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εuw – dielectric permittivity of u−w axes
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µuw – magnetic permeability of u−w axes
ν0 – reluctivity of the vacuum
νuw – reluctivity of u−w axes
σuw – Maxwell stress tensor of u−w axes
ω = 2π f – angular speed
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1. Introduction

Analytical solutions of electromagnetic problems usually re-
veal a wide insight into the influence of all parameters on the
field distribution and integral quantities, e.g. total force and
power losses. In this paper some analytical solutions for lev-
itations problems are derived for a wide range of frequency,
conductivity, electric permeability and magnetic permittivities
of the ball. The proposed solutions could be treated as accu-
rate (default) solutions for the ball levitation problem. There
are important reasons for applying the analytical solutions.
Firstly, the explicit form of the solutions leads to simple in-
tegrals and asymptotic formulas (e.g. for rapid design). Sec-
ondly, the analytical solutions are benchmark tasks for numeri-
cal algorithms [1–5]. Thirdly, the analytical solutions constitute
suitable start points for numerical methods that solve nonlin-
ear problems. Moreover, the analytical solutions could reduce
numerical costs while designing hybrid algorithms for electro-
magnetic problems.

The novelty of the analytical solutions presented involves
considering:
• Material force appearing at the surface of a ball (not only

the Lorentz force);
• Conductive, dielectric, and magnetic (anisotropic) parame-

ters of a levitating ball;
• Both AC and impulse excitations;
• Asymptotic formulas for the Lorentz force and power losses

at high frequency.

2. Electromagnetic and magnetic levitations

Electromagnetic levitation (of induced currents) and/or mag-
netic levitation (of magnetic matter) could lift an object in a
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gravitational field [1, 2, 5, 6]. Nowadays, both electromagnetic
and magnetic levitations are of interest and wide attention.

Particularly, the levitation could be caused by:
• Lorentz force acting upon currents induced in a conductive

probe (electromagnetic levitation, power losses [7, 8]);
• Material forces acting on the outer surface and/or in-

side an object, i.e. in regions where magnetic reluctivity
changes [8–12]

as well as (not considered in this paper):
• Permanent magnets or electromagnets;
• The Poynting force outside of technical interests because of

an extremely small value.
Exemplary levitation is used in high-speed trains, frictionless

bearings, vibration isolation for sensitive actuators, medicine
treatment, furnaces that enable for container-less melting of
metal probe [5, 7].

In order to obtain a required value of levitation force (that
exceeds the object weight) the imposed magnetic field has to
be designed in a certain way. Particularly, it is necessary to ex-
ert magnetic field having both axial and radial components, set
the frequency and consider the probe material and geometrical
parameters.

3. Electromagnetic field analysis

Electromagnetic and magnetic levitations appear while electro-
magnetic forces could lift an object in a gravitation field, re-
spectively. Particularly, the Lorentz forces act on currents in-
duced in a conductive object. The material forces act on the
surface of the magnetic object (made of either isotropic or
anisotropic magnetic matter). Both the Lorentz and material
forces lift the conductive and magnetic object if their sum
is greater than the gravitational force mg (weight). Further-
more, it is assumed that forces exerted by magnetic hystere-
sis, magnets, and magnetic asymmetrical anisotropy do not ap-
pear [1, 2, 11, 13–16]. The Lorentz force is immanently bound
up with the Joule power losses. The Joule power losses are of-
ten sufficiently high to melt the levitating object (e.g. a disc,
a ball).

Let us consider a ball in a forced axially symmetric (Fig. 1)
and alternating magnetic field imposed far from a ball given
arbitrary by polynomial of N items [5, 7, 17–19]

Bz(t,z) = a(t)

{
B0 −

N−1

∑
i=1

Cizi

}
, (1)

where B0 and Ci are constants.
The Ampère-Maxwell law

curl�H = �J+
∂�D
∂ t

(2)

for spherical coordinate system tangential component ϕ of (2)
is as follows

∂
r∂ r

(rHθ )−
∂

r∂θ
(Hr) = Jϕ +

∂Dϕ

∂ t
. (3)

Fig. 1. Conductive and magnetic ball in axial magnetic field

Let us assume the ball is magnetically anisotropic in the di-
agonal form (for spherical coordinates system) as follows




