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Abstract
Low-cost Micro-Electromechanical System (MEMS) gyroscopes are known to have a smaller size, lower
weight, and less power consumption than theirmore technologically advanced counterparts. However, current
low-grade MEMS gyroscopes have poor performance and cannot compete with quality sensors in high
accuracy navigational and guidance applications. The main focus of this paper is to investigate performance
improvements by fusing multiple homogeneous MEMS gyroscopes. These gyros are transformed into
a virtual gyro using a feedback weighted fusion algorithm with dynamic sensor bias correction. The
gyroscope array combines eight homogeneous gyroscope units on each axis and divides them into two
layers of differential configuration. The algorithm uses the gyroscope array estimation value to remove the
gyroscope bias and then correct the gyroscope array measurement value. Then the gyroscope variance is
recalculated in real time according to the revised measurement value and the weighted coefficients and
state estimation of each gyroscope are deduced according to the least square principle. The simulations
and experiments showed that the proposed algorithm could further reduce the drift and improve the overall
accuracy beyond the performance limitations of individual gyroscopes. The maximum cumulative angle
error was −2.09 degrees after 2000 seconds in the static test, and the standard deviation (STD) of the output
fusion value of the proposed algorithm was 0.006 degrees/s in the dynamic test, which was only 1.7% of
the STD value of an individual gyroscope.
Keywords: inertial sensor, gyroscope array, weighted fusion, bias correction.
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1. Introduction

Gyroscopes are applied in such diverse fields as vehicle navigation, autonomous vehicles,
platform stabilization, and so on [1, 2]. Accurate estimates can be achieved over more extended
periods by integrating high-quality gyroscopes and good initial estimates of the attitude. However,
high-quality gyroscopes such as mechanical, fibre-optic, or ring laser sensors are too expensive
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for many applications and access to such sensors can be limited [3]. In recent years, Micro-
Electromechanical System (MEMS) gyroscopes have been widely used with the advantages
of small size, light weight, and low power consumption [4, 5]. However, the drift of MEMS
gyroscopes is relatively high and the attitude estimation error accumulates quickly with time
integration resulting in insufficient accuracy for attitude estimation or other applications requiring
higher precision.

Generally, MEMS gyroscopes suffer from various types of errors that are broadly classified as
deterministic errors and random errors [6, 7]. The deterministic errors that affect system perfor-
mance aremost commonly represented by bias, scale factor, and nonorthogonality. A considerable
amount of literature has been contributed to the calibration of deterministic errors [8–11]. These
errors can be removed by calibration, i.e. comparing the measured value to a known standard
reference. However, this does not work in practice because the bias of aMEMS gyroscope changes
significantly every time the device is powered up [12].

Sensor fusion using two or more different sensors has been carried out to overcome this
problem. One solution is to utilise gravity and magnetic reference sensors for tilt and pan angle
measurements respectively [13]. Accelerometers measure the Earth’s gravitational vector, and
magnetometers provide values for the magnetic field of the Earth which aids sensors with cor-
recting the drift of the gyroscope. Traditionally, fusion algorithms such as the extended Kalman
filter (EKF) and the complementary filter (CF) have been widely used [14,15]. They can improve
the estimation accuracy and lower the precision requirements of inertial sensors by fusing the
complementary information of various heterogeneous sensors. However, those aiding sensors
themselves suffer from performance degradation in some conditions [16–18]. Also, there is no
redundancy in the method described above, as when one sensor fails it may affect the whole
system. Achieving robustness and reliability in the performance of these angular rate sensors
remains a significant challenge.

