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Abstract

The paper analyses the consequences of structural change in the presence
of non-stationary stochastic processes I(1) or I(2). The structural change may
concern the deterministic structure (in particular, the trend and the constant
term) as well as the process generating the stochastic part. The focus of the
paper is on the case of a discrete change in a regime for which the moment
of switch is known. A change in the deterministic part does not alter the
character of the cointegration relationships but its consequences for cotrending
and cobreaking are interesting. The consequences of a change in the stochastic
part are more complex, because then the stochastic process as well as the
deterministic structure of the VECM are modified. The restrictions are analysed
for both cases.
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1 Introduction

Most economic variables are generated by integrated stochastic processes, meaning
that only the first or even second increments are stationary. Among the wealth
of studies on classical integration and cointegration analysis, relatively few deal
with the cointegrating regression case of a quasi-switch character, and so when
the parameters of long-run relationships are changed. Changes in the long-run
equilibrium (cointegration) relationship may occur at random or have a structural
character (partly planned by economic entities or macroeconomic decision makers).
Accordingly, the analysis must take account of whether the stochastic process
generating variable (stochastic part of the data generating process, DGP) changes,
or whether the stochastic process is invariant, while the deterministic structure of
the model describing the economic phenomenon is subject to modification. In both
cases the vector error correction model (VECM) and the relevant parameters need
to be appropriately modified. At the simplest case, the constant terms inside and/or
outside the cointegrating space, as well as the trend parameters (of various orders) are
modified. The problem become much more complicated when modifications should
be performed in the stochastic part of the DGP rather than in its deterministic part.
According to the widely accepted assumptions, changes in the systematic part do not
require modifying the stochastic process. On the other hand, changes in the stochastic
part of DGP are transferred to the deterministic part of the model. The work presents
appropriate transformations to describe the mechanisms of this transfer. The focus
of the research is on the presence of a change alone, assuming implicitly that the
moment of its occurrence (switching) is known and identical across system processes,
and for both potential types of change (in the constant term and in the slope of the
linear trend). In our work, we limit ourselves to considering the case of cointegrated
VAR models, hence we exclude extreme cases of jointly stationary systems modelling
and the short-run VAR model for non-cointegrated processes.
The structure of the paper is as follows. Second section discusses general assumption
made in this article. Its third part presents a VECM model for a structural change
in its deterministic part (consisting of a linear trend and an intercept). The model
is analysed in both I(1) and I(2) domains. Changes occurring in the constant term,
the linear trend and in both these components simultaneously are considered. The
fourth part analyses the consequences of a change in the stochastic part. In the last
part, summaries, comparisons and conclusions are provided.
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2 A Vector Error Correction Model with
deterministic terms – general assumptions

Let us assume that the data generating process of the observed variables vector vt

contains a stochastic and a deterministic component (see Lütkepohl 2005, p. 256):

vt = yt + Hdt, (1)

where:
yt =

[
y1t . . . yMt

]T – a vector ofM unobserved variables generated by processes
integrated of order one or two, which are subject to the VAR process with zero mean
(the deterministic component takes over the effect of non-zero expected value),
dt =

[
d1t . . . dZt

]T – Z × 1 vector of Z deterministic variables,
H =

[
h1

... . . .
... hZ

]
– M × Z matrix of parameters on the deterministic

variables,
hz =

[
h1z . . . hMz

]T , z = 1, ..., Z.
The decomposition of observable variables vt into non-zero deterministic components
and unobservable stochastic components generated by nonstationary processes (in
terms of second moments) with zero expected values indicates that the mean for
the whole vt is independent of the stochastic component parameters’ distribution
and is contained in the deterministic component. The parameters associated with
deterministic components can be calculated without the knowledge of how the
stochastic component parameters are distributed.
The appropriate VECM assuming (1) is as follows:

∆vt = Πyt−1 +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt = Π(vt−1 − Hdt−1) + (2)

+
S−1∑
s=1

Γs∆vt−s −
S−1∑
s=1

ΓsH∆dt−s + H∆dt + ξt,

where:
yt−s – M - dimensional column vector of unobserved stochastic variables (in period
t− s), the values of yt for t < 0 are assumed to be non-random and predetermined;
vt – M - dimensional column vector of observed variables in the model;
ξt =

[
ξ1t . . . ξMt

]T – the vector of disturbances, each of which meets the classic
Gauss-Markov assumptions.
Assuming that the cointegration rank (the number of linearly independent long-run
dependencies) equals R < M , the long-run equilibrium (cointegrating) matrix Π can
be decomposed into (Johansen 1988):

Π = ABT , (3)
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where:
A – M ×R adjustment matrix,
B – M ×R matrix of baseline cointegrating vectors.
It is notable that both matrices have a full column rank.
The assumption that the data generating process is the sum of the deterministic
and stochastic components implies that deterministic trends in the levels of variables
do not affect the cointegration rank R in the stochastic part. Accordingly, most
cointegration analyses are robust to the selection of the deterministic structure of
the VECM (for issues such as the dimension of cointegration space identification, the
selection of the optimal testing strategy, modelling and the cointegration rank test
critical values modification, see Pesaran, Shin and Smith 2000).
Because of (1), the following also holds true:

∆vt = ∆yt + H∆dt (4a)
∆2vt = ∆2yt + H∆2dt (4b)