Hr

Hθ

Hϕ


=




νrr 0 0
0 νθθ 0
0 0 νϕϕ







Br

Bθ

Bϕ


=




νrrBr

νθθ Bθ

νϕϕ Bϕ


 , (4)

thus
∂

r∂ r
(rνθθ Bθ )−

∂
r∂θ

(νrrBr) = Jϕ +
∂Dϕ

∂ t
. (5)

Magnetic flux density for symmetrically axial magnetic field
can be described only by magnetic vector potential compo-
nent Aϕ

�A = Aϕ�iϕ , (6)

then

�B = curl�A =
�ir

r sinθ
∂ (Aϕ sinθ)

∂θ
−
�iθ
r

∂ (rAϕ)

∂ r
. (7)

Now, Eq. (5) can be rewritten in the following form

1
r2

∂
∂ r

(
r2 ∂Aϕ

∂ r

)
+

νrr

r2νθθ

∂
∂θ

×

×
(

1
sinθ

∂ (Aϕ sinθ)
∂θ

)
= Γ2Aϕ . (8)

where
Γ2 = sγµθθ + s2εµθθ , (9)

and µθθ = ν−1
θθ .

For sine field a(t) = sin(ωt) is set s = iω . Then Eqs. (5) and
(8) are applied for complex magnetic field vectors (RMS value
equal to 1/

√
2).

Ideal rectangular impulse field is satisfied with T1 → 0 and
T2 → 0, as shown in Fig. 2a. The force of the impulse field can
be evaluated considering that indeed T1 �= 0, T2 �= 0 where both
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slopes are exponential (Fig. 2b). At the slopes, the sum of the
Lorentz and material forces are equal to F1, F2, respectively. In
the subinterval where a(t) = const. the Lorentz force does not
appear. However, it appears that the material force FM depended
on the instantaneous magnetic flux value (can be calculated by
means of a static analysis f = 0). The horizontal part of the
impulse is omitted (Fig. 2c, FM is not regarded), but it is quite
enough for presenting appropriate conclusions (Section 7). In
order to evaluate force of a real impulse (Fig. 2b) the values
of forces F1, F2 and FM should be considered. Namely, consid-
ering the time period ∆t where only material force FM acts, the
force equals (F1t1+FM∆t+F2(t2−∆t))/(t1+t2). For exponen-
tial impulse (Fig. 2c) is set s = ±1/T , because the derivatives
on both slopes are determined by ±1/T , respectively. For such
a shaped impulse the analytical solutions are obtained.

a)

b)

c)

Fig. 2. a) ideal single impulse; b) technical realization of single
impulse; c) single period of considered impulse function a(t) =
exp(−t/T1), s1 = 1/T1 for t ∈ [−t1, 0]; and a(t) = exp(+t/T2), s2 =

−1/T2 for t ∈ [0,+t2]

For exerted exponential–impulse periodic field and time
functions a(t) = exp(±t/T1(2)) is satisfied s1(2) = ±1/T1(2).
The time period is equal to τ = t1 + t2 = c1T1 + c2T2. For

c1 = c2 = c, T1 = T2 = T , function a(t) is continuous, and with
the RMS value equal to

aRMS =
√
(1− e−2c)/2c . (10)

The variables separation method [1, 2, 20] allows for a general
solution in the form as follows

Aϕ(r,θ) = R(r)S(θ), (11)

which leads to an equation

1
r2R

∂
∂ r

(
r2 ∂R

∂ r

)
+

νrr

νθθ r2S
∂

∂θ

(
1

sinθ
∂ (Ssinθ)

∂θ

)
= Γ2.

(12)
The separation with the constant qdefined as

1
S

∂
∂θ

(
1

sinθ
∂ (Ssinθ)

∂θ

)
=−q, (13)

and substitution of functions

Q = Ssinθ , (14)

leads to a differential equation

sinθ
∂

∂θ

(
1

sinθ
∂ Q
∂θ

)
=−qQ. (15)

The independent variable change θ = arccos(x) (x = cosθ , θ ∈
(0, π)) converts (15) into a differential equation

(
1− x2) ∂ 2Qn

∂x2 +qQn = 0. (16)

Solutions of (16) are trigonometric polynomials Qn(x) de-
fined for q = qn = n(n+1). Subsequently, polynomials Sn(x)
are determined, which are proportional to associated Legendre
polynomials P1

n(x) [21].
The second variable term separated from (12) leads to the

Bessel equations in the form of

d2Rn

dr2 +
2
r

dRn

dr
−
(

Γ2 +
qnνrr

r2νθθ

)
Rn = 0. (17)