One idea is to make up an array of the same type of MEMS gyroscopes on the same sensitive
axis and improve the accuracy aa well as reliability by utilising technology redundancy [19–21].
Its principle is that several homogeneous low-precision gyroscopes are combined to form an
array and measure the same angular rate. David S. Bayard of the Jet Propulsion Laboratory
first proposed the “virtual gyroscope” technology so that an optimal rate estimate could be
obtained through an optimal filter fusing these measurements. The key to combining multiple
gyroscopes for accuracy improvement lies in rate signal modelling and the Kalman filter (KF)
design [22]. The results in [22] showed that the proposed “virtual gyroscope” could significantly
reduce noise and bias instability as well as improve the overall accuracy beyond the performance
limitations of individual gyroscopes. Subsequently, ChangHonglong of theNorthwest Polytechnic
University and others carried out similar research [23–27]. However, the methods above required
these correlations to be estimated from sensor data. Also they were not able to estimate the
correlations between the drift components of individual sensors. Furthermore, the dimension of
the KF will increase with the numbers of sensors in the array which can lead to a formidable
computational burden. On the other hand, the real rate signal is usually modelled directly as
a specific random process driven by white noise. Unfortunately, it is difficult to choose an
appropriate value for variance of white noise which is usually set empirically without any criteria.
In recent years, a weighted averaging fusion algorithm has been regarded as a promising method
for accuracy improvement of MEMS gyroscope arrays. Compared with existing algorithms, the
weighted averaging fusion algorithm is simple and easy to implement. It has the advantages
of optimality, unbiasedness and minimum mean square error. The weighted coefficient in the
weighted fusion method reflects the confidence level of the sensor signal. Whether the weighted
coefficient is reasonable or not is the key to determine the fusion performance. M. Tanenhaus
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of Tanenhaus & Associates, Inc. has achieved high performance using eight gyroscopes per
axis and optimal algorithms to minimise noise and drift [28]. The weights were determined by
employing principal component analysis (PCA) to long records of array data which were optimal
in the minimum mean-square sense. J. V. Richard presents an algorithm for obtaining the Allan
covariance statistical model for an array of gyroscopes, including cross-correlations of individual
random drift components [29]. The optimal weights were derived with the Rate Random Walk
(RRW) matrix, and a weighted sum of the gyroscope signals using a fixed linear combination
was given. With a 28-gyroscope array, results showed that the proposed virtual gyroscope had
a drift spectral density 40 times smaller than that obtained by taking the average of individual
gyroscope signals. However, in both cases, the fixed weights were derived from long records
of calibration data that were obtained while the array was motionless. The fixed allocation of
weights could not achieve the optimal state in a dynamic environment due to the consideration
of environmental interference and other factors. Thus, it is crucial to estimate the weighted
coefficient in real time.

To overcome the shortcomings of prior work, an array with multiple gyroscopes per axis
was constructed, and a feedback weighted fusion algorithm was proposed for the gyroscope
array. A model for the bias of gyroscopes was presented in which the estimation value of the
gyroscope array at the previous moment was feedback into each gyroscope measurement. Then,
the gyroscope variances were calculated recursively after correcting gyroscope bias which was
inversely proportional to the weight factors under the criterion of minimum mean square error.
Lastly, the weight factors of the gyroscope array were updated in each iteration, and an optimal
estimation was obtained by taking a linear combination of individual gyroscope outputs.

The rest of this paper is organised as follows: Section 2 gives a brief description of the
hardware used in the gyroscope array. In Section 3, a feedback weighted fusion algorithm is
presented together with the weight factors of the gyroscope array updated in each iteration. In
Section 4 and Section 5, the simulations and experiments are presented to demonstrate in detail
how the procedures were implemented and to verify the validity of the proposed approach. Finally,
Section 6 provides a brief conclusion.

