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Abstract

In this paper the identification problem is considered for initial conditions
in a non-minimal state-space model that includes interpretable state variables
generated by non-stationary stochastic processes. In order to solve the
identification problem, structural restrictions are imposed on initial conditions
in a state-space model with redundant state variables. The corresponding
restricted maximum likelihood estimator of initial conditions is derived.
The restricted estimator of initial conditions can be used in order to
compute uniquely identified realizations of interpretable latent variables. The
identification problem is illustrated analytically using a simple structural
economic model.
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1 Introduction
Various structural economic and financial models include latent indicators that
are identified and estimated as state variables in corresponding state-space
representations. Such unobservable variables include, among others, expected
inflation (Burmeister et al., 1986), potential output and output gap (Watson, 1986;
Kuttner, 1994), natural rate of interest (Laubach and Williams, 2003 and 2016;
Holston et al. 2017), natural rate of unemployment (Gordon, 1997 and 2013; Staiger
et al., 1997; Laubach, 2001), and stock market fundamentals (Balke and Wohar,
2002). These latent indicators have specific economic or financial interpretations and
are often used as reference variables in policy analysis. In order to enable the use of
these variables for policy advice, their values should be uniquely identified.
Latent economic and financial variables are often modelled as non-stationary
integrated processes. A realization of an integrated process retains full memory of
initial conditions. In the absence of prior information about initial conditions, they
are either modelled as diffuse or identified and estimated using in-sample information.
As diffuse priors imply high estimation uncertainty, the second approach is more often
used for estimation of unobservable economic and financial indicators.
In many applications structural models of non-stationary processes are specified
in such a way that the corresponding state-space representations are non-minimal
(reducible): they include redundant state variables and can be reduced to models with
fewer states. Redundancy implies that state variables cannot be uniquely identified
using observable variables and system equations: there are various realizations of
latent variables in identical models that generate the same moments for observable
variables and the same value of the likelihood function. Various observationally
equivalent realizations of the same latent variables are caused by unidentifiable initial
conditions in the presence of redundant state variables.
If the primary objective of an application is the estimation of a state variable that has
a specific economic or financial interpretation, then either an irreducible state-space
model should be specified or a sufficient number of restrictions should be imposed onto
initial conditions in order to identify the state variable. For example, if the objective
is the estimation of a natural interest rate, then the corresponding structural model
and initial conditions should be specified in such a way that there are no various
observationally equivalent realizations of the natural rate in the same model. The
structural model that admits alternative observationally equivalent realizations of
the natural rate can have various policy implications, which depend on the choice of
a specific realization of the natural rate.
The objective of this paper is to demonstrate the consequences of redundancy in
state-space models including non-stationary processes and propose a solution to
the identification problem in the presence of redundant state variables. Using the
integrated likelihood function, it is shown that in the presence of redundancy various
observationally-equivalent realizations of state variables can be obtained by changing
initial conditions for these variables. The identification problem can be solved by
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imposing theoretically-motivated restrictions on the initial conditions in a model with
redundant states. The methodological considerations of the paper are illustrated
with a simple example of a structural economic model containing interpretable latent
variables.
The paper aims to draw attention to an important problem that is often ignored
in applied research. The policy analysis that uses latent indicators is well-grounded
only if the latent indicators are interpretable and uniquely identified. The lack of
identification, caused by redundancy, makes latent variables unsuitable for a policy
advice. This issue should be solved at the stage of model specification.
The paper is organized as follows. Next section provides a brief literature review.
A state-space model is specified in Section 3 and the identification of initial conditions
is discussed in Section 4. The maximum likelihood estimation of initial conditions is
described in Section 5. Latent variables are derived as functions of initial conditions
in Section 6. An economic example illustrating the issue of identifiability is described
in Section 7. Conclusions are given in Section 8.