The representation of common stochastic trends assuming (1) has the additional term
related to the deterministic part of data generating process.
Let us firstly consider the case of I(1) processes. The system is then proven to have
a solution in the form of the common baseline stochastic trends I(1) representation
(there is the multivariate version of Beveridge and Nelson 1981 decomposition). The
stochastic process vt can be decomposed into a non-stationary part I(1), a stationary
part I(0) (Johansen 1995a) and additional deterministic term:

vt = C
t∑

i=1
ξi + C∗(L)ξt + Hdt + AINI, (5)

where:
AINI depends on the initial conditions,
C
∑t

i=1 ξi = B⊥(AT
⊥ΨB⊥)−1AT

⊥
∑t

i=1 ξi contains long-acting shocks and their
contribution to I(1) processes,
B⊥, A⊥ –M×(M−R) full column rank matrices such as: BT B⊥ = 0 (r(B B⊥) = M)
and
AT A⊥ = 0 (r(A A⊥) = M),
Ψ = −Γ = −

(∑S−1
s=1 Γs − I

)
,

C∗(L)ξt =
∑∞

j=0 C∗jξt−j – covariance stationary process,
C∗j – parameters’ matrices measuring the declining effect of random shocks.
The rank of C is M − R, so that system has M − R linearly independent common
stochastic trends I(1).
The analysis becomes much more complex in the case of processes integrated of order
two (see Johansen 1995b, Paruolo 1996, Haldrup 1999). For ease of interpretation,
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let us replace original model (2) by its isomorphic transformation:

∆2vt = ABT vt−1 − ABT Hdt−1 + Γ∆vt−1 − Γ∆Hdt−1 + (6)

+
S−2∑
s=1

Ψs∆2vt−s −
S−2∑
s=1

ΨsH∆2dt−s + H∆2dt + ξt,

where:

Ψs = −
S−1∑

j=s+1
Γj . (7)

The matrix Ψs is aM×M mean lag matrix (Juselius 2006). The presence of variables
generated by I(2) processes in the model hinders interpretation of the cointegration
space defined by the vectors forming matrix B. The cointegration space consists of
direct equilibrium relationships CI(2,2), which occur in the medium and long run, and
of cointegrating relationships CI(2,1), which only occur in the long-run. Both types of
relationships typically occur between stock categories. Cointegration CI(2,1) means
that the equilibrium achievement between the first increments of system variables
(they are flows) is relatively fast, but the levels (stocks) reach an equilibrium in a
much longer perspective. In order to properly interpret these relationships, formulas
enabling the projection of the general cointegration space onto subspaces CI(2,1) and
CI(2,2) are necessary. Analogous projections should apply to the relevant adjustment
matrix.
Because in the I(2) domain (AT

⊥ΨB⊥) matrix is not invertible (has a reduced rank),
solution (5) should be replaced by:

vt = C1

t∑
i=1

ξi + C2

t∑
j=1

j∑
i=1

ξi + C(L)ξt + Hdt + AINI, (8)

where C2 is a matrix of parameters associated with the impact of autonomous
stochastic trends I(2)

∑t
j=1

∑j
i=1 ξi,

AINI depends on the initial conditions.
Matrix C2 can be decomposed into:

C2 = B2⊥

(
AT

2⊥

(
ΨB

(
BT B

)−1 (AT A
)−1 AT Ψ −

S−2∑
s=1

Ψs

)
B2⊥

)−1

AT
2⊥ (9)

whereas matrices AT
2⊥ (which can be interpreted as the matrix defining independent

common stochastic trends I(2)) and B2⊥ are M × P2-dimensional, where P2 is the
number of common baseline stochastic trends I(2). It is assumed that P1+P2 = M−R,
where P1 is the number of common baseline stochastic trends I(1) in the I(2) domain.
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The projection of the cointegrating matrix and the matrix of weights (adjustment
matrix) onto CI(2,2) and CI(2,1) spaces is enabled by the following formulas:

B1 = BΛT , (10)
B0 = BΛT

⊥, (11)

A1 = AAT ΨB2⊥BT
2⊥K(KT K)−1 = AAT ΨB2⊥BT

2⊥K, (12)

A0 = AAT ΨB2⊥BT
2⊥K⊥(KT

⊥K⊥)−1 = AAT ΨB2⊥BT
2⊥K⊥, (13)

where
B1 – M ×R1-dimensional matrix of CI(2,1) cointegrating directions,
B0 – M ×R0-dimensional matrix of CI(2,2) cointegrating directions, R0 +R1 = R,
A1 – M × R1-dimensional adjustment matrix to the CI(2,1) cointegrating
relationships,
A0 –M×R0-dimensional adjustment matrix to the CI(2,2) cointegrating relationships
and

A(M×R) = A(AT A)−1, (14)
K(M×P2) = K(KT K)−1, (15)
K(M×P2) = B2⊥ΛΛT , (16)
ΛT = (AT A)−1AT ΨB2⊥(BT

2⊥B2⊥)−1, (17)
ΛT – R×M −R− P1-dimensional matrix,
A2⊥ = A⊥Ξ⊥, (18)
A2⊥ – M × P2-dimensional matrix defining I(2) stochastic shocks,
B2⊥(M×P2) = B⊥N⊥. (19)

It should be stressed that I(2) processes should be additionally decomposed (the rank
of AT

⊥ΨB⊥ is reduced):
AT
⊥ΨB⊥ = ΞNT , (20)

where Ξ, N are (M −R) × P1 - dimensional matrices, P1 < M −R:

AT
⊥A1⊥ = Ξ, (21)

A1⊥ – M × P1 - dimensional matrix defining I(1) stochastic shocks,

BT
⊥B1⊥ = N, (22)