2. MEMS gyroscope array design

In order to improve the signal quality of the MEMS gyroscope, redundant detection clusters
are used in which the gyroscope is arranged linearly along each detection axis. Each gyroscope in
the cluster operates independently and measures the angular rate around the tri-axis, as illustrated
in Fig. 1a. The underlying rule for the gyro-board design is to mount the gyroscopes as close as
possible for the convenience of using identical control and sampling circuitry. The circuit board
serves as a rigid framework for the sensors as well as a means of control of the sensory output.
As described in Fig. 1b, the sensor orientation is also given special consideration. To measure
the same rotational rate, the input axis of all the units must be parallel. The eight MEMS units in
each axis effectively form a gyroscope cluster with a minimum of separation between the sensors.
The sensors are divided into two layers, with four sensors in each layer, and the direction of the
sensing axis between layers is opposite. Within each layer, the sensors are arranged in pairs, and
the driving axis and measuring axis of each pair of sensors are opposite to reduce the G sensitivity
error caused by external force.

A diagram of the gyroscope array block setup (Fig. 2a) and a picture of the hardware im-
plementation (Fig. 2b) are shown in Fig. 2. As shown in Fig. 2a, a Field-Programmable Gate
Array (FPGA) and an ARMmicrocontroller are used in the hardware design. They communicate
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(a) Linear disposition of the gyroscope array. (b) One-axis configuration of the gyroscope array.

Fig. 1. Configuration of the gyroscope array.
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(a) Diagram of the gyroscope array. (b) Hardware of the gyroscope array.

Fig. 2. An implementation of the gyroscope array.

with each other through a Flexible Memory Controller (FMC) which provides high-speed data
communication capabilities. A Temperature Compensated Xtal (crystal) Oscillator (TCXO) is
used to provide a stable and reliable clock. All the gyroscopes are interfaced with the FPGA
through a Serial Peripheral Interface (SPI) which includes a Master Input Slave Output (MISO)
pin,Master Output Slave Input (MOSI) pin, and Clock (CLK) pin. The FPGA obtains data from
rate registers and temperature registers in the gyroscopes, then saves the data in the buffers of
the FPGA which works as an external Static Random-Access Memory (SRAM) of the ARM
through the FMC. Furthermore, temperature compensation, calibration processing, fault toler-
ance mechanism and fusion filtering are implemented in the ARM. For each cluster, the measured
data are subsequently fused to provide a better-measured signal for the angular rate of respective
axis. Simultaneously, this structure provides the advantage of having a redundant inertial navi-
gator in terms of the detection unit components, i.e. when one or more sensors in a detection
cluster break down, they are removed from the calculation process while the system remains
operational. The gyro array hardware, as shown in Fig. 2b, is composed of a mother board with
a gyro array unit and two gyro array unit mounted daughter boards, and the three are installed
orthogonally.
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3. Feedback weighted fusion algorithm

To achieve the optimal estimation of the gyroscope array, a data fusionmethod using a feedback
weighted fusion algorithm is proposed to obtain a linear combination of individual gyroscope
output.

3.1. Mathematical model for the gyroscope array

For the purpose of combining the measurements of the gyros, it is critical to analyze and
establish a reasonable model of output of a single MEMS gyro, as random noises corrupt it.
Numerous experiments have shown that bias and zero-mean white noise, manifested as Rate
Random Walk (RRW) and Angle Random Walk (ARW) noise are the dominant errors for low-
grade MEMS gyroscopes after temperature drift compensation. RRW is the creep of angular
velocity measurement of the output of the gyroscope, and ARW is the noise of the gyroscope
output which will cause the creep of the angle when the ARW noise is integrated. Consequently,
in the present study, the gyroscope can be modelled by:




zg = ω + b + e

ḃ = v
, (1)

where zg is the gyroscope output, ω is the real rate, b is a slowly changing bias driven by the
RRW v, and e is the ARW white noise.

Each gyro measures the same angular rate in the N tri-axial gyroscope cluster, therefore (1)
can be written as:




zgi = ω + bi + ei
ḃi = vi

i = 1, . . . , N , (2)

where zgi is the output of the ith gyroscope,ω is the real rate, ei is the continuous-time white noise
process denoted as ARW noise, and bi is the slowly changing bias driven by the continuous-time
white noise vi , which represents the RRW noise.