2 Literature review
Hendry (1995, p. 36) considered three aspects of identification: correspondence
to underlying economic behaviour, satisfaction of assumed interpretation, and
uniqueness. These aspects of identification are usually applied to parameters of
a structural econometric model. But in a state-space model implemented for
identification and estimation of latent economic or financial variables, which can be
used in policy analysis, these conditions for identification should also be applied to
state variables. They should have desired interpretation and be uniquely identified.
The information-theoretical definition of identifiability for a general stochastic model
is given in Rothenberg (1971). A method of identification in state-space, developed
by Wall (1987), employed a blend of control theory and econometrics. Using the
concept of minimal representation (a representation that includes no redundant state
variables), Wall (1987) defined a class of observationally equivalent state-space model
and gave an operational criterion of observational equivalence.
The identification method developed by Wall (1987) is implemented in few economic
applications (Burmeister et al., 1986; Wall and Stoffer, 2002; McGrattan, 2010).
Nevertheless, in many applications the minimality conditions, specified in Wall (1987),
are not tested explicitly (Kuttner, 1994; Laubach, 2001; Laubach and Williams, 2003
and 2016; Holston et al., 2017) and in some of these applications state-space models
include redundant states. For example, it can be demonstrated that the state-space
model, implemented in Laubach and Williams (2003), includes redundant states (see
Bystrov, 2019).
In practice, the identification of structural parameters is often analysed under assumed
identification of latent variables. If, however, a state-space model includes redundant
state variables, then state variables as well as structural parameters are generally not

415 V. Bystrov
CEJEME 12: 413-429 (2020)



Victor Bystrov

identified.
The identification and estimation of state variables that are generated by non-
stationary processes requires a specification of initial states. The identification theory,
developed in Wall (1987), ignores initial conditions for state variables. For a state-
space representation of a stationary process initial conditions can be specified as
functions of parameters describing the state-space representation. Nevertheless, for a
non-stationary process its state-space representation should be augmented by a model
for initial states (see De Jong, 1988; Hamilton, 1994; Durbin and Koopman, 2012).
In this paper it is demonstrated that the identification of latent variables generated
by non-stationary processes in a non-minimal state-space model can be obtained by
imposing restrictions onto initial conditions.

3 State-space model
In order to determine identification conditions for latent variables and to demonstrate
the consequences of redundancy, the following state-space model is considered:

ξt+1 = Fξt +Gvt+1, (1)
yt = Hξt + Jwt, (2)

where ξt is a p×1 vector of state variables, yt is an n×1 vector of observed explained
variables, vt+1 is a q × 1 vector of structural shocks, vt+1 ∼ i.i.d.N(0, Q), and wt
is an r × 1 vector of measurement errors, wt ∼ i.i.d.N(0, R); F , G, H, J , Q, and
R are system matrices of dimensions p × p, p × q, n × p, n × r, q × q, and r × r
correspondingly. Structural shocks vt and measurement errors wt are assumed to be
mutually independent and independent of initial states ξ0. Matrices G, J , Q, and
R are assumed to satisfy the following rank conditions: rank(G) = rank(Q) = q,
rank(J) = rank(R) = r and q + r ≥ n. All system matrices are functions of a
parameter vector θ: F = F (θ), G = G(θ), H = H(θ), J = J(θ), R = R(θ), and
Q = Q(θ). In what follows, it is assumed that at least one eigenvalue of F lies on the
unit circle, but not outside of it: at least one state variable is integrated.
The specification of the model (1)–(2) is completed with initial conditions which are
defined analogously to De Jong (1988): ξ0 ∼ N(µ,Σ), where Σ is assumed to be a
full-rank matrix (unless Σ ≡ 0), and ξ1 = Fξ0 +Gv1. The vector µ and the matrix Σ
are not assumed to be functions of the parameter vector θ: they have to be estimated
or chosen on the basis of prior information. Such specification of initial conditions is
used when state variables are generated by non-stationary processes. For example,
it might be used for modelling natural rates of interest and unemployment that are
often assumed to be generated by non-stationary processes.
Exogenous variables are not included in the model (1)–(2) for ease of exposition.
Nevertheless, the results will hold if exogenous regression effects are added either to
transition equation (1) or measurement equation (2). Analogously to Durbin and
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Koopman (2012), the model (1)–(2) can be represented in a general matrix form:

ξ = Fξ0 + Γv, (3)
y = Hξ + Jw, (4)

where

ξ =


ξ1
ξ2
...
ξT

 , F =


F

F 2

...
FT

 , Γ =


G 0 . . . 0
FG G . . . 0
...

...
. . .

...
FT−1G FT−2G . . . G

 , v =


v1
v2
...
vT

 ,

y =


y1
y2
...
yT

 , H =


H 0 . . . 0
0 H . . . 0
...