B1⊥ – M × P1 - dimensional matrix.
It can be proved (Majsterek 2008) that the system is in equilibrium when R1 =
M −R− P1 = P2.
As a consequence of formulas (19)-(20), projection onto the space of common
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stochastic I(1) trends, which are interpreted in the I(2) domain as stochastic cyclical
(Juselius 2006), is obtained through (Paruolo 2000):

A⊥Ξ = A⊥
(
AT
⊥A⊥

)−1 Ξ = A1⊥, (23)

B⊥N = B⊥
(
BT
⊥B⊥

)−1 N = B1⊥. (24)

3 A Vector Error Correction Model with the
structural break in the deterministic component

The inclusion of the constant term and the deterministic trend in vector dt of model
(2) leads to five different forms of the VECM, resulting from the restrictions imposed
on the parameters related to deterministic variables (see Juselius 2006, pp. 99-100).
Binary variables lying inside and/or outside the cointegrating space will be differently
interpreted depending on whether their presence results from structural changes or
outliers. Therefore three different vector error correction models with deterministic
terms, which are present in DGP due to structural breaks are derived.
Firstly, let us consider a case of level break only where only the intercept changes.
The deterministic component is represented by a constant term (the deterministic
trend is absent). Analogously to (5), the solution of the model for vt is then in I(1)
domain as follows:

vt = yt + h1 + h3ut + AINI = C
t∑

i=1
ξi + C∗(L)ξt + Hdt + AINI = (25)

= C
t∑

i=1
ξi + C∗(L)ξt + h1 + h3ut + AINI,

where ut =
{

0 for t < t0

1 for t ≥ t0
,

AINI depends on the initial conditions.
The above case should be interpreted as a discrete change in the expected value of
data generation process.
Variable ut is defined assuming that there is only one structural change in the known
period t0. The assumption can be generalized to allow for multiple structural changes
(increasing the number of variables uct, in vector dt where uct is a binary variable
connected with c-th structural change).
The vector of parameters h1 associated with the constant term is responsible for non-
zero expected value of the generating process vt. In practice, the considered model
can be applied to the economic categories which are not trend-stationary, cointegrated
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and the structural break can be described as a discrete impulse change in the mean

of all economic categories included in the system. Therefore H = [h1
... h3]

(due to the lack of deterministic trend h2 = 0), dt =
[

1 ut

]T in the deterministic
component of DGP and the respective VECM is given by (see formulas (2) and (25)):

∆vt = Πyt−1 +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt = (26)

= ABT vt−1 − ABT h1 − ABT h3ut−1 +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt

because ABT vt−1 = ABT (yt−1 + Hdt) = ABT (yt−1 + h1 + h3ut−1).
Since model (26) still contains unobservable variables, it needs to be transformed as
follows (for an alternative approach see Gosińska 2015):

∆vt = ABT vt−1− ABT h1 − ABT h3ut−1+
S−1∑
s=1

Γs∆yt−s+ H∆dt+ ξt = (27)

= A[BT vt−1 + g1 + g3ut−1] +
S−1∑
s=1

Γs∆vt−s +
S−1∑
s=0

f s
3 ∆ut−s + ξt

for t = S + 1, S + 2, ..., where

g1 = −BT h1, g3 = −BT h3, f s
3 =

{
h3 for s = 0
−Γsh3 for s = 1, 2, ..., S − 1

.

Depending on whether the structural change took place in the latest period or has
already been fixed, its short-run impact on the variables used in the model will
be measured by h3 or −Γsh3 respectively. When the process generating variables
contained in ∆vt is stationary (I(2) stochastic trends are excluded), then −Γs describe
deceleration of the impact of a structural change (the effect of novelty decreases).
In the system of equations gi = −BT hi (i = 1, 3), the classical (invariant)
cointegrating matrix may be treated as a restriction matrix. All these restrictions
are the consequences of the nature of the considered processes. The condition
g1 = −BT h1 prevents the constant term in the model from generating a linear trend
(cotrending occurs). This is even better seen from the equivalent representation:

∆vt = A[BT vt−1 + g3ut−1] +
S−1∑
s=1

Γs∆vt−s + f1 +
S−1∑
s=0

f s
3 ∆ut−s + ξt, (28)

where f1 = Ag1 = −ABT h1.
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The constant term in equation (28) is not unlimited even if it is removed from the
cointegration space (which is the goal of transition from (27) to (28)). This means
that the intercept contained in the first increments will not generate a deterministic
trend in the levels.
Restriction g3 = −BT h3 can be interpreted as cobreaking of processes levels which,
by analogy to cointegration, means that a structural change immediately affects all
variables in the system. Changes in the expected value of the DGP must relate to
levels, not first increments, which is a logical consequence of data generation process
and the previous assumption g1 = −BT h1. If the intercept changes for reasons
that could not be predicted (e.g. cataclysms), then cobreaking is a special case of
coincidence without economic interpretation in any longer perspective.
For h3 = 0, model (28) simplifies to a standard VECMwith a deterministic component
containing only a constant term (vt = yt + h1):

∆vt = AB∗T v∗t−1 +
S−1∑
s=1

Γs∆vt−s + ξt, (29)

where v∗t−1 =
[

vt−1
1

]
, B∗T =

[
BT g1

]
, g1 = −BT h1.