The above quantities associated with one axis for the collection of N gyros are stacked into
the following vectors. The same formulae are applied to the other two axes as well.

Zg = ω + b + e (3)

with Zg =
[

z1 z2 · · · zN
]T
, b =

[
b1 b2 · · · bN

]T
, e =

[
e1 e2 · · · eN

]T
.

3.2. Optimal weighted fusion algorithm

Over a long period, the RRW and ARW noises are both zero mean, but in a certain time
window, usually from a few seconds to a few minutes, RRW creeps slowly. Thus, the RRW
noise, manifested as a bias of gyroscopes, should be removed before weighted fusion. In this
section, a straightforward predictor will be introduced, based on moving averages for practical
implementation.




bi (k) =
k − 1

k
bi (k − 1) +

1
k

(zi (k) − ω̂(k − 1))

bi (0) = 0
, (4)
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where bi (k) is the estimation of bias of the ith gyroscope at time k, bi (0) = 0, zi (k) is the
measured signal of the ith gyroscope at time k, and ω̂(k −1) is the estimated rate of the gyroscope
array using weighted fusion at time k−1.

The measurement noise can be regarded as white noise after removing the bias for the prior
compensation of the measurements of the bias values. According to (3), it can be expressed as:

Y = Hω + e , (5)

where ω is the real rate, Y =
[
y1 y2 · · · yN

]T
and is the output vector of gyroscopes after bias

has been removed, and H =
[

1 1 · · · 1
]T

is the N-dimensional constant vector.
Consequently, multiple measurements of the gyroscope array are linearly combined. A virtual

gyro signal can be obtained by taking a fixed linear combination of gyroscope signals. The
weighted coefficient in the weighted fusion method reflects the confidence level of the sensor
signal. Whether the weighted coefficient is reasonable or not is crucial in determining the fusion
performance.

In some cases, the weights are derived from an independent static method which ignores the
objectivity of multi-sensor systems in a dynamic environment. Moreover, the static allocation of
weights does not reflect the real performance of the sensors. In general, the random errors of
sensors obey normal distribution or approximately obey normal distribution, and the weighted
coefficients are calculated with the variance of the measurement from each gyro. The variance
of each sensor signal is influenced by measurement accuracy, transmission error, environmental
noise, and disturbance and it does not stay unchanged in practice. The variance cannot be merely
equivalent to the variance parameters of the sensor itself or specified by experience, therefore it
must be estimated in real time.

The least square method is used to estimate the rate ω̂ of the gyroscope array. The criterion
of the least square estimation is to minimise the sum of the squares of the errors:

arg min (Jw (ω̂)) = arg min (Y −H ω̂)T W (Y −H ω̂) , (6)

where

W =



w1
w2

· · ·

wn


is a positive definite diagonal weighted matrix.

For the partial derivative:

∂Jw (ω̂)
∂ω̂

= −HT
(
W +WT

)
(Y −H ω̂) = 0. (7)

The corresponding parameter estimators satisfy:

ω̂ =
(
HTWH

)−1
HTW Y =

N∑
i=1

wiyi , (8)

where wi is the weighted coefficient for the ith gyroscope which satisfies
N∑
i=1

wi = 1.
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Suppose the mean and variance of the measurement noise satisfies:




E [ei] = 0

E
[
e2
i

]
= σ2

i

, i = 1, 2, . . . , N, (9)

where σ2
i is the variance of the ith gyroscope and represents the accuracy of the sensor. Moreover,

the sensor accuracy is higher with a smaller variance. According to the optimal weighted theory
[30], the weights are satisfied:

wi =

1
σ2
i

N∑
j=1

σ2
j

. (10)

It is clear that under the criterion of the minimum mean square error, the weighted coefficient
is inversely proportional to the measurement variance of the sensor. Thus, the weighted coefficient
can be transformed into estimation of measurement variance of the sensor.