...
. . .

...
0 0 . . . H

 , J =


J 0 . . . 0
0 J . . . 0
...

...
. . .

...
0 0 . . . J

 , w =


w1
w2
...
wT

 .
Substitution of (3) into (4) produces

y = Xξ0 + u, u ∼ N(0,Ω), (5)

where u = HΓv + Jw and Ω = HΓQΓ′H′ + JRJ′. The system matrices in (5) are
defined as follows:

X =


HF

HF 2

...
HFT

 , u =


u1
u2
...
uT

 , Q =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 ,

and R =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 .
By construction, the Tr × Tq matrix Γ has a full column rank: rank(Γ) = Tq. The
Tn × Tn covariance matrix Ω is assumed to be invertible. (The rank conditions
rank(Γ) = rank(Q) = Tq and rank(J) = rank(R) = Tr and q+ r ≥ n are necessary
but not sufficient for invertibility of Ω as rank(Ω) ≤ rank(HΓQΓ′H′)+rank(JRJ′)).
The first two moments of the observable variables y are

E [y|µ,Σ, θ] = Xµ, (6)
V ar [y|µ,Σ, θ] = Ω + XΣX′, (7)

where matrices X and Ω depend on the parameter vector θ: X = X(θ) and Ω = Ω(θ).
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4 Identification of initial conditions
Given the representation (5) and moment conditions (6)–(7), the minimal state-space
model should satisfy the rank condition

rank(X) = p (8)

for any parameter vector θ from a set Θ of all possible vectors θ. The rank condition
(8) implies that the system of expectations equations (6) has a unique solution with
respect to µ.
For minimal state-space representations there is a well-defined class of observationally
equivalent models, determined by invertible coordinate transformations of state
vectors. The identification of parameters in a minimal model is achieved by imposing
restrictions guaranteeing that the only admissible coordinate transformation is the
identity transformation.
The rank condition (8) is satisfied if and only if columns of X are linearly independent
for any admissible parameter vector θ ∈ Θ, which (by the definition of X) is true if
and only if the system of equations

HF tc = 0 for t = 1, . . . , T (9)

has the unique solution c = 0. From Cayley-Hamilton theorem it follows that the
system (9) is equivalent to

HF tc = 0 for t = 1, . . . , p,

that has the unique solution c = 0 if and only if

rank


HF

HF 2

...
HF p

 = p. (10)

The condition (10) above is an identifiability condition for µ and it is analogous to the
observability condition in the theory of optimal control (for more details, see Youla,
1966).
If rank(X) = k < p, which means that there are redundant state variables, the
identification can be obtained by imposing restrictions on the initial conditions:

Aµ = b, (11)

where b is a known (p− k)× 1 vector and A is a known (p− k)× p matrix of the full
row rank such that the linear sub-space spanned by the rows of A is complementary
to the linear subspace spanned by the rows of X:

span(A′) ∩ span(X′) = {0}. (12)
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The condition (12), which should be satisfied for any admissible parameter vector
θ ∈ Θ, guarantees that the matrix [A′ : X′]′ formed by adjoining rows of A to X is
of the full column rank p. It means that the restrictions (11) cannot be imposed
independently from the specification of matrix X. In order to maintain assumed
interpretation of state variables, the choice of matrix A should be based on
assumptions of the corresponding structural model.
Using (6) and (11), it is possible to specify the augmented system[

b

E (y|µ,Σ, θ)

]
=
[
A

X

]
µ, (13)

where the matrix [A′ : X′]′ has the full column rank p. The system (13) has a unique
solution with respect to µ for a given X.
The restrictions (11) and and (12) allow specifying a class of observationally-equivalent
non-minimal models such that the matrix X has a reduced column rank k < p for any
admissible parameter vector θ. Analougsly to minimal models, an equivalence class of
non-minimal models subject to restrictions (11) and (12) is determined by invertible
coordinate transformations of state vectors.