In the analysis with I(2) processes, all the above considerations remain valid
because changes concern the deterministic part and not the stochastic part. For
the interpretation purposes (see Majsterek 2008), it is more convenient to use
representation (6) assuming that dt =

[
1 ut

]T :
∆2vt = A

[
BT vt−1 + g1 + g3ut−1

]
+ Γ∆ut−1 − Γh3∆ut−1 + (30)

+
S−2∑
s=1

Ψs∆2vt−s +
S−2∑
s=0

f s,I(2)
3 ∆2ut−s + ξt,

where f s,I(2)
3 =

{
h3 for s = 0
−Ψsh3 for s = 1, 2, ..., S − 2

.

Because according to formula (30) a structural change only takes place in the
deterministic part, the I(2) projections defined by formulas (10)–(24) will not apply
in further analysis to the components of f s

3 . In the case of long-term dependencies,
the presence of deterministic variables and deterministic structural changes has no
effect on the Johansen estimation procedure. Both in the simple I(1) case and in the
two-stage approach applying in I(2) case all projection patterns remain robust to the
deterministic structure of the model.
The interpretation of restriction g1 = −BT h1 for the I(2) domain is slightly different
because of the accelerants on the left-hand side of model (30). In this case it becomes
necessary to rule out the trend in increments formation but not necessarily in levels.
Let us also note that −Ψsh3 in the formulas for vector f s,I(2)

3 does not necessarily
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implies the deceleration mechanism, because it only ensures the weakening of the
novelty effect on the second increments. The effect of structural changes on the first
increments is approximated by the matrix Γ =

∑S−1
s=1 Γs − I, which means that this

effect is cumulative and does not end as in the case of I(1) processes. This result
seems to be fully acceptable from the interpretative perspective.
In the second case let us assume that the deterministic component contains the
constant term, the change of this intercept and the trend. Then dt =

[
1 t ut

]T
and the DGP is written as follows:

vt = yt + h1 + h2t+ h3ut. (31)

The above structural change still should be interpreted as a discrete change in the
expected value of the DGP. The following VECM is being considered (an alternative
derivation of this VECM representation is given by Gosińska 2015):

∆vt = Πyt−1 +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt = (32)

= ABT vt−1 − ABT h1 − ABT h2(t− 1) − ABT h3ut−1 +

+
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt.

After transformations, we obtain a VECM with a constant term, a trend and a change
of intercept only for observable variables (see Saikkonen and Lütkepohl 2000):

∆vt = A
[
BT vt−1 + g1 + g2(t− 1) + g3ut−1

]
+

S−1∑
s=1

Γs∆vt−s + (33)

+f2∆t+
S−1∑
s=0

f s
3 ∆ut−s + ξt,

for t = S+1, S+2, ..., where used symbols were explained before (cf. 27), additionally:

g2 = −BT h2, f2 = h2 −
S−1∑
s=1

Γsh2 = Ψh2.

Due to the linearity of a trend: f2∆t = f2. Model (33) is observationally equivalent
to:

∆vt = A
[
BT vt−1 + g2(t− 1) + g3ut−1

]
+

S−1∑
s=1

Γs∆vt−s + (34)

+f∗2 +
S−1∑
s=0

f s
3 ∆ut−s + ξt,

M. Majsterek and E. Gosińska
CEJEME 12: 317-345 (2020)

326



Structural Change in the Deterministic . . .

where

f∗2 = f2 + Ag1 = f2 − ABT h1 = h2 −
S−1∑
s=1

Γsh2 + Ag1 = Ψh2 + Ag1.

In the short-term part, in relation to the previously considered case without
deterministic trends inherent in data generating processes two additional component
are included: firstly, vector h2 which is multiplied by one (measure of growth
in intercept) and secondly −

∑S−1
s=1 Γsh2, which is an additional vector of

−
∑S−1

s=1 ΓsH∆dt−s matrix after extension ∆dt =
[

0 1 ∆ut

]T . The latter
plays the same role as

∑S−1
s=0 f s

3 ∆ut−s and can be treated as the measure of the
decelerator of additional short-term benefits from structural changes, since constant
growth originates from the higher base.
Because of the restriction g1 = −BT h1 in the model without the deterministic trend,
the constant term in the model does not generate a linear trend in the cointegrating
space, thus it is a blockade ensuring the fulfilment of this assumption. The restriction
is also fulfilled in model (34), but the intercept in increments generates a trend in
levels. It is apparent contradiction. However, subsequent transformations of (33)
leading to (34) allow the constant term to be removed from the cointegrating space.
As a result, the constant term in increments is related to the linear trend in the levels.
In the models without a deterministic trend, the constant term is the only source of
non-random factors, whereas in model (33), an additional linear trend appears in the
variables.
The restriction g2 = −BT h2 prevents the linear trend included in the cointegration
regression from generating a quadratic trend in the data. It is therefore a cotrending,
but understood differently than in the case of a less expanded deterministic part. In
model (33) there is a parameter vector (that goes beyond the cointegrating space)
f2 = h2 −

∑S−1
s=1 Γsh2 = Ψh2 = −Γh2 measuring the influence of the intercept (not

the time variable) on the formation of first increments. From f2 = h2 −
∑S−1

s=1 Γsh2 =
= Ψh2 = −Γh2, the constant term in model (32) can generate a linear trend, but only
in the levels not in first differences. A closer analysis shows that in the case under
consideration restriction g1 = −BT h1 was dominated by condition g2 = −BT h2.
Therefore, g1 = −BT h1 still prevents a constant term from generating a linear trend
in the cointegration space but it does not preclude the presence of such a trend in the
model in general due to the occurrence of this trend in the DGP. At the same time,
the dominant restriction g2 = −BT h2 excludes nonlinear trends from the system.
Restriction g3 = −BT h3 ensures the meeting of a similar condition for changes in
the expected value of the intercept, with its interpretation in terms of cobreaking
remaining the same.
In model (34), the constant term being the sum of two components of f∗2 = Ag1 + f2
is taken out of the cointegrating space.
If h3 = 0, the model simplifies to the traditional VECM with a deterministic
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component containing a constant term and a trend (vt = yt + h1 + h2t):

∆vt = AB∗T v∗t−1 +
S−1∑
s=1

Γs∆vt−s + f∗2 + ξt, (35)

where

v∗t−1 =
[

vt−1
t− 1

]
, B∗T =

[
BT g2

]
, g2 = −BT h2, f∗2 = Ag1 + Ψh2 = Ag1 + f2.