Gyroscope variance is the result of its precision, measurement error, and environmental
interference, it is not unchanged in practical engineering. Thus, it cannot be simply equated with
the sensor variance parameters or specified by experience. The variance needs to be estimated
in real time by an algorithm. In this case, the variances of the sensors are calculated at each
time step.

Step 1: Calculate the mean of the gyroscope array at a given time. If yi (k) is the k th measure
from the ith gyroscope, then the mean of the gyroscope array can be calculated as follows:

ȳ(k) =
1
N

N∑
i=1

yi (k). (11)

Step 2: Estimate the variance of the gyroscopes. For the ith gyroscope, the variance of the
gyroscope is given using an average of M consecutive samples:

σ̂2
i (k) = E

[
(yi (k) − ȳ(k))2

]

=
1
M

M−1∑
j=0

(yi (k − j) − ȳ(k − j))2 . (12)

Then the variance estimator is written as a recursive form:




σ2
i (k) =

k − 1
k

σ2
i (k − 1) +

1
k
σ̂2
i (k)

σ2
i (0) = 0

. (13)

In this way, the algorithm has an adaptive character, the data frame used to estimate new
measurements updates the variance of the gyro signals and the weights associated with each
sensor are re-estimated at each measurement step.

The block diagram of the algorithm is shown in Fig. 3. The algorithm consists of a bias
correction block and an optimal weight fusion block. And the detailed steps of the proposed
method are shown below.
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Algorithm

Input: the output vector of the gyroscope array,Z =[z1, z2 · · · zN ]T;

Output: the estimated rate of the gyroscope array, ω̂;

Step 1: Initialise the gyroscope bias and the variance;

Step 2: Estimate the bias biof the gyroscopes using (4);

Step 3: Compensate the original measurements with the bias estimates using (3);

Step 4: Calculate of the gyroscope variance σ2
i using (13);

Step 5: Compute the weight factors wi using (10);

Step 6: Estimate the rate ω̂ by taking a linear combination of individual gyroscope outputs using (8);

Step 7: Return to Step 2.

Fig. 3. Block diagram of the algorithm.

4. Simulation results

Numerical simulations of an array of six gyros were performed to test the validity of the
proposed method. The output signals of the gyroscope array were simulated by the gyroscope
model in (1), and the data rate of the sensors was chosen as 50 Hz. Gyro bias was considered
as constant to show the efficiency of the proposed method. The bias quality of individual gyros
is shown in Table 1, where the ARW and RRW noises for the gyroscopes were assumed to be
1×10−6 ◦/

√
s and 1×10−3 ◦/

√
s3 respectively. The Simulinkmodel is shown in Fig. 4. Additionally,

results for the static and dynamic simulations are also presented.

Table 1. Bias of individual gyros.

Gyro 1 2 3 4 5 6

Bias Stability degree/s 0.1 –0.1 0.2 –0.2 0.3 –0.05

Standard deviation (STD, 1σ) of the rate errors was adopted to quantify the measurement
precision of the rate signal in the condition. Themathematical expression of the STD is defined as:

σ =

√√
1

n − 1

n∑
k=1

(ω̂k − ωk )2 , (14)

where ωk is the real rate signal of the k th time, ω̂k is the estimation of ωk and n is the length
number of rate samples.

168



Metrol. Meas. Syst.,Vol. 28 (2021), No. 1, pp. 161–179
DOI: 10.24425/mms.2021.136000

Fig. 4. The Simulink model for generating outputs of the gyroscope array signals.

4.1. Static simulations

For the static simulation, the input rate in the Simulink model was set to ω = 0 to evaluate
the performance. The output signals of the gyroscope array generated by the Simulink model are
shown in Fig. 5. Based on the values in Table 1, 2000 seconds of gyroscope data were simulated.
Figure 5 shows the simulation results of individual gyroscopes and the fusion result. The original
outputs of individual gyroscopes with different gyro biases are shown in Fig. 5a. A significant
reduction of the noise level can be easily observed from Fig. 5b when it performs the fusion
algorithm.