5 Estimation of initial conditions
In order to derive a resticted maximum likelihood estimator of initial conditions, it is
necessary to specify the integrated likelihood function and describe a method of its
evaluation. Using the moments (6) and (7) the integrated log-likelihood function can
be written as

logL(y|µ,Σ, θ) = −Tn2 log 2π − 1
2 log |Ω| − 1

2 log |Σ| − 1
2 log |Σ−1 + X′Ω−1X|+

− 1
2 (y−Xµ)′(Ω−1 −Ω−1X(Σ−1 + X′Ω−1X)−1X′Ω−1)(y−Xµ).

(14)
The first-order optimality conditions imply that the maximum likelihood estimator
of p× 1 vector of initial states, µ, should satisfy the normal equation:

X′ΨXµ = X′Ψy, (15)

where matrix Ψ = Ω−1 − Ω−1X(Σ−1 + X′Ω−1X)−1X′Ω−1 is invertible by
assumptions. If rank(X) = p, then the vector µ is identified and there is a unique
solution of the normal equation (15):

µ̂ = [X′ΨX]−1 X′Ψy. (16)

Nevertheless, if rank(X) < p, then the matrix [X′ΨX] is not invertible, the parameter
vector µ is not identified and the unique estimator (16) does not exist. In this case,
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a solution of the normal equation (15) exists if

[X′ΨX] [X′ΨX]†X′Ψy = X′Ψy,

where [X′ΨX]† denotes the generalized (Moore-Penrose) inverse of matrix [X′ΨX].
Any

µ̂ = [X′ΨX]†X′Ψy +
[
I − [X′ΨX]†[X′ΨX]

]
Γ, Γ ∈ Rp,

will satisfy the normal equation (15).
If the restrictions (11) and (12) are imposed, then the the first-order optimality
conditions for constrained optimization imply that the restricted maximum likelihood
estimator of p-dimensional vector of initial states should satisfy equations[

X′ΨX A′

A 0

] [
µ

λ

]
=
[

X′Ψy
b

]
, (17)

where λ is a (p− k)× 1 vector of Lagrange multipliers. For an invertible symmetric
Ψ the matrix X′ΨX spans the same row space as the matrix X and this space is
complementary to the row space of A: span(X′ΨX) ∩ span(A′) = {0}. It implies
that the matrix [X′ΨX : A′]′ has a full column rank equal to p. The matrix [A : 0]′
has a full column rank equal to p− k.
It is easy to demonstrate that matrices [X′ΨX : A′]′ and [A : 0]′ span complementary
sub-spaces of (2p− k)-dimensional vector space:

span

([
X′ΨX
A

])
∩ span

([
A′

0

])
= {0}.

This implies that the (2p− k)× (2p− k) matrix[
X′ΨX A′

A 0

]
is invertible and there is a unique solution for the system (17):[

µ̂R
λ̂R

]
=
[

X′ΨX A′

A 0

]−1 [ X′Ψy
b

]
, (18)

where µ̂R is a restricted estimator of initial states.
The integrated likelihood function (14) can be evaluated using the Cholesky
decomposition Ω = L−1V(L′)−1, where where V is a block-diagonal matrix and the
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matrix L is a lower block triangular matrix,

V =


V1 0 0 . . . 0
0 V2 0 . . . 0
0 0 V3 . . . 0
...

...
...

. . .
...

0 0 0 . . . VT

,

L =


I 0 0 . . . 0 0
L1 I 0 . . . 0 0
L2L1 L2 I . . . 0 0
...

...
...

. . .
...

...
LT−1 · · ·L1 LT−1 · · ·L2 LT−1 · · ·L3 . . . LT−1 I

,

computed recursively by the Kalman filter. The recursions of the Kalman filter are

et = yt −Hξ̂t, Vt = HPtH
′ + JRJ ′, Kt = FPtH

′V −1
t , Lt = F −KtH, (19)

ξ̂t+1 = F ξ̂t +Ktet, Pt+1 = FPtF
′ −KtVtK

′
t +GQG′ for t = 1, 2, . . . , T (20)

with ξ̂1 = F ξ̂0 = 0 and P1 = GQG′.
Using the Cholesky decomposition Ω = L−1V(L′)−1, obtained by the Kalman filter,
the integrated likelihood function (14) can be rewritten as

logL(y|µ,Σ, θ) = −Tn2 log 2π − 1
2 log |Σ| − 1

2 log |V| − 1
2 log

∣∣Σ−1 + S
∣∣+

− 1
2µ
′Σ−1µ− 1

2e′V−1e + 1
2
(
Σ−1µ+ s

)′ (Σ−1 + S
)−1 (Σ−1µ+ s

)
.

