∂α1
+

∂EX(v2)

∂α2
+

1
h1h3

∂ [h1EX(v3)]

∂α3
= 0, (7)

∂
∂α2

{
κ

∂EX [T (α1,α2,α3)]

∂α2

}
+

+EX [ηT (α1,α2,α3)]

{[
∂EX(v1)

∂α2

]2

+

[
∂EX(v3)

∂α2

]2
}

=
J2

σe
, (8)

where the expected function of apparent viscosity ηT [Pas] by
virtue of (50) [22, 26] is:

EX [ηT (α1,α2,α3)] =

= EX [ηT (n, pH,We,T,γ,E)]≡

=
γmax(pH,We)+ kEX(A−1) ·EX(T ) lnL

δv ·EX(v0)
×

×
[
1+δE(pH,E)E2]×

×



√(

∂EX(v11)

∂α21

)2

+

(
∂EX(v31)

∂α21

)2



n−1

, (9a)
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Fig. 1. Random changes in the surface structure and height εT of the joint gap caused by hyper-elastic deformations, unsteady load, and diseases,
which enable the determination of random changes δ1 in joint gap height: for sample a) (10 mm×10 mm) and c) for sample (1.0 mm× 1.0 mm);
b) random joint gap changes for cartilage, d) random joint gap changes for endoprosthesis; 1 – central axis of the height of a gap with smooth

surfaces, 2 – smooth surface limiting the gap without random changes
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0 < L ≡
(√

Lk +1
)2

(La +1)(Lb +1)
< 1,

La ≡
Ka

a+H
, Lb ≡

a+H
Kb

, Lk ≡ LaLb ,

(La +1)(Lb +1)>
(√

Lk +1
)2
.

(9b)

for: 0 ≤ α1 ≤ 2π , −b ≤ α3 ≤+b, 0 ≤ α2 ≤ EX(εT ).
It follows from formula (9a) that apparent viscosity ηT of

synovial fluid in the joint gap increases (decreases) together
with increasing (decreasing) boundary surfaces A [m2] between
areas of different phospholipid (PL) concentration, i.e., of dif-
ferent cartilage susceptibility for 10−16 m2 < A < 10−14 m2.
The influence of surface A, which is difficult to measure, on
fluid viscosity will be analysed stochastically in Section 6.

Similarly to formulas (1) and (2a), specifying random gap
height changes, expected functions of pressure, temperature,
and lubricating fluid velocity components, occurring in the sys-
tem of Eqs. (4)–(8), take the following forms:

EX(p) = p[1+EX(δp)], EX(T ) = T [1+EX(δT )],

EX(vi) = vi[1+EX(δvi)] for i = 1,2,3.
(10)

where the symbols δp, δT , δvi denote unknown random vari-
ables of pressure, temperature, and synovial fluid velocity com-
ponent corrections. If the random variable of gap height cor-
rections δ1 = 0, then also δp = δT = δvi = 0. In this case
EX(δp) = EX(δT ) = EX(δvi) = 0, therefore under assump-
tion (10) we have: EX(p) = p, EX(T ) = T , EX(vi) = vi for
i = 1,2,3. Thus, in this special case, the system of Eqs. (4)–(8)
loses stochastic properties. Lamé coefficients hi, i= 1,2,3 were
assumed for typical curvilinear rotational bio-surfaces with a
non-monotonic generating line, flowed around by a thin layer
of bio-fluid [23].

For two arbitrary cooperating biological surfaces, we ap-
ply the curvilinear, orthogonal system of co-ordinates α1, α2,
α3 with the respective Lamé coefficients h1, h2, h3. After the
abovementioned boundary simplifications of the thin arbitrary,
curvilinear, non-rotational non-parallel surfaces, it follows that
h2 = 1 and h1 = h1(α1,α3), h3 = h3(α1,α3). For example, this
case is valid for jump joint, collar bone, blade bone. For the thin
biological liquid layer restricted by the two rotational surfaces
in α1 direction and non-monotone generating line in α3 direc-
tion then the Lamé coefficients follows: h2 = 1, h1 = h1(α3),
h3 = h3(α3) or h3 = 1 for monotone generating line in α3 di-
rection. This case is valid for human elbow joint or hip joint.

Considering the authors’ research in article [22] and includ-
ing the results of numerous discussions with the authors of pa-
pers [13–15], in which they discuss the influence of chemical
properties of joint tissues and joint fluids on hydrodynamic lu-
brication of the human joint, similarly, we take into account the
influence of the human joint physical parameters on its hydro-
dynamic lubrication.

The following designations were assumed: components Ei
[V/m] (i = 1,2,3) of the electric intensity vector in αi direction,
EX(T ) [K] – expected value of randomly variable temperature
T of synovial fluid, 2b [m] – length in the longitudinal direction

of the friction area, k = 1.38054 · 10−23 J/K – Boltzmann con-
stant, δv – dimensionless random coefficient (0.2 < δv < 0.6).
The dynamic viscosity of the bio-fluid decreases when index δv
increases from 0.2 to 0.6. After experiments [1, 5] the coeffi-
cient δv describes the concentration cc of collagen fibres in the
bio-fluid. For δv = 0.2 we have cc = 100000 mol/mm3, while
for δv = 0.6 concentration equals cc = 100 mol/mm3. The di-
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tion of hydrogen ions pH in the bio-fluid on the dynamic vis-
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δE = 0.0003 m2/V2 [29]. It thus follows that the dimension-
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the tissue boundary layer is negligible.

Formula (9) was derived from known dependences
γ(pH,We) describing the relationship between power of hy-
drogen ion concentration pH and wettability We. Interfacial en-
ergy was analytically transformed into apparent dynamic vis-
cosity of the lubricating fluid ηT . Such dependences are illus-
trated graphically in the work of [23] for two types of phospho-
lipids, PC and PS, with dimensionless values for acid pKa and
base pKb equilibrium constant. An increase in pKa enhances
viscosity increases in interval 2 < pH < 4 and enhances vis-
cosity decreases in interval 4 < pH < 10. Bio-fluid dynamic
viscosity for PC and PS lipids increases with increasing power
of hydrogen ion concentration pH to certain isoelectric point IP
(γ = 3.5 mJ/m2) with established values We, δv, T , v0. A further
increase in pH causes a decrease in dynamic viscosity. The dy-
namic viscosity of the bio-fluid decreases with decreasing wet-
tability We at established values δv, T , v0. Drops in wettability
from 70◦ to 50◦ indicate a transition from the hydrophobic to
hydrophilic properties of the bio-surfaces flowed around by the
bio-fluid.

System of partial differential equations (4)–(8) determines
the following expected functions of randomly variables un-
knowns, namely: three bio-fluid velocity vector components
EX [vi(α1,α2,α3)] [m/s] for i = 1,2,3; hydrodynamic pressure
EX [p(α1,α3)] [Pa], temperature EX [T (α1,α2,α3)] [K]. The
term on the left side of Eq. (6) describes the centrifugal forces
occurring during the cooperation of two bio-surfaces. These
forces occur only when Lamé coefficient h1 is a function of α3.
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This applies to the bio-surface resting on a bone head with a
spherical, conical, parabolic, or elliptical shape, not a cylindri-
cal shape, where coefficient h1 is a constant value.

4. Integration methods of random lubrication for
rotational surfaces

Integration of the system of Eqs. (4)–(8), describing the lubri-
cation of two rotational bio-surfaces with the participation of
phospholipids (PL) separated by a thin layer of biological fluid,
will be carried out in curvilinear coordinates (α1,α2,α3).

The lubricated rotational bio-surface on the femoral head
performs a rotational motion with angular velocity ω , while the
second bio-surface (acetabulum) is stationary and limits a gap
filled with a layer of bio-fluid of randomly varying height εT .
Therefore, we apply the following boundary conditions to the
function components of expected randomly varying bio-fluid
velocities EX(v1), EX(v2), EX(v3) in directions α1, α2, α3:

EX(v1) = ωh1 for α2 = 0,

EX(v1) = 0 for α2 = EX(εT ),
(11)

EX(v2) = 0 for α2 = 0,

EX(v2) = 0 for α2 = EX(εT ),
(12)

EX(v3) = 0 for α2 = 0,
EX(v3) = 0 for α2 = EX(εT ).

(13)

By applying condition (11) to the general solution of Eq. (4),
we obtain the following form of the function of the expected
randomly variable component of bio-fluid velocity vector in
circumferential direction α1 of the rotational movable bio-
surface [24]:

EX [v1(α1,α2,α3)] =

(
1
h1

∂EX(p)
∂α1

−M1

)
Aη+

+(1−As)ωh1 , (14)

where subordinate functions As [1], Aη [m4/Ns] are the follow-
ing:

As(α1,α2,α3)≡

α2∫
0

1
EX(ηT )

dα2

EX(εT )∫
0

1
EX(ηT )

dα2

,

Aη(α1,α2,α3)≡
α2∫

0

α2

EX(ηT )
dα2+

−

(α2∫
0

1
EX(ηT )

dα2

)(
EX(εT )∫

0

α2

EX(ηT )
dα2

)

EX(εT )∫
0

1
EX(ηT )

dα2

, (15)

where: 0 ≤ α1 ≤ 2πθ1, 0 ≤ θ1 ≤ 1, −b ≤ α3 ≤ +b, 0 ≤ α2 ≤
EX(εT ), EX(εT ) = EX [εT (α1,α3)].