(a) Original outputs of individual gyroscopes. (b) Estimated rate of the gyroscope array.

Fig. 5. Static simulation of the gyroscope array.

Figure 6 presents a comparison of integration angle errors between the original output of
individual gyroscopes and the estimations using different algorithms. Figure 6a shows that the
integration angle derived from each gyro suffers from long-term accumulated errors caused
by gyro biases. Gyroscope5 had the most significant angle error, reaching 577.3 degrees after
2000 seconds. Furthermore, Gyro 6 had the smallest angle error with a cumulative error of
122.6 degrees in 2000 seconds. The cumulative error of individual gyroscopes is consistent with
the definition in Table 1. The larger the bias is, the larger the cumulative error. Thus, it is necessary
to fuse the gyro array to obtain a more accurate output.
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(a) Angle errors of individual gyroscopes. (b) Angle errors using different algorithms.

Fig. 6. Integration angle error before and after fusion.

Figure 6b presents a comparison of the angle errors using different fusion algorithms such
as the least square (LS) method [31], support degree function (where the weighting factors are
acquired by calculating the supporting degree matrix among multi-sensor observations to obtain
observational fusion values) [32], averaging methods, and the proposed feedback weighted fusion
algorithm. The results of the 1σ error are illustrated in Table 2. These algorithms provided
relatively good results compared with pre-fusion. Among them, the LS method had significant
angle errors due to the impact of bias. On the contrary, the proposed feedback weighted fusion
algorithm worked best. Table 2 displays the maximum error (Max) and STD for the different
estimation methods in Fig. 6. It is worth noting that the maximum cumulative angle errors of
the proposed algorithm are 11.98 degrees in 2000 seconds, while it is 127.1 degrees using the
LS method. Compared to the error in the smallest drift gyro, i.e. gyro 6, the angle error after
utilising the fusion algorithm was 9.8%. It shows that the output accuracy of the gyro array was
much improved after fusion, especially when using the proposed feedback weighted fusion.

Table 2. Error result comparison.

Error before fusion Error after fusion

Gyro number Max (degrees) Algorithm Max (degrees) STD (degree/s)

1 177.4 Proposed algorithm 12.0 0.0604

2 222.6 LS 127.1 0.1217

3 377.4 Support degree 28.7 0.1408

4 422.6 Average 60.7 0.1187

5 577.4

6 122.6

The estimated bias andweight of individual gyroscopes using the proposed feedback weighted
fusion algorithm are shown in Fig. 7. It can be seen that the estimated bias was consistent with the
definition in Fig. 7a and Table 1. The result shows that the proposed algorithm could estimate and
correct gyro bias effectively. In Fig. 7b, the weights of the individual gyroscopes are presented.
As was expected, if the bias of the gyro was small, then the weight was relatively high, and the
fusion could rely more on the corresponding gyro output. Conversely, if the bias of the gyro was
significant, then the weight was relatively small.
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(a) Estimated bias of individual gyroscopes. (b) Weight of individual gyroscopes.

Fig. 7. Parameter estimation of the gyroscope arrays in the static simulation.

4.2. Sinusoidal rate simulation

As for the sinusoidal rate simulation, the input rate signal was given by a sinusoidal signal
as ω = 20 × sin(πt/200) degrees/s with frequency f = 2.5 × 10−3 Hz and phase ϕ0 = 0. The
Simulink model generated the output signals of the gyroscope array. The simulation results of
individual gyroscopes and the fusion result are illustrated in Fig. 8. The original outputs of
individual gyroscopes with different gyro biases are shown in Fig. 8a. Figure 8b shows the
estimated rate of the gyroscope array using the proposed feedback weighted fusion algorithm.
Data denoted as “Ref” and “Estimated” are reference rates and estimated rates respectively. It can
be seen that the proposed algorithm can filter the drift of the gyro and provide good angle rate
estimation in dynamic conditions.