(21)

(For detailed derivations, see de Jong, 1988; or Durbin and Koopman, 2012). The
Tn×1 vector e is a vector of prediction errors, e = Ly. The p×p matrix S and p×1
vector s are defined by equations

S = X′L′V−1LX and s = X′L′V−1e (22)

and can be computed recursively:

s = s +X ′tZ
′
tV
−1
t et, S = S +X ′tZ

′
tV
−1
t ZtXt, Zt = LtZt−1, Xt = HF t

with s and S initialized at 0, and Z0 = I. The resulting matrix S and vector s can be
used in order to compute the maximum likelihood estimator of expected initial states
µ.
The first-order optimality conditions imply that the maximum likelihood estimator
of p× 1 vector of initial states, µ, should satisfy the equation

Sµ = s (23)
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that has a unique solution if and only if the matrix S is invertible. It is easily shown
that S is invertible (rank(S) = p) if and only if the rank condition (10) is satisfied.
Then the solution is is

µ̂ = S−1s.

If rank(S) = k < p (there is redundancy), then for given restrictions (11) and (12) the
first-order optimality conditions for constrained optimization imply that the restricted
maximum likelihood estimator of p-dimensional vector of initial states should satisfy
equations [

S A′

A 0

] [
µ

λ

]
=
[

s
b

]
, (24)

where λ is a (p− k)× 1 vector of Lagrange multipliers. Analogously to the previous
section, it can be shown that for given assumtions the matrix[

S A′

A 0

]
is invertible and there is a unique solution for the system (24):[

µ̂R
λ̂R

]
=
[

S A′

A 0

]−1 [ s
b

]
. (25)

6 Estimation of state variables
For given ξ̂0 and P0 the Kalman filter produces a vector of filtered states

ξ̂ = LKy + L(ι⊗ F ξ̂0),

where the matrix L is described above,

K =


0 0 . . . 0
K1 0 . . . 0
0 K2 . . . 0
...

...
. . .

...
0 0 . . . KT−1

 and ι =


1
0
0
...
0

 ,

where matrices Kt (t = 1, 2 . . . , T − 1) are defined in (19). If ξ̂0 = µ̂ and P0 = Σ̂,
where µ̂ and Σ̂ are the maximum likelihood estimators, then

ξ̂ = LKy + L(ι⊗ Fµ̂).
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Conditionally on the data, the time series of filtered states ξ̂ is an affine function of
µ̂.
If the vector µ is unidentifiable (the rank condition (10) is not satisfied and matrix S
is not invertible), then the state vector ξ is also unidentifiable: for a given parameter
vector θ multiple realizations of process {ξ}, depending on the choice of initial
conditions, will generate the same expected values of observable variables and the
same value of the integrated likelihood (21).
In applications, the rank condition (10) is very rarely explicitly tested at the stage
of model specification. If matrix S is found to be singular, it is treated as a
computational issue and some modification in computations is introduced in order to
guarantee matrix invertibility, calculate µ̂ = S−1s and the corresponding realization
of state variables ξ̂. Nevertheless, if the objective of an application is to identify
an interpretable state variable (e.g., expected inflation or natural rate of interest),
then the failure of the rank condition (10) implies that this state variable is not
uniquely identified and its multiple observationally equivalent realizations can be
computed using the same dynamic model but different initial conditions. This is
not a computational issue, which can be addressed at the estimation stage, but a
modelling issue, which should be adressed at the stage of model specification.
If the restrictions (11) and (12) are imposed on the vector µ, then the state vector ξ
is identified and the filtered states can be computed:

ξ̂ = LKy + L(ι⊗ Fµ̂R),

where the estimator µ̂R is given by (25). By imposing structural restrictions on the
vector of initial states, it is possible to proceed with a state-space representation that
includes redundant state variables. Nevertheless, if the assumed interpretation of
state variables is to be retained, the structural restrictions on initial states should be
motivated by the corresponding theoretical model and, preferrably, exclude alternative
theories from the class of observational equivalence.
The policy analysis that is based on the state variables, identified with the help of
ad hoc restrictions is unreliable if a different observationally equivalent realization of
the state variables can be obtained by a modification of ad hoc restrictions. Any ad
hoc restrictions on initial states can be substituted with another ad hoc restrictions
generating an observationally equivalent model with a different realization of state
variables.