In the I(2) domain, formula (32) remains valid, transformations from previous case
are still correct. A more convenient (economically) interpretation can be obtained by
using the following I(2) representation:

∆2vt = A
[
BT vt−1 + g1 + g2(t− 1) + g3ut−1

]
+ Γ∆vt−1 − Γh2 + (36)

−Γh3∆u1,t−1 +
S−2∑
s=1

Ψs∆2vt−s + f2∆2t+
S−2∑
s=0

f s,I(2)
3 ∆2ut−s + ξt

for t = S + 1, S + 2, ..., where

g1 = −BT h1, g2 = −BT h2, g3 = −BT h3,

f s,I(2)
3 =

{
h3 for s = 0
−Ψsh3 for s = 1, 2, ..., S − 2

.

Due to no acceleration of the linear trend f2∆2t = f20 = 0. Therefore model (36) can
be simplified to

∆2vt = A
[
BT vt−1 + g1 + g2(t− 1) + g3ut−1

]
+ Γ∆vt−1 − Γh2 + (37)

−Γh3∆ut−1 +
S−2∑
s=1

Ψs∆2vt−s +
S−2∑
s=0

f s,I(2)
3 ∆2ut−s + ξt.

In a more general third case, the structural break changes the constant
term and the parameter associated with the trend at the same time; then
dt =

[
1 t ∆u1t ∆u2t

]T and the data generating process is (Gosińska 2009):

vt = yt + h1 + h2t+ h3u1t + h4u2t, (38)

where

u1t =
{

0 for t < t0

1 for t ≥ t0
and u2t =

{
0 for t < t0

t− (t0 − 1) for t ≥ t0
, (39)

u1t = ∆u2t. (40)
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The above case should be interpreted as a discrete change in the expected value of
DGP and in the development tendency inherent in the processes (it still remains
linear). Let us note that (39) has one more significant assumption that is accepted
implicitly. It is assumed that, the change in the expected value of DGP and the change
in the deterministic trend take place in the same period, which may not always be
true. The following VECM should be considered (alternative derivation of the VECM
representation for this case is given by Gosińska 2015):

∆vt = Πyt−1 +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt = (41)

= ABT vt−1 − ABT h1 − ABT h2(t− 1) + ABT h3u1,t−1 +

−ABT h4u2,1−t +
S−1∑
s=1

Γs∆yt−s + H∆dt + ξt.

Appropriate transformations of formula (41) leads to the VECM representation with
a constant term, a trend, a change in the intercept and a structural change in the
trend (containing only the observable variables vt):

∆vt = A
[
BT vt−1 + g1 + g2(t− 1) + g3u1,t−1 + g4u2,t−1

]
+ (42)

+
S−1∑
s=1

Γs∆vt−s + f2 +
S−1∑
s=0

f s
3 ∆u1,t−s + Ψh4u1,t +

+
S−2∑
s=0

f s
4 ∆u1,t−s + ξt,

for t = S + 1, S + 2, ..., where

g1 = −BT h1, g2 = −BT h2, g3 = −BT h3, g4 = −BT h4,

f2 = h2 −
S−1∑
s=1

Γsh2 = Ψh2,

f s
3 =

{
h3 for s = 0
−Γsh3 for s = 1, 2, ..., S − 1

, f s
4 =

S−1∑
j=s+1

Γjh4.

In relation to the aforementioned case of model with deterministic and
stable development tendency, additional components appeared. The term(∑S−2

s=0 f s
4 ∆u1,t−s

)
is an analogue of

∑S−1
s=0 f s

3 ∆u1,t−s. Consequently,(∑S−2
s=0 f s

4 ∆u1,t−s

)
is an additional vector of −

∑S−1
s=1 ΓsH∆dt−s, where

∆dt =
[

0 1 ∆u1t ∆u2t

]T . In the I(1) domain, this term can be interpreted
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in deceleration categories – decreasing differential rent due to faster growth after
structural change. The term Ψh4u1,t = f4u1,t can be interpreted as the correction of
the f2 slope after a structural break.
It should be noted that g4 = −BT h4 means that changes in the slope of the linear
trend relate to levels, not first increments. It is a logical consequence of the nature of
data generation process and the earlier assumption that g2 = −BT h2, which shows
that the nonlinear trend does not exist outside the cointegration space.
Model (42) is observationally equivalent to (a slightly different parameterization has
been proposed by Trenkler, Saikkonen, Lütkepohl 2008):

∆vt = A
[
BT vt−1 + g2(t− 1) + g4u2,t−1

]
+ (43)

+
S−1∑
s=1

Γs∆vt−s + f∗2 +
S−1∑
s=0

f s∗

3 ∆u1,t−s + f∗4 u1,t + ξt

for t = S + 1, S + 2, ..., where

g1 = −BT h1, g2 = −BT h2, g3 = −BT h3, g4 = −BT h4,

f∗2 = Ψh2 + Ag1, f∗4 = Ψh4 + Ag3,

f s∗

3 =


f s
3 − Ag3 + f s

4 for s = 0
f s
3 + f s

4 for s = 1, 2, ..., S − 2
f s
3 for s = S − 1

=


h3 − Ag3 +

∑S−1
j=1 Γjh4 for s = 0

−Γsh3 +
∑S−1

j=s+1 Γjh4 for s = 1, 2, ..., S − 2
−ΓS−1h3 for s = S − 1

.