When substituting solution (14) to Eq. (6) and applying con-
dition (13), we obtain the function of the expected randomly
variable component of bio-fluid velocity vector in longitudinal
direction α3 of the rotational bio-surface:

EX [v3(α1,α2,α3)] =

(
1
h3

∂EX(p)
∂α3

−M3

)
Aη+

− ρ
h1h3

∂h1

∂α3
Ap . (16)

The last term on the right side of Eq. (16) describes the in-
fluence of the suction effect of the rotational bio-surface with
a monotonically variable generating line on the distribution of
bio-fluid velocity in the joint gap. This influence disappears
when the bio-surface is cylindrical in shape, and the generat-
ing line is a straight line parallel to the axis of rotation. More-
over Mi = ρeEi [N/m3] for i = 1,3 are electrical terms. The
following function of centrifugal effects Ap [m6/Ns3] was as-
sumed:

Ap(α1,α2,α3)≡
(

1
h1

∂EX(p)
∂α1

−M1

)2

Aρ1(α1,α2,α3)+

−2ω
(

∂EX(p)
∂α1

−h1M1

)
Aρ2(α1,α2,α3)+

+(ωh1)
2Aρ3

(
(α1,α2,α3) , (17)

where auxiliary functions Aρi are derived in paper [22].

Integration of continuity Eq. (7) for boundary condition (12),
where v2 = 0 for α2 = 0, gives the following form of the func-
tion of the expected randomly variable component of bio-fluid
velocity in the direction of gap height α2:

EX [v2(α1,α2,α3)] =−
α2∫

0

1
h1

∂EX(v1)

∂α1
dα2+

−
α2∫

0

1
h1h3

∂ [h1EX(v3)]

∂α3
dα2 . (18)

Now we substitute functions (14)–(16) to solution (18). We
apply boundary condition (12) in the form EX(v2) = 0 for
α2 = EX(εT ), i.e. to the component of bio-fluid velocity vec-
tor in the direction of gap height α2. We obtain the follow-
ing stochastically modified Reynolds equations determining ex-
pected function EX [p(α1,α3)] of randomly variable hydrody-
namic pressure:
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spherical, conical, parabolic, or elliptical shape, not a cylindri-
cal shape, where coefficient h1 is a constant value.
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cation of two rotational bio-surfaces with the participation of
phospholipids (PL) separated by a thin layer of biological fluid,
will be carried out in curvilinear coordinates (α1,α2,α3).

The lubricated rotational bio-surface on the femoral head
performs a rotational motion with angular velocity ω , while the
second bio-surface (acetabulum) is stationary and limits a gap
filled with a layer of bio-fluid of randomly varying height εT .
Therefore, we apply the following boundary conditions to the
function components of expected randomly varying bio-fluid
velocities EX(v1), EX(v2), EX(v3) in directions α1, α2, α3:
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EX(v3) = 0 for α2 = EX(εT ).

(13)

By applying condition (11) to the general solution of Eq. (4),
we obtain the following form of the function of the expected
randomly variable component of bio-fluid velocity vector in
circumferential direction α1 of the rotational movable bio-
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where: 0 ≤ α1 ≤ 2πθ1, 0 ≤ θ1 ≤ 1, −b ≤ α3 ≤ +b, 0 ≤ α2 ≤
EX(εT ), EX(εT ) = EX [εT (α1,α3)].

When substituting solution (14) to Eq. (6) and applying con-
dition (13), we obtain the function of the expected randomly
variable component of bio-fluid velocity vector in longitudinal
direction α3 of the rotational bio-surface:
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−M3
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The last term on the right side of Eq. (16) describes the in-
fluence of the suction effect of the rotational bio-surface with
a monotonically variable generating line on the distribution of
bio-fluid velocity in the joint gap. This influence disappears
when the bio-surface is cylindrical in shape, and the generat-
ing line is a straight line parallel to the axis of rotation. More-
over Mi = ρeEi [N/m3] for i = 1,3 are electrical terms. The
following function of centrifugal effects Ap [m6/Ns3] was as-
sumed:

Ap(α1,α2,α3)≡
(

1
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−M1

)2
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(
(α1,α2,α3) , (17)

where auxiliary functions Aρi are derived in paper [22].

Integration of continuity Eq. (7) for boundary condition (12),
where v2 = 0 for α2 = 0, gives the following form of the func-
tion of the expected randomly variable component of bio-fluid
velocity in the direction of gap height α2:

EX [v2(α1,α2,α3)] =−
α2∫

0

1
h1

∂EX(v1)

∂α1
dα2+

−
α2∫

0

1
h1h3

∂ [h1EX(v3)]

∂α3
dα2 . (18)

Now we substitute functions (14)–(16) to solution (18). We
apply boundary condition (12) in the form EX(v2) = 0 for
α2 = EX(εT ), i.e. to the component of bio-fluid velocity vec-
tor in the direction of gap height α2. We obtain the follow-
ing stochastically modified Reynolds equations determining ex-
pected function EX [p(α1,α3)] of randomly variable hydrody-
namic pressure:
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1
h1

∂
∂α1



(

∂EX(p)
∂α1

−h1M1

)


EX(εT )∫

0

Aη dα2




+

+
1
h3

∂
∂α3


h1

h3

(
∂EX(p)

∂α3
−h3M3

)


EX(εT )∫

0

Aη dα2




+

− ρ
h3

∂
∂α3


 ∂h1

h3∂α3

EX(εT )∫

0

Ap dα2


=

= ωh1
∂

∂α1




EX(εT )∫

0

As dα2 −EX(εT )


 . (19)

When substituting the expected functions of bio-fluid veloc-
ity vector components (14), (16) to energy equation (8), for a
constant value of bio-fluid thermal conductivity κ , after trans-
formations we obtain the following differential equation, en-
abling the determination of the expected function of randomly
variable temperature:

∂ 2EX(T )
∂α2

2
+

EX(ηT )

κ

{[(
1
h3

∂EX(p)
∂α3

−M3

)
∂Aη

∂α2

]2

+

+

[(
1
h1

∂EX(p)
∂α1

−M1

)
∂Aη

∂α2
−ωh1

∂As

∂α2

]2
}
+

+
EX(ηT )

κ
ρ

h1h3

∂h1

∂α3

∂Ap

∂α2

[
ρ

h1h3

∂h1

∂α3

∂Ap

∂α2
+

−2
(

1
h3

∂EX(p)
∂α3

−M3

)
∂Aη

∂α2

]
=

MT

κ
(20)

for: 0 ≤ α1 ≤ 2π , −b ≤ α3 ≤ +b, 0 ≤ α2 ≤ EX(εT ), and
MT/κ = J2/σκ [K/m2], σκ = σe ·κ .

Expected function of randomly varying pressure EX(p) is
determined from Eq. (19) assuming the value of atmospheric
pressure pA at the edges of lubrication area Ω(α1,α3):

p(α1,α3) = pA for (α1,α3) ∈ FrΩ,

Ω ∈ (0 ≤ α1 ≤ π)× (π/2 ≤ α3 ≤ π),
(21)

where Fr – topological boundary set operator. In order to de-
termine expected function of randomly variable temperature
EX [T (α1,α2,α3)] from second order differential Eq. (20), two
boundary conditions are required. The decreases and increases
in the expected function of temperature below and above char-
acteristic temperature T0 ultimately give constant temperature
value fc on the first bio-surface (movable) and variable un-
known value of temperature changes fp(α1,α3) on the sec-
ond bio-surface (immovable). Thus, the two searched boundary
conditions are as follows:

EX [T (α1,α2,α3)] = T0 + fc for α2 = 0, (22a)
EX [T (α1,α2,α3)] = T0 + fp(α1,α3)

for α2 = EX(εT ). (22b)

In order to determine unknown temperature function fp(α1,α3)
on the surface of the acetabulum, we use the condition of trans-
portation of heat flux density qc from the bone head surface,
through the bio-liquid layer, to the surface of the acetabulum.
This condition has the following form:

κ
∂EX(T )

∂α2
=−qc for α2 = 0. (22c)

The components of expected random functions of friction
forces in curvilinear α1, α3 directions occurring in human joint
gaps with a PL bilayer have the following forms:

EX(FR1) =
∫∫

Ω

(
EX(ηT )

∂EX(v1)

∂α2

)

α2=EX(εT )

· h1h3 dα1 dα3 , (23)

EX(FR3) =
∫∫

Ω

(
EX(ηT )

∂EX(v3)

∂α2

)

α2=EX(εT )

· h1h3 dα1 dα3 , (24)

where: 0 ≤ α1 ≤ 2πθ1, 0 ≤ θ1 ≤ 1, −b ≤ α3 ≤ +b, 0 ≤ α2 ≤
EX(εT ), Ω(α1,α3) – lubrication surface.

The expected value of joint load carrying capacity C [N] act-
ing in the opposite direction to load W [N] is determined from
the following dependence:

EX(C) =







+b∫

−b




αk∫

0

EX [p(α1,α3)]h1(sinα1)dα1


 dα3




2

+

+




+b∫

−b




αk∫

0

EX [p(α1,α3)]h1(cosα1)dα1


 dα3




2



0.5

, (25)

for 0 ≤ α1 ≤ αk < 2π , −b ≤ α3 ≤ +b, EX(εT ) =
EX [εT (α1,α3)], where: αk denotes the bio-fluid end coordinate
in circumferential direction α1 of the femoral head, 2b – length
in the longitudinal direction of the friction area.

The symbol EX(p) denotes the expected function of the ran-
domly variable hydrodynamic pressure function. Based on the
Coulomb’s law of friction, taking into account curvilinear or-
thogonal coordinate system, the dimensionless, randomly vari-
able coefficient of friction has the following form:

µ =
|e1EX(FR1)+ e3EX(FR3)|

EX(C)
, (26)

where e1, e3 are the unit vectors in circumferential α1 and lon-
gitudinal α3 directions.