7 Illustrative example
In this section a state-space model of unobservable expected inflation is considered.
The model is designed to demonstrate the identification problem in the presence of
redundant states, using simple settings. There is no claim that the model can be
directly applied in empirical research. Nevertheless, similar types of identification
problems can be found in more complex economic and financial models (see, e.g.,
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Fiorentini et al. 2018, Bystrov 2019). The relations between measured and
unobservable variables are given by equations

πt = πet + επt,

it = rt + πet ,

where πt is a measured inflation rate, πet is an unobservable expected inflation rate, it
is a measured nominal rate of interest, rt is an unobservable real rate of interest, επt is
an expectation error which is assumed to be independent and identically distributed
over time: επt ∼ i.i.d.N(0, σ2

π). The dynamics of unobservable variables is given by

πet = φ1π
e
t−1 + φ2π

e
t−2 + θ1rt−1 + θ2rt−2 + επet,

rt = rt−1 + εrt,

where επet and εrt are independently and identically distributed:
επet ∼ i.i.d.N(0, σ2

πe) and εrt ∼ i.i.d.N(0, σ2
r). Both observable and latent variables

are assumed to be generated by non-stationary processes. The initial conditions for
latent variables cannot be specified using parameters of dynamic equations: they have
to be specified independently.
The model can be represented in the state-space form (1)–(2) with four state variables:

πet
πet−1
rt
rt−1

 =


φ1 φ2 θ1 θ2
1 0 0 0
0 0 1 0
0 0 1 0



πet−1
πet−2
rt−1
rt−2

+


1 0
0 0
0 1
0 0

[ εrt
επet

]
, (26)

[
πt
it

]
=
[

1 0 0 0
1 0 1 0

] 
πet
πet−1
rt
rt−1

 +
[

1
0

]
επt, (27)

where

F =


φ1 φ2 θ1 θ2
1 0 0 0
0 0 1 0
0 0 1 0

 and H =
[

1 0 0 0
1 0 1 0

]
.

As follows from the rank condition (10), the state-space representation (26)–(27)
includes redundant states if the matrix

HF

HF 2

HF 3

HF 4

 =
[
C(1) C(2) C(3) C(4) ] , (28)
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where

C(1) =



φ1
φ1
φ2

1 + φ2
φ2

1 + φ2
φ1(φ2

1 + 2φ2)
φ1(φ2

1 + 2φ2)
φ2

1φ2 + (φ2
1 + φ2)2

φ2
1φ2 + (φ2

1 + φ2)2


, C(2) =



φ2
φ2
φ2φ1
φ2φ1
φ2(φ2

1 + φ2)
φ2(φ2

1 + φ2)
φ2φ1(φ2

1 + 2φ2)
φ2φ1(φ2

1 + 2φ2)


,

C(3) =



θ1
θ1 + 1
θ1(1 + φ1) + θ2
θ1(1 + φ1) + θ2
θ1(1 + φ1 + φ2

1 + φ2) + θ2(1 + φ1)
θ1(1 + φ1 + φ2

1 + φ2) + θ2(1 + φ1) + 1
θ1(1 + φ1 + φ2

1 + φ3
1 + 2φ1φ2 + φ2) + θ2(1 + φ1 + φ1φ2 + φ2

1)
θ1(1 + φ1 + φ2

1 + φ3
1 + 2φ1φ2 + φ2) + θ2(1 + φ1 + φ1φ2 + φ2

1) + 1


,

C(4) =



θ2
θ2
θ2φ1
θ2φ1
θ2(φ2

1 + φ2)
θ2(φ2

1 + φ2)
θ2φ1(φ2

1 + 2φ2)
θ2φ1(φ2

1 + 2φ2)