(a) Original outputs of the individual gyroscopes. (b) Estimated rate of the gyroscope array.

Fig. 8. Sinusoidal rate simulation of the gyroscope array.

A comparison of estimated errors using different fusion algorithms is shown in Fig. 9. The
estimated bias and weight of the individual gyroscopes using the proposed feedback weighted
fusion algorithm are shown in Fig. 10a and Fig. 10b respectively.

The compared results are illustrated in Table 3. The results show that these algorithms
can significantly improve performance under dynamic conditions. However, compared with the
existing algorithms, it is more effective to use the proposed feedback weighted method to fuse the
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(a) Output errors of individual gyroscopes. (b) Estimated errors using different algorithms.

Fig. 9. Error comparison before and after fusion.

(a) Estimated bias of individual gyroscopes. (b) Weights of individual gyroscopes.

Fig. 10. Parameter estimation of the gyroscope array in the dynamic simulation.

gyroscopes. This can be explained as follows: the algorithm uses the gyroscope array estimation
value to recur the gyroscope bias and then corrects the gyroscope array measurement value.
Based on this feedback information, optimum weighted fusion is obtained. Table 3 reveals that

Table 3. Error result comparison for different algorithms.

Error before fusion Error after fusion

Gyro number Mean (degree/s) STD (degree/s) Algorithm Mean (degree/s) STD (degree/s)

1 –0.01 0.27 Proposed algorithm –0.09 0.15

2 –0.21 0.27 LS –0.02 0.20

3 0.09 0.27 Support degree –0.16 0.24

4 –0.31 0.27 Average –0.06 0.21

5 0.19 0.27

6 –0.16 0.27
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both the mean and STD of the estimated error were reduced by fusing multiple measurements
from the gyroscope array. Compared with Gyro 5, the STD of the estimated error of the proposed
algorithm resulted in a 55.5% reduction.

5. Experiment comparison

The signals of the gyroscope arraywere transmitted to a computer running the proposed fusion
method in real time to test the validity of both the system and the proposed method. Figure 11
shows the setup of the experiment. The sampling frequency was 50 Hz when the static test and the
dynamic test were implemented. The x-axis signals of all eight gyroscopes were analysed here.

Fig. 11. Setup of the experiment.

5.1. Static test

The static rate signals of the gyroscopes were collected statically on a table for 2000 seconds.
The proposed algorithm was compared with the support degree algorithm, least square algorithm,
and a mean filter which averaged the outputs of individual gyroscopes. The original rate signals of
individual gyroscopes and the processed with different methods are given in Fig. 12. In Fig. 12b,

(a) Outputs of the individual gyroscopes. (b) Estimated rates of the gyroscope array.

Fig. 12. Results of the static test.
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the drift is reduced significantly by these algorithms. Table 4 presents the Mean and the STD of
the outputs to demonstrate the effectiveness of those methods. Compared with Gyro 3, the 1σ
errors were reduced from 0.011 degree/s to 0.004 degree/s.

Table 4. Result comparison for the static test.

Error before fusion Error after fusion

Gyro number Mean (degree/s) STD (degree/s) Algorithm Mean (degree/s) STD (degree/s)

1 –0.017 0.017 Proposed algorithm –0.002 0.004

2 0.001 0.026 LS –0.003 0.005

3 –0.005 0.011 Support degree –0.002 0.006

4 –0.006 0.018 Average –0.004 0.006

5 –0.002 0.011

6 –0.001 0.013

7 0.004 0.011

8 –0.010 0.021

In Fig. 13, the angular rates are integrated to reflect the angle error obtained from the gyros.
Figure 13a) shows that the integration angles derived from the gyros varied widely. For example,
Gyro 1 had the most significant angle error, reaching 33.2 degrees in 2000 seconds, while the
cumulative error of Gyro 6 was only –0.82 degree. A comparison of the angle errors using
different fusion algorithms is presented in Fig. 13b. It can be seen that these algorithms provide
reasonably good results compared with pre-fusion. Among them, the maximum cumulative angle
error using the proposed algorithm is –2.09 degrees in 2000 seconds. The corresponding errors
for the simple average, the support algorithm and the least square algorithm are 8.85 degrees,
3.96 degrees, and 5.36 degrees, respectively. It shows that the output accuracy of the gyro array
is much improved after fusion, especially when using the proposed feedback weighted fusion
algorithm.