5. Examples of geometrical description methods
of rotational surfaces

The geometry of cylindrical biosurface is manifested in follow-
ing example.
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Let us consider the human elbow joint with two cooperat-
ing cylindrical rotational surfaces. Lower surface (bone head)
moves in α1 direction with angular velocity ω . Upper surface
(acetabulum) is motionless. Both cylindrical surfaces are mo-
tionless in α3 longitudinal direction. Hence, we have:

U1 = ωh1 and α1 = ϕ, α2 = r, α3 = z . (27)

Lubricated is the cylindrical surface region with always mono-
tone generating line α3 = z inside the intervals: 0 < ϕ < π/2;
−b/2 < z <+b/2, z – longitudinal coordinate.

Thus, the Lamé coefficients and lubrication region are as fol-
lows:

h1 = R, h2 = 1, h3 = 1, Ω = πRb/2, (28)

where R [m] denotes the radius of the cylindrical bone. Geo-
metrical simulation of elbow cylindrical joint shows Fig. 2.

Fig. 2. Geometry of rotational region of cylindrical elbow joint

For the analysed stochastic lubrication of the human hip
joint, taking into account the PL bilayer, the following spherical
coordinate system seems the most appropriate: α1 = ϕ , α2 = r,
α3 = ϑ . Lamé coefficients for the thin layer of lubricating fluid
on a spherical rotational surface with a monotonic generating
line are as follows: h1 = Rsinϑ1, h2 = 1, h3 = 1, where R is the
radius of the spherical bone head and ϑ1 = ϑ/R. We substitute
the presented spherical coordinates and the given Lamé coeffi-
cients to formulas (14)–(18), (23)–(26). The expected functions
of fluid velocity vector components determined by formulas
(14), (16), (18) will take the following form: EX [vϕ(ϕ,r,ϑ)],
EX [vr(ϕ,r,ϑ)], EX [vϑ (ϕ,r,ϑ)]. Expected functions of friction
force components EX(FR1), EX(FR3) represented by formu-
las (23)–(24) are transformed into EX(FRϕ), EX(FRϑ ). Electric
field components M1, M3 are replaced by components Mϕ , Mϑ .
Auxiliary subordinate functions Aρi for i = 1,2,3, represented
by formula (17), take the following forms: Aρϕ , Aρr, Aρϑ .

The dimensionless height of the human hip joint gap, limited
by nominally smooth spherical surfaces of articular cartilage,
deformed by random changes, in accordance with the designa-
tion provided in formula (1), can be represented in the following
dimensional form [3]:

εT (ϕ,ϑ1,δ1) = ε0εT 1(ϕ,ϑ1,δ1)

≡ ε0εT 1s(ϕ,ϑ1)[1+δ1(ϕ,ϑ1)], (29)

where classical gap height εT (δ1 = 0) = ε0εT 1s(ϕ,ϑ1) had been
derived in papers [3, 24].

The symbol ε0 means a constant, characteristic, dimensional
value of joint gap height. We assume the centre of the spherical
bone head to be at O(0,0,0). The centre of the spherical surface
of the acetabulum is at O1(x−∆εx,y−∆εy,z+∆εz). Eccentric-
ity has the value of D, see Fig. 3.

Fig. 3. Gap height for randomly deformed articular cartilage surface:
a) joint gap between the femoral head and the acetabulum, b) random
changes δ in gap height, c) eccentricity of the centre points of the
spherical head and the acetabulum, d) hip joint dynamics, where: W –
joint load, C – load-carrying capacity, R – repulsion force, 1 – phospho-
lipid bilayer, 2 – hydrated sodium ions, 3 – synovial fluid, 4 – articular
cartilage, ηT – synovial fluid viscosity distribution in the direction of

layer thickness

Lubrication area Ω is determined by the following inequali-
ties: 0 < ϕ < π; πR/8 < ϑ < πR/2, ϑ = ϑ1R.

6. Semi-analytical and experimental estimation
of random lubricant parameters

We now present an estimation of the value of the expected func-
tions of random load-carrying capacity and friction forces in the
hip joint based on the obtained analytical solutions (Section 4)
and stochastic gap height analysis (Section 2) without detailed
numerical calculations.

Using probability density function f for corrections δ1 of the
gap height, we determine the expected value, i.e. EX(δ1) = m,
from Formula (2a); from Eq. (3) we calculate standard devia-
tion σ . The equation that enables the estimation of the expected
values of gap height, was based on Eqs. (1) and (2b), and has
the following form:

(1+m−σ)εT (δ1 = 0)≤ EX(εT )≤
≤ (1+m+σ)εT (δ1 = 0), (30)

where εT (δ1 = 0) denotes the gap height without random cor-
rections.

Figure 4 illustrates the influence of stochastic changes in the
susceptibility of the multimode boundary areas of the flowed
around cartilage surface and gap height on the values of lubri-
cation parameters. The left column of the illustration, a)–d),
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(acetabulum) is motionless. Both cylindrical surfaces are mo-
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For the analysed stochastic lubrication of the human hip
joint, taking into account the PL bilayer, the following spherical
coordinate system seems the most appropriate: α1 = ϕ , α2 = r,
α3 = ϑ . Lamé coefficients for the thin layer of lubricating fluid
on a spherical rotational surface with a monotonic generating
line are as follows: h1 = Rsinϑ1, h2 = 1, h3 = 1, where R is the
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EX [vr(ϕ,r,ϑ)], EX [vϑ (ϕ,r,ϑ)]. Expected functions of friction
force components EX(FR1), EX(FR3) represented by formu-
las (23)–(24) are transformed into EX(FRϕ), EX(FRϑ ). Electric
field components M1, M3 are replaced by components Mϕ , Mϑ .
Auxiliary subordinate functions Aρi for i = 1,2,3, represented
by formula (17), take the following forms: Aρϕ , Aρr, Aρϑ .

The dimensionless height of the human hip joint gap, limited
by nominally smooth spherical surfaces of articular cartilage,
deformed by random changes, in accordance with the designa-
tion provided in formula (1), can be represented in the following
dimensional form [3]:

εT (ϕ,ϑ1,δ1) = ε0εT 1(ϕ,ϑ1,δ1)

≡ ε0εT 1s(ϕ,ϑ1)[1+δ1(ϕ,ϑ1)], (29)

where classical gap height εT (δ1 = 0) = ε0εT 1s(ϕ,ϑ1) had been
derived in papers [3, 24].

The symbol ε0 means a constant, characteristic, dimensional
value of joint gap height. We assume the centre of the spherical
bone head to be at O(0,0,0). The centre of the spherical surface
of the acetabulum is at O1(x−∆εx,y−∆εy,z+∆εz). Eccentric-
ity has the value of D, see Fig. 3.

Fig. 3. Gap height for randomly deformed articular cartilage surface:
a) joint gap between the femoral head and the acetabulum, b) random
changes δ in gap height, c) eccentricity of the centre points of the
spherical head and the acetabulum, d) hip joint dynamics, where: W –
joint load, C – load-carrying capacity, R – repulsion force, 1 – phospho-
lipid bilayer, 2 – hydrated sodium ions, 3 – synovial fluid, 4 – articular
cartilage, ηT – synovial fluid viscosity distribution in the direction of

layer thickness

Lubrication area Ω is determined by the following inequali-
ties: 0 < ϕ < π; πR/8 < ϑ < πR/2, ϑ = ϑ1R.

6. Semi-analytical and experimental estimation
of random lubricant parameters

We now present an estimation of the value of the expected func-
tions of random load-carrying capacity and friction forces in the
hip joint based on the obtained analytical solutions (Section 4)
and stochastic gap height analysis (Section 2) without detailed
numerical calculations.

Using probability density function f for corrections δ1 of the
gap height, we determine the expected value, i.e. EX(δ1) = m,
from Formula (2a); from Eq. (3) we calculate standard devia-
tion σ . The equation that enables the estimation of the expected
values of gap height, was based on Eqs. (1) and (2b), and has
the following form:

(1+m−σ)εT (δ1 = 0)≤ EX(εT )≤
≤ (1+m+σ)εT (δ1 = 0), (30)

where εT (δ1 = 0) denotes the gap height without random cor-
rections.

Figure 4 illustrates the influence of stochastic changes in the
susceptibility of the multimode boundary areas of the flowed
around cartilage surface and gap height on the values of lubri-
cation parameters. The left column of the illustration, a)–d),
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Fig. 4. The stochastic influence of the elasto-hydrodynamic change in the susceptibility of multimode cartilage surface in contact with flowing
fluid on its viscosity in a thin gap, for cartilage lubrication by means of classical hydrodynamics on the left (a, b, c, d) and by squeezing out
on the right (e, f, g, h), where random changes show: a), e) displacements at the cartilage surface, b), f) decreases and increases in height εT of
the joint gap, c), g) decreases and increases of synovial fluid flow velocity profile in the gap, d), h) changes in shear rate causing increases and

decreases in synovial fluid viscosity on boundary surfaces between susceptibility change Ex1 �= Ex2 of a molecule being flowed around

relates to hydrodynamic lubrication by rotational movement,
while the right column of the illustration, e)–h), describes lubri-
cation by squeezing out synovial fluid. Each column of the il-
lustration consists of a left side loaded with force W1 and a right
side loaded with force W2 =W1. The left side concerns the less
susceptible (more durable) superficial layer of articular carti-
lage with a greater modulus of elasticity and plasticity Ex1. The
right side concerns the more susceptible (less durable) multi-
mode superficial layer of articular cartilage with a smaller mod-
ulus of elasticity and plasticity Ex2 < Ex1. Similarly, the effect
of viscosity change would be obtained by assuming W2 > W1
and Ex2 = Ex1.