,

is of reduced column rank, which is true for any φ2 6= 0 and θ2 6= 0 because the fourth
column of this matrix, C(4), is proportional to the second column, C(2): C(4) = δC(2),
where δ = θ2/φ2. (If either φ2 = 0 or θ2 = 0, then the matrix (28) is also of reduced
rank, because either C(2) or C(4) is a zero column.)
The failure of the rank condition (10) implies that the vector of expected initial states
E
[
πe0, π

e
−1, r0, r−1

]′ is not uniquely identified in the model (26)–(27). For given non-
zero parameters φ2 and θ2 and initial values π̄e0 = E [πe0] and r̄0 = E [r0] any choice of
π̄e−1 = E

[
πe−1

]
and r̄−1 = E [r−1], such that (π̄e−1 + θ2

φ2
r̄−1) is fixed, will generate the

same expected values for observable variables and the same value of the integrated
likelihood function (21).
If the non-identifiability of initial conditions were ignored, then for observable time
series {πt}Tt=1 and {it}Tt=1 the maximum likelihood estimation of the structural
parameters [φ1, φ2, θ1, θ2, σπ, σπe , σr]′ and initial conditions E

[
πe0, π

e
−1, r0, r−1

]′,
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based on the integrated likelihood function, would encounter computational problems
as matrix S defined in (22) would not be invertible.
The issue of redundancy can be solved by changing the model specification. If the
dynamics of the real interest were be described by an autoregressive process with
two lags, rt = ϕ1rt−1 + ϕ2rt−2 + εrt, then the model with four states would be
minimal. Alternatively, restrictions can be imposed onto initial values in the non-
minimal model.
Any non-zero linear combination of the rows of matrix (28) has the fourth component
equal to the second component multiplied by δ = θ2/φ2 (assuming that φ2 6= 0 and
θ2 6= 0). If a restriction

[
a1 a2 a3 a4

] 
Eπe0
Eπe−1
Er0
Er−1

 = b, (29)

such that a4 6= δa2 for non-zero φ2 and θ2, is imposed, then the vector [a1, a2, a3, a4]
cannot be written as a linear combination of the rows of matrix (28). The augmented
matrix obtained by adjoining the row [a1, a2, a3, a4] to the matrix (28) has a full
column rank and the initial conditions E

[
πe0, π

e
−1, r0, r−1

]′ are uniquely identified as
a solution of the augmented system defined in (13). In particular, the restriction

[
0 0 1 −1

] 
Eπe0
Eπe−1
Er0
Er−1

 = 0. (30)

implies unique identification of the initial conditions for non-zero φ2 and θ2.
In a more complex model the choice of restrictions would involve more structural
assumptions. For example, Holston et al. (2017) use a non-minimal state-space
model in order to estimate natural interest rates and output gaps in four advanced
economies. The natural interest rate (r∗t ) is modelled as a sum of two latent variables
generated by random walks: potential output growth rate (gt) and a non-growth
component (zt). The model specification requires that initial conditions for these
variables should include their lags: E [g0, g−1, z0, z−1]′. These initial conditions are
not identified, because the model is non-minimal (for a proof, see Bystrov, 2019).
Nevertheless, the identification can be obtained if restrictions are imposed on the
initial conditions determining the natural interest rate.
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8 Conclusions
Policy makers often use model-based latent variables, estimated by economists, as
reference indicators in their decision making. The model-based reference indicators
are usually compared with actual economic variables (e.g., the potential growth rate
is compared with the measured growth rate or the natural interest rate is compared
with the measured interest rate).
If a latent variable is not uniquely identified, then its use in the policy analysis
is unjustified, as various observationally-equivalent realizations of this variable are
possible. It often happens in empirical research that a specific realization of the
unidentified latent variable is obtained by making auxiliary ad hoc assumptions at
the estimation stage. But the identification problem has to be solved at the stage of
the model specification.
This paper has focused on the identification of latent variables generated by non-
stationary processes in a state-space model with redundant states. The redundancy
in the specification of a state-space model causes unidentifiability of state variables.
Nevertheless, state variables can be identified in the presence of redundancy if
structural restrictions are imposed onto initial conditions for the state variables. In
this paper, structural restrictions on initial conditions are specified in a state-space
model with redundant states, the restricted maximum likelihood estimator of intitial
conditions is derived and the estimated state variables are presented as functions of
the system matrices and the restricted initial states.
The paper demonstrates that the identification of latent indicators that are generated
by non-stationary processes can be obtained by a complete specification of the
corresponding state-space model, and the problem of redundant state variables can
be solved by imposing structural restrictions onto initial conditions. For the ease
of exposition, the state-space model, considered in this paper, does not include
exogenous variables. Nevertheless, the results can be extended to a more general case,
although at the cost of more extensive derivations that are left for future research.