(a) Angle errors of individual gyroscopes. (b) Angle errors using different algorithms.

Fig. 13. Integration angle error before and after fusion.

The estimated bias and weight of each gyroscope using the proposed feedback weighted
fusion algorithm are shown in Fig. 14a and Fig. 14b. The weights are inversely proportional to the

174



Metrol. Meas. Syst.,Vol. 28 (2021), No. 1, pp. 161–179
DOI: 10.24425/mms.2021.136000

measurement variance of the gyroscopes after removing the bias. The fusion weights are small
when individual gyroscope errors are significant and these results are consistent with what was
expected.

(a) Estimated bias of individual gyroscopes. (b) Weight of individual gyroscopes.

Fig. 14. Parameter estimation of the gyroscope arrays in the static experiment.

5.2. Sinusoidal Rate Test

The turntable was set to rotate with the input rate signalω = −25×cos(0.2πt+0.3π) degrees/s
in the dynamic test. The outputs of individual gyroscopes are shown in Fig. 15, while the fusion
results and estimated errors are shown in Fig. 16. A comparison of the results is illustrated in
Table 5. The results show that all these algorithms can improve performance significantly under
dynamic conditions. Among them, the STD of the proposed algorithm is 0.006 degree/s, and the
corresponding results of the simple average, the support algorithm, and the least square algorithm
are 0.155 degree/s, 0.117 degree/s, and 0.009 degree/s, respectively. The STD of the proposed
algorithm is only 1.7% of the value of Gyro 5.

Fig. 15. Original output of individual gyroscopes.
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(a) Estimated rate of the gyroscope array. (b) Estimated errors.

Fig. 16. Sinusoidal rate fusion of the gyroscope array.

Table 5. Comparison of results for the dynamic test.

Gyro number STD (degree/s) Algorithm STD (degree/s)

1 0.350 Proposed algorithm 0.006

2 0.350 LS 0.009

3 0.406 Support degree 0.117

4 0.351 Average 0.155

5 0.350

6 0.351

7 0.351

8 0.351

6. Discussion and conclusions

The performance of the feedbackweighted fusion algorithm for gyroscope arrayswas explored
and analysed both in static and dynamic conditions. Simulations and experiments were carried
out to quantify the accuracy of the combined rate signals. The simulation results indicate that
the proposed algorithm can efficiently estimate and correct gyro bias. Moreover, the weighted
coefficients and state estimation for each gyroscope recurred in real time according to the revised
measurement value. The weights were inversely proportional to the measurement variance of the
gyroscopes after removing the bias.

Eight MEMS gyroscopes per axis were utilised to develop a gyroscope array system. The
experiments showed that the accuracy was much improved after fusion both in static and dynamic
conditions. The maximum cumulative angle error was –2.09 degrees after 2000 seconds in the
static test, and the STD of the proposed algorithm was 0.006 degree/s in the dynamic test which
was only 1.7% of the value for an individual gyroscope.

Compared with existing algorithms, the feedback weighted fusion algorithm is simple and
easy to implement. It has the advantages of optimality, unbiasedness, and minimum mean square
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error. The optimal weights can be updated in each iteration and an optimal estimation is obtained
by taking a linear combination of individual gyroscope outputs. The proposed algorithm resulted
in a reduction of the combined gyro drift. Also performance improved significantly. This means
that low-grade MEMS gyros can be used in much broader applications.
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