Figure 4 shows that with randomly increasing (decreasing)
gap height: Fig. 4b, 4f, synovial fluid flow velocity in the gap
decreases (increases): Fig. 4c, 4g. This results in a decrease (in-
crease) in flow shear rate Θ : Fig. 4d, 4h. Since synovial fluid
has non-Newtonian properties, an increase (decrease) in shear
rate implies a decrease (increase) in dynamic viscosity ηT of
synovial fluid, see Fig. 4d, 4h.

For stationary flow of synovial fluid in the joint gap, there is
an equal volumetric flow rate in places of narrowing and ex-
pansion of gap height εT , both in the case of classic hydro-
dynamic lubrication as well as lubrication by squeezing out.
The flow rate, as the product of average flow velocity and flow
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surface, implies an increase (decrease) in velocity v, which is
inversely proportional to the narrowing (widening) of the gap
height shown in Fig. 4a, b, c, e, f, g. Thus, we have the follow-
ing estimation of the value the expected velocity function:

v(δ1 = 0)
1+m+σ

≤ EX(v)≤ v(δ1 = 0)
1+m−σ

, (31)

where v(δ1 = 0) denotes the velocity without random correc-
tions of gap height.

The presented implication of viscosity changes illustrated in
Fig. 4 is confirmed by formula (9a) defining apparent viscosity
ηT . In this formula, an increase (decrease) in velocity v implies
a decrease (increase) in the dynamic viscosity of synovial fluid.

Thus, using the expected value of gap height corrections m,
and its standard deviation σ and after numerical estimations
for expressions (9a) we obtain the following inequalities for the
value of the expected viscosity function:

(1+m−σ)≤ EX(ηT )

ηT (δ1 = 0)
≤ (1+m+σ) ,

ηT (δ1 = 0) = O
(

γmax + k ·A−1T · lnL
δv · v0

)
, (32a)

where ηT (δ1 = 0) denotes the biological liquid viscosity with-
out random corrections of gap height and without susceptibility
random changes on the superficial layer of surfaces.

By virtue of Eq. (32a) we calculate the apparent dynamic
viscosity for synovial fluid taking into account the following
parameter values: A = 10−15 m2, lnL = −50, γ = 2.5 mJ/m2,
0.03 m/s < v0 < 0.04 m/s, T = 310 K, k = 1.380649 ·
10−23 J/K, δv = 0.2. Hence: kA−1T · lnL =−0.214 mN/m.

The non-stochastic apparent viscosity has the following
value:

ηT (δ1 = 0) =
γmax + k ·A−1T · lnL

δv · v0
=

=
2.5

mN
m

−0.2140
mN
m

0.20 ·0.0368
m
s

= 0.3105 Pa · s. (32b)

Symbols: A, L, γ and k – Boltzmann constant are described
in Section 3. It is visible that the boundary surface A between
areas of different phospholipid concentrations has the important
influence on the bio-fluid viscosity variations.

The derived formula (32a) for the apparent viscosity of bio-
logical liquid shows directly that increments of phospholipids
concentration on the joint cartilage surface corresponding with
the decrements of the value 0.6 to the value 0.2 of the dimen-
sionless coefficient δv, implies the increments of apparent dy-
namic viscosity. The experimental studies [1, 8] confirm this
phospholipid feature.

The derived formula (32a) for the apparent viscosity of bi-
ological liquid shows directly that decrements of the flow ve-
locity v0 of the biological liquid in the joint gap during the lu-
brication increases apparent dynamic viscosity of the biological
liquid.

After fundamental laws of the fluid mechanics it follows, that
the velocity distribution of the liquid flow in the conduit gap has
parabolic shape, whereas the lowest values of velocity are lo-
cated on the boundary surfaces of the gap which are restricted
the liquid layer. Experimental studies [2, 6] confirm, that the
highest values of the dynamic viscosity of the lubricated bio-
logical liquid are occurring on the laminar boundary layer of
the cartilage which is flowed around by the biological liquid.

The sequence of drawings 4a–h shows that smaller gap
height implies lower viscosity of non-Newtonian liquid. This
fact applies to the fluid for both hydrodynamic classic lubrica-
tion (left column) as well as (right column) joint surface lubri-
cation by squeezing out (right column).

The expected function of hydrodynamic pressure p deter-
mined from differential equation (19), with the simultaneous
use of inequalities (31), (32), enables the estimation of its value
in the following interval:

1+m−σ
(1+m+σ)2 ≤ EX(p)

p(δ1 = 0)
≤ 1+m+σ

(1+m−σ)2 ,

p(δ1 = 0)≡ O
(

R2ωηT (δ1 = 0)
ε2

T (δ1 = 0)

)
. (33)

The expected values of load-carrying capacity C = pS for
pressure p within range (33), determined from formula (25) on
cartilage surface S = dα1dα3 are limited in the following inter-
val:

1+m−σ
(1+m+σ)2 ≤ EX(C)

C(δ1 = 0)
≤ 1+m+σ

(1+m−σ)2 ,

C(δ1 = 0)≡ O
(

R2SωηT (δ1 = 0)
ε2

T (δ1 = 0)

)
. (34)

The expected function of friction forces FR with the simul-
taneous use of inequalities (31), (32), enables the estimation of
its value in the following interval:

1+m−σ
1+m+σ

≤ EX(FR)

FR(δ1 = 0)
≤ 1+m+σ

1+m−σ
,

FR(δ1 = 0)≡ O
(

SRωηT (δ1 = 0)
εT (δ1 = 0)

)
. (35)

The expected function of the coefficient of friction µ =FR/C,
expressed by formula (26), with the simultaneous use of in-
equalities (34), (35), enables the estimation of its value in the
following interval:

1+m−σ ≤ EX(µ = FR/C)

µ(δ1 = 0)
≤ 1+m+σ ,

µ(δ1 = 0)≡ O
(

εT (δ1 = 0)
R

)
. (36)
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surface, implies an increase (decrease) in velocity v, which is
inversely proportional to the narrowing (widening) of the gap
height shown in Fig. 4a, b, c, e, f, g. Thus, we have the follow-
ing estimation of the value the expected velocity function:

v(δ1 = 0)
1+m+σ

≤ EX(v)≤ v(δ1 = 0)
1+m−σ

, (31)

where v(δ1 = 0) denotes the velocity without random correc-
tions of gap height.

The presented implication of viscosity changes illustrated in
Fig. 4 is confirmed by formula (9a) defining apparent viscosity
ηT . In this formula, an increase (decrease) in velocity v implies
a decrease (increase) in the dynamic viscosity of synovial fluid.

Thus, using the expected value of gap height corrections m,
and its standard deviation σ and after numerical estimations
for expressions (9a) we obtain the following inequalities for the
value of the expected viscosity function:

(1+m−σ)≤ EX(ηT )

ηT (δ1 = 0)
≤ (1+m+σ) ,

ηT (δ1 = 0) = O
(

γmax + k ·A−1T · lnL
δv · v0

)
, (32a)

where ηT (δ1 = 0) denotes the biological liquid viscosity with-
out random corrections of gap height and without susceptibility
random changes on the superficial layer of surfaces.

By virtue of Eq. (32a) we calculate the apparent dynamic
viscosity for synovial fluid taking into account the following
parameter values: A = 10−15 m2, lnL = −50, γ = 2.5 mJ/m2,
0.03 m/s < v0 < 0.04 m/s, T = 310 K, k = 1.380649 ·
10−23 J/K, δv = 0.2. Hence: kA−1T · lnL =−0.214 mN/m.

The non-stochastic apparent viscosity has the following
value:

ηT (δ1 = 0) =
γmax + k ·A−1T · lnL

δv · v0
=

=
2.5

mN
m

−0.2140
mN
m

0.20 ·0.0368
m
s

= 0.3105 Pa · s. (32b)

Symbols: A, L, γ and k – Boltzmann constant are described
in Section 3. It is visible that the boundary surface A between
areas of different phospholipid concentrations has the important
influence on the bio-fluid viscosity variations.

The derived formula (32a) for the apparent viscosity of bio-
logical liquid shows directly that increments of phospholipids
concentration on the joint cartilage surface corresponding with
the decrements of the value 0.6 to the value 0.2 of the dimen-
sionless coefficient δv, implies the increments of apparent dy-
namic viscosity. The experimental studies [1, 8] confirm this
phospholipid feature.

The derived formula (32a) for the apparent viscosity of bi-
ological liquid shows directly that decrements of the flow ve-
locity v0 of the biological liquid in the joint gap during the lu-
brication increases apparent dynamic viscosity of the biological
liquid.

After fundamental laws of the fluid mechanics it follows, that
the velocity distribution of the liquid flow in the conduit gap has
parabolic shape, whereas the lowest values of velocity are lo-
cated on the boundary surfaces of the gap which are restricted
the liquid layer. Experimental studies [2, 6] confirm, that the
highest values of the dynamic viscosity of the lubricated bio-
logical liquid are occurring on the laminar boundary layer of
the cartilage which is flowed around by the biological liquid.

The sequence of drawings 4a–h shows that smaller gap
height implies lower viscosity of non-Newtonian liquid. This
fact applies to the fluid for both hydrodynamic classic lubrica-
tion (left column) as well as (right column) joint surface lubri-
cation by squeezing out (right column).