Under h3 = 0 and h4 = 0, model (43) simplifies to the traditional VECM with a
deterministic component containing a constant term and a trend (vt = yt +h1 +h2t).
In the I(2) domain, it is more convenient to consider the following representation
(resulting from (6)):

∆2vt = A
[
BT vt−1 + g1 + g2(t− 1) + g3u1,t−1 + g4u2,t−1

]
+ (44)

+Γ∆vt−1 − Γh2 − Γh3∆u1,t−1 − Γh4∆u2,t−1 +

+
S−2∑
s=1

Ψs∆2vt−s +
S−2∑
s=0

f s,I(2)
3 ∆2u1,t−s +

S−2∑
s=0

f s,I(2)
4 ∆2u2,t−s + ξt
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for t = S + 1, S + 2, ..., where

g1 = −BT h1, g2 = −BT h2, g3 = −BT h3, g4 = −BT h4,

f s,I(2)
3 =

{
h3 for s = 0
−Ψsh3 for s = 1, 2, ..., S − 2

,

f s,I(2)
4 =

{
h4 for s = 0
−Ψsh4 for s = 1, 2, ..., S − 2

because the slope of the linear trend is constant in the stability period.
Let us recall that ∆u2t = u1t and, consequently, ∆2u2t = ∆u1t, which implies that(

I −
S−2∑
s=1

Ψs

)
h4∆u1,t = Ψh4∆u1,t = Ψh4∆2u2,t =

(
I −

S−2∑
s=1

Ψs

)
h4∆2u2,t.

Table 1 presents the comparison of the base model forms and the interpretation of
basic matrices and restrictions imposed on them for VECM with a structural change
as the complexity of its deterministic component gets complicated.
The key role in all considered models is played by conditions gs = −BT hs

(s = 1, 2, 3, 4). The idea of all such restrictions can be understood on the basis of the
concept of co-dominant components formulated by Granger, Terasvirta and Patton
(2006), which attributes a special role to the matrix which is usually identified with the
matrix of baseline cointegrating relations (the role of the cointegrating matrix and the
matrix of weights in dependencies other than cointegration is discussed more in detail
in Wróblewska 2015). It has been proved by Granger et alia (2006) that cointegration
is only the case of mutual annihilation of dominant factors in a properly defined
space (a system of variables). The stochastic trends can be recognized as one of these
factors. However, co-cyclical (not considered in this paper), cotrending discussed
above (gs = −BT hs, s = 1, 2) or cobreaking, which are implied by restrictions
gs = −BT hs (s = 3, 4) can be treated as the co-dominant factors. There is some
analogy between cotrending and cointegration. In the cointegration analysis involving
the I(1) domain, the stochastic process I(1) is interpreted in terms of a stochastic
trend and the I(0) shocks are transitory. In the I(2) domain, the I(1) shock ceases
to be the dominant component, as this role is taken over by the I(2) trend which
generates a stochastic trend and the shock I(1) is only a stochastic cyclical. In the
I(3) domain, which is quite hypothetical from the economic point of view (Majsterek
2008) stochastic trends are I(3) shocks, while I(2) and I(1) shocks are stochastic
cycles with respectively longer and shorter fluctuations. The cotrending restriction
cannot be reduced in the VECM to g2 = −BT h2, because the interpretation of all
such restrictions changes with the complexity of the deterministic structure in the
VECM. In particular, the simplest type of cotrending can be identified even when the
time variable is absent from the DGP. The constant term can then be treated as a
deterministic trend of zero order. However, the restriction g1 = −BT h1 still plays an
annihilation role.
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In turn, generalizing the discussion of cotrending for the case of polynomial trends
of higher order (such as a quadratic trend), the restriction g2 = −BT h2 is neither a
necessary condition nor, more importantly, a sufficient one for cotrending to occur,
because such a role is played by g5 = −BT h5 (provided that the deterministic
component consists of a constant term, a linear trend, a change of intercept,

change of a linear trend and a quadratic trend, i.e. H = [h1
... h2

... h3
... h4

... h5],
dt =

[
1 t u1t u2t t2

]
). An interesting issue is that the interpretation of

some aspects of cotrending changes depending on the complexity of the deterministic
structure of the model. In the simplest case, g1 = −BT h1 prevents the constant
term from generating a linear trend (cotrending of order zero). In the case of a linear
trend, g2 = −BT h2 (cotrending of order one) prevents the linear trend included
in cointegration regression from generating a quadratic trend in the data. The
simultaneous fulfilment of g1 = −BT h2 (it becomes a dominated restriction) indicates
the absence of any additional sources of the linear trend. Conditions g3 = −BT h3 and
g4 = −BT h4 that result directly from g1 = −BT h1 and g2 = −BT h2, respectively,
should be interpreted in the same way, taking account that instead of cotrending the
cobreaking occurs. Also in this case, it can be seen that condition g3 = −BT h3
(interpreted in terms of cobreaking when only the intercept is changed) is not a
dominant restriction when the change also takes place in the deterministic trend
inherent in the system. Condition g3 = −BT h3 means that the change in the
constant term does not affect the deterministic trend (cobreaking of order zero). If this
restriction is dominated by g4 = −BT h4 (cobreaking of order one), the change in the
constant term does not directly affect the deterministic trend, but at the same time
the linear tendency changes (it does not generate nor change the nonlinear trends,
because of the absence of non-linear trends not only in the cointegrating space, but
also in the data).