Acknowledgements
The author is grateful to two anonymous referees for their helpful comments and
suggestions.

References
[1] Balke N. S., Wohar M. E., (2002), Low-Frequency Movements in Stock

Prices: A State-Space Decomposition, Review of Economics and Statistics 84(4),
649–667.

427 V. Bystrov
CEJEME 12: 413-429 (2020)



Victor Bystrov

[2] Burmeister E., Wall K. D., Hamilton J. D., (1986), Estimation of unobserved
expected monthly inflation using Kalman filtering, Journal of Business and
Economic Statistics 4(2), 147–160.

[3] Bystrov V., (2019), The observational equivalence of natural and unnatural rates
of interest, Przegla̧d Statystyczny 66(3), 183–199.

[4] De Jong P., (1988), The likelihood for a state-space model, Biometrika 75,
165–169.

[5] Durbin J., Koopman S. J., (2012), Time Series Analysis by State-Space Methods:
Second Edition, Oxford University Press.

[6] Fiorentini G., Galesi A., Pérez-Quirós G., Sentana E., (2018), The rise and fall
of the natural interest rate, Banco de Espana Working Papers, 1822.

[7] Francke M. K., Koopman S. J., de Vos A. F., (2010), Likelihood functions for
state-space models with diffuse initial conditions, Journal of Time Series Analysis
31, 407–414.

[8] Gordon R. J., (1997), The Time-Varying NAIRU and its Implications for
Economic Policy, Journal of Economic Perspectives 11(1), 11–32.

[9] Gordon R. J., (2013), The Phillips Curve is Alive and Well: Inflation and the
NAIRU during the Slow Recovery, NBER Working Paper 19390.

[10] Hamilton J. D., (1994), Time Series Analysis, Princeton University Press.

[11] Hendry D. F., (1995), Dynamic Econometrics, Oxford: Oxford University Press.

[12] Holston, K., Laubach, T., Williams, J. C., (2017), Measuring the natural rate
of interest: international trends and determinants, Journal of International
Economics 108(S1), 59–75.

[13] Kuttner K. N., (1994), Estimating Potential Output as a Latent Variable, Journal
of Business and Economic Statistics 12(3), 361–368.

[14] Laubach T, (2001), Measuring the Nairu: Evidence from Seven Economies,
Review of Economics and Statistics 83(2), 218–231.

[15] Laubach T., Williams J. C., (2003), Measuring the natural rate of interest, Review
of Economics and Statistics 85(4), 1063–1070.

[16] Laubach T., Williams J. C., (2016), Measuring the natural rate of interest redux,
Business Economics 51(2), 57–67.

[17] McGrattan E. R., (2010), Measurement with minimal theory, Quarterly Review,
Federal Reserve Bank of Minneapolis, July, 2–13.

V. Bystrov
CEJEME 12: 413-429 (2020)

428



Identification and Estimation of Initial . . .

[18] Rothenberg T. J., (1971), Identification in Parametric Models, Econometrica
39(3), 577–591.

[19] Staiger D., Stock J. H., Watson, M. W., (1997), How Precise are Estimates of
the Natural Rate of Unemployment?, NBER Working Paper No. 5477.

[20] Wall K. D., (1987), Identification theory for varying coefficient regression models,
Journal of Time Series Analysis 8(3), 359–371.

[21] Wall K. D., Stoffer D., (2002), A state space approach to bootstrapping
conditional forecasts in ARMA models, Journal of Time Series Analysis 23(6),
733–751.

[22] Watson M. W., (1986), Univariate Detrending Methods with Stochastic Trends,
Journal of Monetary Economics 18, 49–75.

[23] Youla D. C., (1966), The synthesis of linear dynamical systems form prescribed
weighting patterns, SIAM Journal of Applied Mathematics 14(3), 527–549.

429 V. Bystrov
CEJEME 12: 413-429 (2020)


	Introduction
	Literature review
	State-space model
	Identification of initial conditions
	Estimation of initial conditions
	Estimation of state variables
	Illustrative example
	Conclusions