The expected function of hydrodynamic pressure p deter-
mined from differential equation (19), with the simultaneous
use of inequalities (31), (32), enables the estimation of its value
in the following interval:

1+m−σ
(1+m+σ)2 ≤ EX(p)

p(δ1 = 0)
≤ 1+m+σ

(1+m−σ)2 ,

p(δ1 = 0)≡ O
(

R2ωηT (δ1 = 0)
ε2

T (δ1 = 0)

)
. (33)

The expected values of load-carrying capacity C = pS for
pressure p within range (33), determined from formula (25) on
cartilage surface S = dα1dα3 are limited in the following inter-
val:

1+m−σ
(1+m+σ)2 ≤ EX(C)

C(δ1 = 0)
≤ 1+m+σ

(1+m−σ)2 ,

C(δ1 = 0)≡ O
(

R2SωηT (δ1 = 0)
ε2

T (δ1 = 0)

)
. (34)

The expected function of friction forces FR with the simul-
taneous use of inequalities (31), (32), enables the estimation of
its value in the following interval:

1+m−σ
1+m+σ

≤ EX(FR)

FR(δ1 = 0)
≤ 1+m+σ

1+m−σ
,

FR(δ1 = 0)≡ O
(

SRωηT (δ1 = 0)
εT (δ1 = 0)

)
. (35)

The expected function of the coefficient of friction µ =FR/C,
expressed by formula (26), with the simultaneous use of in-
equalities (34), (35), enables the estimation of its value in the
following interval:

1+m−σ ≤ EX(µ = FR/C)

µ(δ1 = 0)
≤ 1+m+σ ,

µ(δ1 = 0)≡ O
(

εT (δ1 = 0)
R

)
. (36)
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7. The method of experimental determination for
the gap height random density function

The intervals of analytical bio-tribological parameters (30)–
(36) will now be considered for specific results of experimental
studies. Experimental studies [1] and [2] regarding the mea-
surement of hip joint gap height with radial clearance ε0 from
2 µm to 10 µm prove that the dimensionless random variable
of corrections for gap height, marked with the symbol δ1, is
most often manifested by two characteristic types of probability
density functions. These are symmetrical and anti-symmetrical
functions. Symmetrical density functions of correction param-
eters occur much less frequently than anti-symmetrical func-
tions (about 12 times in 100 measurements with a probability
of Ps = 0.12). They are characterized by a symmetrical distri-
bution of random probability changes in terms of gap height
increases and decreases. The probabilities of random increases
in joint height gap are equal to the probabilities of random
decreases. Symmetrical probability density function fS is de-
scribed by the following equations:

fS(δ1)≡




1+δ1 for −1 ≤ δ1 ≤ 0,

1−δ1 for 0 ≤ δ1 ≤ 1,

0 for |δ1|> 1.

(37)

Among the frequently occurring unsymmetrical correction
parameter density functions describing increases and decreases
in gap height, we generally have two types of functions. The
first type (38a, b) concerns function fN , where the probabilities
of random gap height increases dominate over the probabilities
of random gap height decreases. The second type (38c, d) con-
cerns function fn, where the probabilities of random gap height
decreases dominate over the probabilities of random gap height
increases. The two cases a) and b) for anti-symmetrical proba-
bility density distribution functions fN , each one of them occur-
ring 22 times in 100 measurements with probability PN = 0.22,
are described by Eqs. (38a, b).

fN(δ1)≡




1
2

δ1 +
1
2

for −1 ≤ δ1 ≤−1
2
,

3
2

δ1 +1 for − 1
2
≤ δ1 ≤ 0,

−1
2

δ1 +1 for 0 ≤ δ1 ≤
1
2
,

−3
2

δ1 +
3
2

for
1
2
≤ δ1 ≤+1,

0 for |δ1|> 1;

(38a)

fN(δ1)≡




1
3

δ1 +
1
3

for −1 ≤ δ1 ≤−1
4
,

3δ1 +1 for − 1
4
≤ δ1 ≤ 0,

−1
3

δ1 +1 for 0 ≤ δ1 ≤
3
4
,

−3δ1 +3 for
3
4
≤ δ1 ≤+1,

0 for |δ1|> 1.

(38b)

The two cases c) and d) for anti-symmetrical probability density
distribution functions fn, each one of them occurring 22 times
in 100 measurements with probability Pn = 0.22, are described
by Eqs. (38c, d).

fn(δ1)≡




3δ1 +3 for −1 ≤ δ1 ≤−3
4
,

1
3

δ1 +1 for − 3
4
≤ δ1 ≤ 0,

−3δ1 +1 for 0 ≤ δ1 ≤
1
4
,

−1
3

δ1 +
1
3

for
1
4
≤ δ1 ≤+1,

0 for |δ1|> 1;

(38c)

fn(δ1)≡





3
2

δ1 +
3
2

for −1 ≤ δ1 ≤−1
2
,

1
2

δ1 +1 for − 1
2
≤ δ1 ≤ 0,

−3
2

δ1 +1 for 0 ≤ δ1 ≤
1
2
,

−1
2

δ1 +
1
2

for
1
2
≤ δ1 ≤+1,

0 for |δ1|> 1.

(38d)

Symmetrical distribution (37) of density function fs is shown
in Fig. 5. Unsymmetrical distributions (38a–d) for function fN ,
fn are illustrated in Fig. 6. The measurement multiplicity shown
in Fig. 5, Fig. 6a–d, equal to 12+2×22+2×22 = 100, creates
a probabilistic complete system of events.

Fig. 5. Symmetrical probability density function fS according to for-
mula (37), with a vertical axis of probability P, where the upper hori-
zontal axis gives dimensionless values of the random variable of cor-
rections δ1 of increases and decreases in joint gap height, the lower

horizontal axis indicates the height of the entire gap 1+δ1

Unsymmetrical fN , fn distributions of probability density
functions (38a, b), (38c, d) together with the determined
expected values and standard deviations are presented in
Fig. 6a–d.

For symmetrical function (37), expected value ms = 0 for the
random variable of gap height corrections was determined from
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a)

b)

c)

d)

Fig. 6. Anti-symmetrical probability density functions: a), b) accord-
ing to formulas (38a,b) for fN dominance of random increases over
decreases of joint gap height, c), d) according to formula (38c, d) for
fn dominance of random decreases over random increases of joint gap
height; where the vertical axis indicates probabilities P, the upper hor-
izontal axis gives dimensionless values of the random variable of in-
crease and decrease corrections of joint gap height δ1, the lower hori-

zontal axis indicates the heights of the entire gap 1+δ1

formula (2). The standard deviation determined from formula
(3) gives the following value: σs = 0.4082. The standard devi-
ation interval is:

(ms −σs, ms +σs) = (−0.4082,+0.4082). (39)

This interval was superimposed onto Fig. 5 on upper hor-
izontal axis δ1. In this interval, due to random changes for
the measurements conducted, the random expected value of in-
creases and decreases in gap height may change its location.
The changes are assigned a change value of the entire gap,
read from lower horizontal axis 1 + δ1, where dimensionless
gap height equal to 1 is assigned to value correction δ1 = 0
on the upper horizontal axis. Thus, we obtain range of varia-
tions of the expected function values of the dimensional height.
The height of the entire gap may decrease or increase. Such
changes in gap height occur with a probability from Ps = 0.5918
to Ps = 1.0000, indicated on the vertical axis Fig. 5.

For non-symmetrical functions (38a–d), the following ex-
pected values for the random variable of gap height correc-
tions were determined from formula (2): mN = +0.125; mN =
+0.250, mn = −0.250; mn = −0.125. The standard deviations
of the random variable of corrections determined from for-
mula (3) give the following values: σN = 0.3886; σN = 0.3818;
σn = 0.3818; σn = 0.3886. The standard deviation intervals
of the random variable of corrections (mN − σN , mN + σN),
(mn −σn, mn +σn), superimposed onto Fig. 6a–d on axis δ1,
are as follows:

(−0.2636, +0.5136); (−0.1318, +0.6318);

(−0.6318, +0.1318); (−0.5136, +0.2636).
(40)

In this interval, due to random changes, the random expected
value of increases and decreases in gap height may change its
location. The changes are assigned a change value of the entire
gap, read on collinear second horizontal axis 1+ δ1. Thus, we
obtain range of variations of the expected function values of the
dimensional height.

Changes in gap height occur successively with probabilities
from PN = 0.6046 through PN = 0.7884; PN = 0.9166 to PN =
1.0000 indicated on the vertical axis in Fig. 6a, b, similarly with
the Pn probabilities in Fig. 6c, d.

Based on the conclusions from the studies illustrated in
Figs. 5, 6a–d, the following forms of expected values of the
lower and upper limits of the standard deviation interval of joint
gap height are derived:

εT (1+m−σ) = εT ∑
i=s,n,N

Pi(1+mi −σi) = 0.6120εT , (41a)

εT (1+m+σ) = εT ∑
i=s,n,N

Pi(1+mi +σi) = 1.3879εT . (41b)

8. Experimental results

Based on the conducted calculations (41) and inequalities (30),
(31), (32), the value of the expected function of joint gap height,
the speed of synovial fluid, and its viscosity change together
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a)

b)

c)

d)

Fig. 6. Anti-symmetrical probability density functions: a), b) accord-
ing to formulas (38a,b) for fN dominance of random increases over
decreases of joint gap height, c), d) according to formula (38c, d) for
fn dominance of random decreases over random increases of joint gap
height; where the vertical axis indicates probabilities P, the upper hor-
izontal axis gives dimensionless values of the random variable of in-
crease and decrease corrections of joint gap height δ1, the lower hori-

zontal axis indicates the heights of the entire gap 1+δ1

formula (2). The standard deviation determined from formula
(3) gives the following value: σs = 0.4082. The standard devi-
ation interval is:

(ms −σs, ms +σs) = (−0.4082,+0.4082). (39)

This interval was superimposed onto Fig. 5 on upper hor-
izontal axis δ1. In this interval, due to random changes for
the measurements conducted, the random expected value of in-
creases and decreases in gap height may change its location.
The changes are assigned a change value of the entire gap,
read from lower horizontal axis 1 + δ1, where dimensionless
gap height equal to 1 is assigned to value correction δ1 = 0
on the upper horizontal axis. Thus, we obtain range of varia-
tions of the expected function values of the dimensional height.
The height of the entire gap may decrease or increase. Such
changes in gap height occur with a probability from Ps = 0.5918
to Ps = 1.0000, indicated on the vertical axis Fig. 5.