4 Vector Error Correction Model with the
structural change in stochastic component

Let us assume that a change only takes place in the stochastic part of the DGP.
Additionally, a structural change occurs only in one period t0. If the deterministic
part consists of the constant term and the trend, then the data generating process is
given by vt = yt + h1 + h2t, where yt has a VAR representation with time varying
parameters:

yt = (1 − ut)
S∑

s=1
Πs,1yt−s + ut

S∑
s=1

Πs,2yt−s + ξt, (45)
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where ut is defined as:

ut =
{

0 for t < t0

1 for t ≥ t0
.

Given that:

∆vt = (1 − ut)
[
Π1yt−1+

S−1∑
s=1

Γs,1∆yt−s

]
+

+ut

[
Π2yt−1 +

S−1∑
s=1

Γs,2∆yt−s

]
+ (1 − ut)H∆dt + utH∆dt + ξt, (46)

VECM for observable variables is as follows:

∆vt = (1−ut)
[
Π1vt−1−Π1Hdt−1+

S−1∑
s=1

Γs,1∆vt−s−
S−1∑
s=1

Γs,1H∆dt−s

]
+

+ut

[
Π2vt−1 − Π2Hdt−1 +

S−1∑
s=1

Γs,2∆vt−s −
S−1∑
s=1

Γs,2H∆dt−s

]
+

+(1 − ut)H∆dt + utH∆dt + ξt (47)

because Πiyt−1 = Πivt−1 − ΠiHdt−1, i = 1, 2 and ∆yt−s = ∆vt−s − H∆dt−s.
For each regime it can be transformed in the same way as in the cases of changes in
the deterministic part (cf. 27):

∆vt = (1 − ut)
{

A1BT
1 vt−1 − A1BT

1 h1 − A1BT
1 h2(t− 1) +

S−1∑
s=1

Γs,1∆vt−s

}
+

+ut

{
A2BT

2 vt−1 − A2BT
2 h1 − A2BT

2 h2(t− 1) +
S−1∑
s=1

Γs,2∆vt−s

}
+

−ut

S−1∑
s=1

Γs,2H∆dt−s − (1 − ut)
S−1∑
s=1

Γs,1H∆dt−s +

+(1 − ut)H∆dt + utH∆dt + ξt

= (1 − ut)A1
[
BT

1 vt−1 + g1,1 + g2,1(t− 1)
]

+ utA2[BT
2 vt−1 + g1,2 +

+g2,2(t− 1)] + (1 − ut)
S−1∑
s=1

Γs,1∆vt−s + ut

S−1∑
s=1

Γs,2∆vt−s +

+(1 − ut)f2,1 + utf2,2 + ξt (48)
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for t = S + 1, S + 2, ..., where

g1,1 = −BT
1 h1, g1,2 = −BT

2 h1, g2,1 = −BT
1 h2, g2,2 = −BT

2 h2,

f2,1 = Ψ(1)h2, f2,2 = Ψ(2)h2,

Ψ(1) = −Γ(1) = −

(
S−1∑
s=1

Γs,1 − I
)
, Ψ(2) = −Γ(2) = −

(
S−1∑
s=1

Γs,2 − I
)

which is equivalent to (an alternative representation has been proposed in Gosińska
2015):

∆vt = (1 − ut)A1
[
BT

1 vt−1 + g2,1(t− 1)
]

+ utA2
[
BT

2 vt−1 + g2,2(t− 1)
]

+ (49)

+(1 − ut)
S−1∑
s=1

Γs,1∆vt−s + ut

S−1∑
s=1

Γs,2∆vt−s + (1 − ut)f∗2,1 + utf∗2,2 + ξt,

where f∗1,2 = A1g1,1 + f2,1, f∗2,2 = A2g1,2 + f2,2.
The key role of the matrix Ψ is visible (this is the same matrix which in I(2) domain
becomes interpretation in terms medium-run CI(1,1) cointegration matrix). The
matrix Ψ describes the transmission of structural changes. A structural change in the
stochastic part of the data generating process is also transferred into changes in the
parameters associated with the deterministic variables, which makes this case clearly
different from that considered previously. A change in the cointegration mechanism
implies a change in the cotrending mechanism. Obviously, the cobreaking mechanisms
should not be considered if a change only affects the stochastic processes.
In the presence of the stochastic process I(2), VECM can be written as:

∆2vt = (1 − ut)
[
A1BT

1 yt−1 + Γ(1)∆yt−1 +
S−2∑
s=1

Ψs,1∆2yt−s

]
+ (50)

+ut

[
A2BT

2 yt−1 + Γ(2)∆yt−1 +
S−2∑
s=1

Ψs,2∆2yt−s

]
+ H∆2dt + ξt

where, again, vt = yt +h1 +h2t (so ∆2vt = ∆2yt +∆2h1 +∆2h2 = ∆2yt and H∆2dt

can be omitted).
The representation (50) can be transformed in the same way as in the cases involving
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changes in the deterministic part:

∆2vt = (1 − ut)A1
[
BT

1 vt−1 + g1,1 + g2,1(t− 1)
]

+ (51)
+utA2

[
BT

2 vt−1 + g1,2 + g2,2(t− 1)
]

+
+utΓ(2)(∆vt−1 − ∆h1 − h2∆(t− 1)) +
+(1 − ut)Γ(1)(∆vt−1 − ∆h1 − h2∆(t− 1)) +

+(1 − ut)
S−2∑
s=1

Ψs,1∆2vt−s + ut

S−2∑
s=1

Ψs,2∆2vt−s +

+(1 − ut)f I(2)
2,1 ∆t2 + utf I(2)

2,2 ∆t2 + ξt

for t = S + 1, S + 2, ..., where g1,1 = −BT
1 h1, g1,2 = −BT

2 h1, g2,1 = −BT
1 h2,

g2,2 = −BT
2 h2.