For non-symmetrical functions (38a–d), the following ex-
pected values for the random variable of gap height correc-
tions were determined from formula (2): mN = +0.125; mN =
+0.250, mn = −0.250; mn = −0.125. The standard deviations
of the random variable of corrections determined from for-
mula (3) give the following values: σN = 0.3886; σN = 0.3818;
σn = 0.3818; σn = 0.3886. The standard deviation intervals
of the random variable of corrections (mN − σN , mN + σN),
(mn −σn, mn +σn), superimposed onto Fig. 6a–d on axis δ1,
are as follows:

(−0.2636, +0.5136); (−0.1318, +0.6318);

(−0.6318, +0.1318); (−0.5136, +0.2636).
(40)

In this interval, due to random changes, the random expected
value of increases and decreases in gap height may change its
location. The changes are assigned a change value of the entire
gap, read on collinear second horizontal axis 1+ δ1. Thus, we
obtain range of variations of the expected function values of the
dimensional height.

Changes in gap height occur successively with probabilities
from PN = 0.6046 through PN = 0.7884; PN = 0.9166 to PN =
1.0000 indicated on the vertical axis in Fig. 6a, b, similarly with
the Pn probabilities in Fig. 6c, d.

Based on the conclusions from the studies illustrated in
Figs. 5, 6a–d, the following forms of expected values of the
lower and upper limits of the standard deviation interval of joint
gap height are derived:

εT (1+m−σ) = εT ∑
i=s,n,N

Pi(1+mi −σi) = 0.6120εT , (41a)

εT (1+m+σ) = εT ∑
i=s,n,N

Pi(1+mi +σi) = 1.3879εT . (41b)

8. Experimental results

Based on the conducted calculations (41) and inequalities (30),
(31), (32), the value of the expected function of joint gap height,
the speed of synovial fluid, and its viscosity change together
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with probability: 0.6708 ≤ P ≤ 1.0000 in the following value
intervals:

0.6120εT (δ1 = 0) = (1+m−σ)εT (δ1 = 0)≤ EX(εT )≤
≤ (1+m+σ)εT (δ1 = 0) = 1.3879εT (δ1 = 0), (42a)

0.7205v(δ1 = 0) = (1+m+σ)−1v(δ1 = 0)≤ EX(v)≤
≤ (1+m−σ)−1v(δ1 = 0) = 1.6339v(δ1 = 0), (42b)

0.6120ηT (δ1 = 0) = (1+m−σ)ηT (δ1 = 0)≤ EX(ηT )≤
≤ (1+m+σ)ηT (δ1 = 0) = 1.3879ηT (δ1 = 0). (42c)

We assume the following designations for dimensionless ra-
tios (quotients) of stochastic functions determined from the sys-
tem of Eqs. (4)–(9) including operator EX , to non-stochastic
functions (excluding operator EX) for pressure, load-carrying
capacity, frictional forces, and coefficients of friction:

ξp ≡
EX(p)

p(δ1 = 0)
, ξC ≡ EX(C)

C(δ1 = 0)
,

ξF ≡ EX(FR)

FR(δ1 = 0)
, ξµ ≡ EX(µ)

µ(δ1 = 0)
.

(42d)

The denominators of fractions (42d) are obtained by assum-
ing a gap without stochastic decrease or increase. We obtain
the fraction nominators by assuming stochastic changes in the
range of intervals (42a–c). We analyse the example of exper-
imentally determined probability density functions shown in
Figs. 5 and 6. We use estimations (33)–(36) and take into ac-
count the expected values of the upper and lower limits of stan-
dard deviations (42a–c).

We assume coefficients α and β depending on radial clear-
ances (characteristic values of gap height ε0) and the dimen-
sionless range of stochastic changes represented by formulas
(42a–c). Then the dimensionless stochastic changes of lubri-
cation parameters presented as quotients of function are in the
following intervals:

ξpmin = 0.3177αp ≤ ξp ≤ 3.7055βp = ξpmax , (43a)

ξC min = 0.3177αC ≤ ξC ≤ 3.7055βC = ξC max , (43b)

ξF min = 0.4409αF ≤ ξF ≤ 2.2678βF = ξF max , (43c)

ξµ min = 0.6120αµ ≤ ξµ ≤ 1.3879βµ = ξµ max , (43d)

Dimensionless values ξmin, ξmax appearing in formulas (43)
are obtained from fractions (42d), in which we calculate de-
nominator values assuming a gap without stochastic decreases
or increases. We calculate fraction nominators ξmin by assum-
ing the stochastic changes (42a–c) for which the fraction value
is the lowest. We calculate fraction nominators ξmax by assum-
ing the stochastic changes (42a–c) for which the fraction value
is the highest.

9. Numerical calculations

Numerical solutions mainly concern stochastic and non-
stochastic (excluding operator EX) non-linear partial differen-
tial equation (19), determining two-dimensional hydrodynamic

pressure p, and Eq. (20), describing three-dimensional tem-
perature distribution T . These equations converted to spheri-
cal coordinates (ϕ,r,ϑ) are mutually coupled through three-
dimensional dynamic viscosity function ηT represented by for-
mula (9), variable in the direction of gap height and dependent
on temperature. The coupling of the equations consists in the
simultaneous dependence of pressure on temperature and tem-
perature on pressure.

Numerical integration of coupled equations was carried out
using the method of convergent sequence of successive approx-
imate solutions. In the first step of approximation, a constant
dimensionless viscosity equal to one was assumed. Hydrody-
namic pressure for constant viscosity was determined, followed
by temperature distribution. In the second step of calculations,
the obtained pressure and temperature values were used to de-
termine the variable 3D viscosity value. Hydrodynamic pres-
sure and temperature distribution were calculated using the ob-
tained variable viscosity. In the subsequent steps of calcula-
tions, the described procedure was repeated until the obtained
sequence of pressure and temperature functions was conver-
gent with the boundary function of pressure and temperature.
The convergence of such a sequence to the boundary func-
tion of pressure and temperature, regardless of the value of
the assumed constant viscosity at the beginning of the calcula-
tion process, indicates that the solution of the coupled equation
system was obtained correctly. The calculations were carried
out using the finite difference method, using our own numer-
ical procedures and professional Mathcad 15 software. After
numerically calculating pressure and temperature (successive
approximations and differential method), frictional force was
determined from formulas (23), (24), and then load-carrying
capacity C and coefficient of friction µ , based on formulas
(26), (36).

Based on the numerical calculations of the semi-analytical
solutions of differential equations (19), (20), (23)–(36), the val-
ues of coefficients α and β as well as the maximum and min-
imum indices ξmax, ξmin were obtained, listed in Table 1 as
quotients (43) of stochastic values to non-stochastic values for
pressure, load carrying capacity, frictional forces, coefficients
of friction.

Fig. 7a–c presents changes in dimensional values of load-
carrying capacity and frictional forces as well as changes in
the dimensionless coefficient of friction for stochastic changes
in gap height versus the characteristic dimensional gap height.
The results were obtained based on the numerical solution of
the stochastic system of partial differential equations (19), (20)
for spherical coordinates.

Numerical calculations took into account the influence of
phospholipid concentration on the surface of articular cartilage
(A = 10−15 m2); electric field (Mi = 0, MT = 0) was omitted.
For pressure and temperature, boundary conditions (21), (22)
and density functions of variable random joint gap height εT ,
described by formulas (37), (38), were assumed. In addition,
the following was assumed: lnL =−50, characteristic value of
synovial fluid flow velocity in the joint gap 0.03 m/s < v0 <
0.0 4m/s, interfacial energy 0.1 mN/m < γ < 4 mN/m, coeffi-
cient of collagen fibre concentration 0.2 < δv < 0.6, character-
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Fig. 7. Load-carrying capacity a) frictional forces; b) coefficients of friction; c) for stochastic changes in gap height 0.612 ·εT and 1.388 ·εT , and
in the absence of stochastic changes 1.000 · εT for a hip with radial clearance ε0 equal to 2 µm, 4 µm, 6 µm, 8 µm, 10 µm

Table 1
Probabilistic and numerical parameters for stochastic changes in gap
height in the form: 0.6120 < EX(εT )/εT (δ1 = 0) < 1.3879 for a hip

with radial clearance ε0 equal to 2 µm, 4 µm, 6 µm, 8 µm, 10 µm

ξ , α , β
ε0

2 µm 4 µm 6 µm 8 µm 10 µm

ξpmin 0.558664 0.560021 0.561597 0.563306 0.566334

ξpmax 2.387635 2.372290 2.352564 2.314966 2.259481

αp 1.758464 1.762735 1.767696 1.773075 1.782606

βp 0.644349 0.640207 0.634884 0.624738 0.609764

ξC min 0.557866 0.558636 0.559780 0.561197 0.563589

ξC max 2.393302 2.383636 2.367265 2.331374 2.272007

αC 1.755952 1.758374 1.761976 1.766437 1.773066

βC 0.645878 0.643269 0.638851 0.629149 0.613144

ξF min 0.824445 0.879285 0.897883 0.905707 0.909492

ξF max 1.267801 1.113264 1.089166 1.077987 1.071942

αF 1.869914 1.994295 2.036478 2.054224 2.062807

βF 0.559044 0.490900 0,480274 0.475345 0.472679

ξµ min 0.344412 0.369016 0.379336 0.388493 0.400410

ξµ max 2.272391 1.992623 1.945346 1.920080 1.902154

αµ 0.562764 0.602968 0.619830 0.634792 0.654265

βµ 1.637287 1.435711 1.401647 1.383442 1.370527

istic value of synovial fluid dynamic viscosity η0 = 0.300 Pas,
radius of the sphere of the femoral head R = 0.0265 m, charac-
teristic value of ambient temperature T0 = 310 K.

The following detailed conclusions result from the conducted
experimental tests enabling the determination of probability
density functions (37), (38), illustrated in Figs. 5 and 6, and
from the values obtained from numerical calculations given in
Table 1:

• Stochastic interactions can cause decreases to 58.8% or in-
creases to 239% of the 100% value of pressure p, load-
carrying capacity C obtained for δ1 = 0 in the joint gap,
without taking into account random changes in gap height,
synovial fluid viscosity, and temperature, i.e. when: εT (δ1 =
0), ηT (δ1 = 0), T (δ1 = 0). This conclusion results from
inequality (33), (34), from formula (19), (25), determining
expected value of pressure, load-carrying capacity EX(p),
EX(C), and from estimations (43a, b).

• Random changes can cause decreases of up to 82.4% and
increases of up to 126.7% of the 100% value of friction
force FR for δ1 = 0 in the joint gap, obtained without taking
into account random changes in gap height, synovial fluid
viscosity, and temperature. This conclusion results from in-
equalities (35), (43c) and from stochastic equations (23),
(24), determining expected values of friction force vector
components EX(FR1), EX(FR3).

• Random changes can cause changes from 34.4% to 227%
in coefficient of friction µ for δ1 = 0 with a value of 100%
in the joint gap, obtained without taking into account ran-

Bull. Pol. Ac.: Tech. 69(1) 2021 13



13

Estimation of random bio-hydrodynamic lubrication parameters for joints with phospholipid bilayers

Bull. Pol. Ac.: Tech. 69(1) 2021, e135834

Estimation of random bio-hydrodynamic lubrication parameters. . .

Fig. 7. Load-carrying capacity a) frictional forces; b) coefficients of friction; c) for stochastic changes in gap height 0.612 ·εT and 1.388 ·εT , and
in the absence of stochastic changes 1.000 · εT for a hip with radial clearance ε0 equal to 2 µm, 4 µm, 6 µm, 8 µm, 10 µm

Table 1
Probabilistic and numerical parameters for stochastic changes in gap
height in the form: 0.6120 < EX(εT )/εT (δ1 = 0) < 1.3879 for a hip

with radial clearance ε0 equal to 2 µm, 4 µm, 6 µm, 8 µm, 10 µm

ξ , α , β
ε0

2 µm 4 µm 6 µm 8 µm 10 µm

ξpmin 0.558664 0.560021 0.561597 0.563306 0.566334

ξpmax 2.387635 2.372290 2.352564 2.314966 2.259481

αp 1.758464 1.762735 1.767696 1.773075 1.782606

βp 0.644349 0.640207 0.634884 0.624738 0.609764

ξC min 0.557866 0.558636 0.559780 0.561197 0.563589

ξC max 2.393302 2.383636 2.367265 2.331374 2.272007

αC 1.755952 1.758374 1.761976 1.766437 1.773066

βC 0.645878 0.643269 0.638851 0.629149 0.613144

ξF min 0.824445 0.879285 0.897883 0.905707 0.909492

ξF max 1.267801 1.113264 1.089166 1.077987 1.071942

αF 1.869914 1.994295 2.036478 2.054224 2.062807

βF 0.559044 0.490900 0,480274 0.475345 0.472679

ξµ min 0.344412 0.369016 0.379336 0.388493 0.400410

ξµ max 2.272391 1.992623 1.945346 1.920080 1.902154

αµ 0.562764 0.602968 0.619830 0.634792 0.654265

βµ 1.637287 1.435711 1.401647 1.383442 1.370527

istic value of synovial fluid dynamic viscosity η0 = 0.300 Pas,
radius of the sphere of the femoral head R = 0.0265 m, charac-
teristic value of ambient temperature T0 = 310 K.

The following detailed conclusions result from the conducted
experimental tests enabling the determination of probability
density functions (37), (38), illustrated in Figs. 5 and 6, and
from the values obtained from numerical calculations given in
Table 1:

• Stochastic interactions can cause decreases to 58.8% or in-
creases to 239% of the 100% value of pressure p, load-
carrying capacity C obtained for δ1 = 0 in the joint gap,
without taking into account random changes in gap height,
synovial fluid viscosity, and temperature, i.e. when: εT (δ1 =
0), ηT (δ1 = 0), T (δ1 = 0). This conclusion results from
inequality (33), (34), from formula (19), (25), determining
expected value of pressure, load-carrying capacity EX(p),
EX(C), and from estimations (43a, b).

• Random changes can cause decreases of up to 82.4% and
increases of up to 126.7% of the 100% value of friction
force FR for δ1 = 0 in the joint gap, obtained without taking
into account random changes in gap height, synovial fluid
viscosity, and temperature. This conclusion results from in-
equalities (35), (43c) and from stochastic equations (23),
(24), determining expected values of friction force vector
components EX(FR1), EX(FR3).

• Random changes can cause changes from 34.4% to 227%
in coefficient of friction µ for δ1 = 0 with a value of 100%
in the joint gap, obtained without taking into account ran-
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dom changes in gap height, synovial fluid viscosity, load-
carrying capacity, or friction. The validity of this conclusion
results from inequalities (36), (43d), and from formula (26),
determining the expected value of the coefficient of friction.

The relatively wide intervals of changes in expected values
(43a–d) for lubrication parameters result from the nature of the
numerous experimental tests carried out and the measured val-
ues of probability density functions (37), (38).

10. Final conclusions

10.1. This paper had proved the following main results, which
to day have not been discovered in the contemporary do-
main presenting a few papers of random lubrication theory
for biological joint co-operating multimode surfaces coated
with phospholipids bilayer:

10.1.1. The random variation of bio-liquid dynamic viscos-
ity across the very thin lubricating bio-liquid layer and
the random variations of the flexibility and suscepti-
bility of the joint multimode cartilage superficial layer
coated with the phospholipid’s bilayer, imply on the
about from 10 to 15 percent changes of the spherical
joint load carrying capacity.

10.1.2. The 10 percentage increment of the different mul-
timode boundary areas of phospholipid concentration,
causes average 15 percentage increments of the appar-
ent dynamic viscosity of biological liquid.

Abovementioned results had been confirmed in analytical
and numerical way contained in theoretical considerations as
well as by the experimental measurements data manifested in
this paper during the elaboration of the many probability den-
sity functions for various human joints gap height restricted by
the surfaces coated with the phospholipid bilayer.
10.2. Load carrying capacity, friction forces, friction coeffi-

cient in the spherical joint are decreasing if radial clearance
increases (see Fig. 7):

10.2.1. The joint capacity obtained without random
changes of gap height is about 66 percent lower than
the capacity for minimum random gap height and is
about 30 percent higher than the capacity for maxi-
mum random gap height.

10.2.2. Friction forces determined in joint without random
changes of gap height is about 12% lower than the
friction forces for maximum random gap height and
is about 10% higher than the friction forces for mini-
mum random gap height.

10.2.3. Friction coefficient obtained in human joint with-
out random changes of gap height is about 70% lower
than the friction coefficient for maximum random gap
height and is average 50% higher than the friction co-
efficient for minimum random gap height.

Abovementioned results had been confirmed in numerical
calculations of analytical solutions of random hydrodynamic
equations. Obtained numerical values of capacities, friction

forces and friction coefficients had been compared with the
experimental values of mentioned respective quantities per-
formed in literature [1, 6, 8] where two kinds of phospholipids
namely Phosphatidylcholine (PC) and Phosphatidylserine (PS)
had been considered and taken into account. The differences
between numerical values of capacity, friction forces and fric-
tion coefficients obtained in this paper and mentioned respec-
tive measured values [1,6,8] attain values in interval from about
5 to 8 percent.
10.3. Random changes in gap height (42a) show the possibil-

ity of a decrease in joint gap height of 38.80% and an in-
crease in gap height of 38.79% compared to the gap height
determined by formula (29) without random changes for
δ1 = 0. This conclusion results from the conducted research
in the case of the considered example of the density func-
tion shown in Figs. 5 and 6.

10.4. The density functions shown in Figs. 5 and 6, inequality
(31), and solutions (14), (16) for EX(v) imply stochastic
estimations (42b) showing a 28% decrease and a 63.39%
increase in the value of synovial fluid flow velocity v in the
joint gap, compared to the velocity obtained without taking
into account random changes in gap height δ1 = 0.

10.5. Stochastic interactions cause a decrease of 38.0% or an
increase of 38.79% in the value of apparent dynamic viscos-
ity of synovial fluid ηT in the joint gap compared to the vis-
cosity for δ1 = 0, occurring without taking into account ran-
dom changes in gap height and random changes in synovial
fluid flow velocity v(δ1 = 0) and temperature T (δ1 = 0).
This conclusion results from the experimentally determined
density functions, from inequalities (32a), (42c), and from
formula (9a) determining expected viscosity value EX(ηT ).