Due to the linearity of a trend, f I(2)
2,1 ∆t2 = f I(2)

2,2 ∆t2 = 0 and ∆h1 = h1 − h1 = 0
because of no acceleration of a linear trend.
Then (51) simplifies to:

∆2vt = (1 − ut)A1
[
BT

1 vt−1 + g1,1 + g2,1(t− 1)
]

+
+utA2

[
BT

2 vt−1 + g1,2 + g2,2(t− 1)
]

+
+utΓ(2)(∆vt−1 − h2) + (1 − ut)Γ(1)(∆vt−1 − h2) +

+(1 − ut)
S−2∑
s=1

Ψs,1∆2vt−s + ut

S−2∑
s=1

Ψs,2∆2vt−s + ξt.

The analysis of Table 2 allows some general conclusions on the DGP and makes it
possible to compare the effects of changes in the stochastic and deterministic parts
of the model. For simplicity, the table is limited to the model with a change in the
constant term and in the linear development tendency. Firstly, in contrast to the
changes considered in the second section, the assumption about the integration order
of the DGP plays a key role in the case of changes in stochastic part of DGP. This
conclusion is clear because the change in stochastic mechanisms that generate data is
crucial in the analysed case.
The second conclusion is less obvious. A change in the stochastic part of the DGP
affects both the stochastic part of all VECM and the deterministic part (structure),
which must be appropriately changed. This seemingly unexpected result is due to
the fact that vt = yt + h1 + h2t. It is not possible to transform VECM for ∆vt

in a manner that the changes in the deterministic part of this model after changing
DGP for yt are avoided. The reason for this is formula (4a), which is the straight
consequence of the additive nature of the considered process and consequently is the
base explanation for the observed changes in the deterministic part caused by the
changes in the stochastic part.
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In the second part of this paper, formula (4a) had only a limited interpretation of
the total change of process decomposition into change caused by the stochastic and
deterministic factors. With regard to the structural change in the stochastic part,
it also reveals changes in the process generating first increments in variables. The
changes can be taken outside the cointegration space in both the I(1) the I(2) domain.
In the first case, it is due to the fact that first increments are stationary and so
they do not cointegrate, so they can be considered exogenous from the cointegration
analysis point of view. In the I(2) domain, first increments may participate in CI(1,1)
cointegration relations, but they take place in the space of medium-run relationships,
so moving them outside the space of long-run equilibrium compounds is fully justified.
It is also notable that the order of DGP integration does not significantly modify
the change in the deterministic part of the model (the differences are of slight
modification).
If additionally Γ(k)h2 = −Akg1,k (k = 1, 2) then it guarantees no quadratic trend
in data, meaning that the changes in the stochastic part may not be free. The
proportions between adjustment processes with respect to cotrending mechanisms in
the long- and medium-run equilibrium cointegration subspace must be preserved if
the structural change is in the stochastic process only.
The above considerations can be generalized for a larger number of structural changes,
including changes discussed in the second section of the deterministic structure and
changes in the stochastic part of the DGP. However, it should definitely be expected
that the number of such changes (especially with reference to the system containing
I(2) processes) should not be too large. Particular cases of structural changes under
consideration in this part are not only quantitative but also qualitative changes in
the sense that the integration order of the stochastic process changes. One should
only assume that these changes are more frequent in nature, but it is very difficult
to consider such changes of a stepwise nature. A discussion of the problems in
determining the optimal moment of structural change can be found in Gosińska
(2015).

5 Summary
A very important conclusion from the study is that the integration order of stochastic
component of the data generating process does not significantly affect VECMwhen the
structural change only takes place in the deterministic part (the differences between
VECM are caused by the optimal VECM transformation different in the I(2) case).
This may be explained by the fact that the structural change took place only in the
deterministic part. On the other hand, the cotrending and cobreaking restrictions
should be interpreted with some caution. It is clear that there is a hierarchy of
restrictions gn = −BT hn (n = 1, ..., N), with the coexistence of several types of such
restrictions, and those for the highest n are dominant.
The structural change in the stochastic part of the data generating process is
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completely different approach. In Section 4 it has been demonstrated that this kind
of change affects not only the stochastic structure but also the deterministic part of
all relevant VECM representations.
The paper presents interconnections between the stochastic and deterministic
components of the DGP. The conclusions from the third and fourth sections seem to
suggest that the stochastic process takes precedence in relation to the deterministic
tendency (the latter must be modified because of changes in the DGP, not the reverse).
However, it would be wrong to hypothesise that the stochastic process is exogenous
because it is only independent of assumptions concerning the deterministic tendency in
DGP. The mechanism that generates this process can be influenced by other economic
processes. It is also difficult to decide which trends (stochastic or deterministic) will
dominate and whether this domination will be permanent and for how long.
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