11. Discussion

We analyse the flow of synovial fluid with non-Newtonian
properties in a human joint gap between two isotonic surfaces
of articular cartilage susceptible to deformations caused by,
among others, random changes in surface roughness geometry,
stochastic loading of the joint, as well as genetic and volumet-
ric growth of living articular cartilage tissue. The concept of
iso-osmosis or iso-tonicity defines layers of biological bodies
remaining in osmotic balance with respect to each other.

Isotonic, impermeable biological membranes include, among
others, lipid bilayers, which eliminate flow across the layer.
The exception may be nanometre channels transporting certain
types of liquid.

For the analysed case, this work demonstrated the influence
of the physical properties of articular cartilage and gap height
on the viscosity of synovial fluid in the area of the boundary
layer of the surface flowed around and illustrated it in Fig. 4.
According to the authors, the influence of the physical proper-
ties of flowed around biological surfaces on the viscosity of the
fluid in the boundary layer will be even more visible in lamel-
lar flows, where gap height reaches a value of about 2–3 nm,
i.e., the order of the thickness of the phospholipid membrane.
Research of random changes in gap height and synovial fluid
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viscosity enabled the determination of the interval of random
changes in hydrodynamic pressure, frictional forces, and coef-
ficients of friction. Based on the general solutions provided in
this paper for each experimental study and the obtained prob-
ability density functions, we obtain large or small intervals of
estimations for the expected values of bio-tribological parame-
ters. For example, a small interval of changes in expected val-
ues, seemingly favourable, but with low probabilities of occur-
rence, is much less useful than a large interval of changes in
expected values of a given parameter with high and low proba-
bilities of occurrence, enabling the assignment of the expected
value to the highest possible probabilities of occurrence.

Appendix

We assume an arbitrary, and unsteady, isothermal, incompress-
ible flow of viscoelastic biological liquid in an electro-magnetic
field. The abovementioned equations are in the following forms,
namely, the equation of motion [22, 23]:

DivS+µm(N∇∇∇)H+J×B+ρeE = ρ dv/dt, (44)

the continuity equation:

div(v) = 0, (45)

the reduced Maxwell equation:

∇2H ≡ µm µe
∂ 2H
∂ t2 , J = σeE , (46)

the conservation of energy equation:

div(κ gradT )+ΦF −µmT ΞΞΞ(v∇)H = 0,
ΦF ≡ div(v S)− vDivS,

(47)

the Young-Kelvin-Laplace equation:

γ = γmax +2sRgT ln
(√

Ka

Kb
+1

)

− sRgT ln
[(

Ka

a+H
+1

)(
a+H
Kb

+1
)]

, (48)

where: S [Pa] – the stress tensor in biological fluid, E [V/m]
– electric intensity vector, J [A/m2] – electric current density
vector, B [T = kg/s2A] – magnetic induction vector in bio-
fluid, v [m/s] – biological fluid velocity vector, H [A/m] –
the magnetic intensity vector with components (H1, H2, H3),
N [A/m] – the magnetization vector with components (N1, N2,
N3), σe [S/m] – electrical conductivity of phospholipids bilayer,
µe [s4A2m−3kg−1] – the electric permeability coefficient of bi-
ological fluid, µm [mkgs−2A−2] – the magnetic permeability
coefficient of biological fluid, κ [W/mK] – thermal conduc-
tivity coefficient for biological fluid, ΦF [W/m3] – dissipation
of energy, Ξ [A/mK] – the first derivative of the magnetiza-
tion vector with respect to temperature, T [K] – temperature, ρe
[C/m3 = As/m3] – electric space charge in biological fluid, Rg

– gas constant (8.3144598 J/K·mol), s = (NA ·A)−1 [mol/m2]
– concentration of phospholipid particles, γ [mJ/m2 =N/m]
− interfacial energy, γmax is the maximum interfacial energy
of the lipid membrane whereas 0.1 mN/m < γmax < 4 mN/m,
Ka [J] – acid equilibrium constant (denotes how much energy
is needed to stretch the bilayer), Kb [J] – base equilibrium con-
stant (denotes how much energy is needed to bend or flex the
bilayer), aH [J] – protons energy activity, A [m2] – the region
of areas of different phospholipids molecules concentration,
NA = 6.024 · 1023 – Avogadro number, ρ [kg/m3] – biological
fluid density. Due to the presence of the phospholipids bi-layers
on the cartilage or superficial layer surface and the presence of
lipo-somes, micelles, macromolecules and lamellar aggregates
in biological fluid, this liquid has non-Newtonian, especially
pseudo-plastic properties.

For the synovial fluid, the relationship between stress tensor
S and displacement velocity tensor 2Td = Θ , i.e., constitutive
equations, are accepted in the following form [23]:

S =−pδδδ +ηTΘΘΘ , (49)

whereas unit tensor δδδ , strain tensor ΘΘΘ have the following com-
ponents: δi j, Θi j. We denote: δi j – Kronecker Delta, p [Pa] –
pressure, Θi j [s−1] – shear rate components.

For non-Newtonian synovial fluid with the model of modi-
fied power law, whereas constitutive dependencies for apparent
viscosity ηT [Pas] have the following form:

ηT = 2n−1m(n)
∣∣∣∣
1
2

I2
1 (Θ)− I2(Θ)

∣∣∣∣
n−1

2
,

I1(Θ) =Θkk , I2(Θ) =
1
2

ei jkeimnΘ jmΘkn ,

(50)

where: I1(Θ) [s−1], I2(Θ) [s−2] are the invariants of shear rate
components Θi j [s−1], n – dimensionless flow index depended
on PL concentration in the biological fluid, m = m (n,pH,T,We)
– fluid consistency coefficient in Pasn, ei jk – tensor Levi-Civity,
We-superficial layer wettability, pH – power hydrogen ion con-
centration. Geometrical non-linear relations between shear rate
Θi j and biological fluid velocity components vi [m/s] are as fol-
lows [29]:

Θi j =
1
2
(
vi| j + v j|i

)
,

vi| j ≡
1
hi

(
∂vi

∂α j
−

v j

hi

∂h j

∂αi
+δi j

3

∑
k=1

vk

hk

∂h j

∂αk

)
,

(51)

where hi – Lame coefficients.
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viscosity enabled the determination of the interval of random
changes in hydrodynamic pressure, frictional forces, and coef-
ficients of friction. Based on the general solutions provided in
this paper for each experimental study and the obtained prob-
ability density functions, we obtain large or small intervals of
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rence, is much less useful than a large interval of changes in
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bilities of occurrence, enabling the assignment of the expected
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of energy, Ξ [A/mK] – the first derivative of the magnetiza-
tion vector with respect to temperature, T [K] – temperature, ρe
[C/m3 = As/m3] – electric space charge in biological fluid, Rg

– gas constant (8.3144598 J/K·mol), s = (NA ·A)−1 [mol/m2]
– concentration of phospholipid particles, γ [mJ/m2 =N/m]
− interfacial energy, γmax is the maximum interfacial energy
of the lipid membrane whereas 0.1 mN/m < γmax < 4 mN/m,
Ka [J] – acid equilibrium constant (denotes how much energy
is needed to stretch the bilayer), Kb [J] – base equilibrium con-
stant (denotes how much energy is needed to bend or flex the
bilayer), aH [J] – protons energy activity, A [m2] – the region
of areas of different phospholipids molecules concentration,
NA = 6.024 · 1023 – Avogadro number, ρ [kg/m3] – biological
fluid density. Due to the presence of the phospholipids bi-layers
on the cartilage or superficial layer surface and the presence of
lipo-somes, micelles, macromolecules and lamellar aggregates
in biological fluid, this liquid has non-Newtonian, especially
pseudo-plastic properties.

For the synovial fluid, the relationship between stress tensor
S and displacement velocity tensor 2Td = Θ , i.e., constitutive
equations, are accepted in the following form [23]:

S =−pδδδ +ηTΘΘΘ , (49)

whereas unit tensor δδδ , strain tensor ΘΘΘ have the following com-
ponents: δi j, Θi j. We denote: δi j – Kronecker Delta, p [Pa] –
pressure, Θi j [s−1] – shear rate components.

For non-Newtonian synovial fluid with the model of modi-
fied power law, whereas constitutive dependencies for apparent
viscosity ηT [Pas] have the following form:

ηT = 2n−1m(n)
∣∣∣∣
1
2

I2
1 (Θ)− I2(Θ)

∣∣∣∣
n−1

2
,

I1(Θ) =Θkk , I2(Θ) =
1
2

ei jkeimnΘ jmΘkn ,

(50)

where: I1(Θ) [s−1], I2(Θ) [s−2] are the invariants of shear rate
components Θi j [s−1], n – dimensionless flow index depended
on PL concentration in the biological fluid, m = m (n,pH,T,We)
– fluid consistency coefficient in Pasn, ei jk – tensor Levi-Civity,
We-superficial layer wettability, pH – power hydrogen ion con-
centration. Geometrical non-linear relations between shear rate
Θi j and biological fluid velocity components vi [m/s] are as fol-
lows [29]:

Θi j =
1
2
(
vi| j + v j|i

)
,

vi| j ≡
1
hi

(
∂vi

∂α j
−

v j

hi

∂h j

∂αi
+δi j

3

∑
k=1

vk

hk

∂h j

∂αk

)
,

(51)

where hi – Lame coefficients.
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