The solution of Bessel equation for Γ �= 0 [21] can be written in
the form of

Rn(r) =
1√
Γr

(cnIpn(Γr)+dnKpn(Γr)) , (18)

where

pn =

√
1
4
+n(n+1)

νrr

νθθ
. (19)

For nonconductive and nonmagnetic (νθθ = νrr = ν0) outer
region of the ball at a low field frequency (Γout → 0), the mag-
netic potential vector describes a function

R0n(r) = anrn +bnr−n−1, (20)

where an, bn, cn, dn are constants.
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For n = 1,2, . . . functions S1(θ) = sinθ , S2(θ) = sin2θ , . . .
is the solutions (dn = 0 because the field inside the ball must be
limited) both inside the ball

Aϕ(r,θ) =
N

∑
n=1

cn
Ipn(Γr)√

Γr
Sn(θ), (21)

and outside

Aϕout(r,θ) =
N

∑
n=1

(
anrn +bnr−n−1)Sn(θ), (22)

are enough developed in order to ensure fulfillment of all nec-
essary boundary conditions for magnetic field [1, 2, 9, 17, 18,
22, 23]. Firstly, two constants result form parameters of given
field, i.e. a1 = B0/2, an = −Cn−1/2n for n = 2,3, . . . ,N. Sec-
ondly, two boundary conditions have to be satisfied for normal
(radial) flux density Br and for tangential (latitudinal) electric
field strength Eθ . Hence

cn =
(2n+1)anRn

(µ0νθθ )RGn(R)+nFn(R)
, (23)

bn = Rn+1 (cnFn(R)−anRn) , (24)

where Fn(r) = Ipn(Γr)/
√

Γr, Gn(r) = ∂ (rFn(r))/r∂ r.
Subsequently, basing on magnetic potential vector distribu-

tions (21) and (22), the magnetic and electric fields as well as
current density are determined.

The solution presented for magnetically anisotropic ball
generalizes the well-known force analysis for isotropic ob-
jects [5, 7, 9, 19].

4. Electromagnetic forces analysis: forces
and power balances

The levitation force can be calculated by means of four follow-
ing methods.
a) Maxwell stress tensor generalized method [1, 2, 5, 9, 18],
which magnetic part is as follows

�σz =−Hz�B+�iz(�H�B)/2, (25)

and leads to the force in the form of sum

Fz = FMz +∆Fz , (26)

where integral over the sphere including the ball equals to

FMz =−π
π∫

0

Re
{
−

B∗
z Br

µ0

+

(
|Br|2

2µ0
+µ0

|Bθ |2

2µ2
θθ

)
cosθ

}
R2 sinθ dθ . (27)

The additional summand ∆Fz can be simply evaluated by the
following formula

∆Fz = π
π∫

0

R∫

0

(σθr −σrθ )sin2(θ)rdrdθ . (28)

The Maxwell stress method requires generalization [11, 17, 18]
for regions where reluctivity is anisotropic, e.g. νrr �= νθθ .
The total force calculated by means of Maxwell stress method
must be extended by volume integral ∆Fz of non-zero value for
anisotropic region (e.g. a ball). For isotropic regions ∆Fz = 0.

Analogously, Maxwell stress tensor for electric field is con-
sidered and incorporated.
b) Co-energy method [1, 2, 9] requires calculating derivatives
of magnetic and electric fields vectors in order to evaluate
force FCz.
c) The Lorentz force FLz

FLz =
∫

V

Re
{(

�J×�B∗
)

z

}
dV

=−π
π∫

0

R∫

0

Re
{

γEϕ B∗
ρ

}
r2 sinθ drdθ , (29)

Moreover, the material force FNz [1, 11] of the volume density
on the ball acts as follows

�N =
1
2

BuBwgrad(νuw)−
1
2

EuEwgrad(εuw), (30)

where summation is performed. For diagonal anisotropy of the
ball in the vacuum one obtains the surface force

FNz =
π
2

π∫

0

{
(ν0−νrr)|Br|2 +(µθθ−µ0)|Hθ |2

}
cosθR2 sinθ dθ

+
π
2

π∫

0

(ε − ε0)|Eϕ |2 cosθR2 sinθ dθ . (31)

Both the Lorentz (29) and material (31) forces cover the total
levitation force (Fig. 3).
d) Levitation force can also be calculated by means of equiva-
lent dipole model [9, 19]). Namely, for N = 2 in (22) the mag-
netic flux density takes the form of

�B =�ir2
(

a1 +
b1

r3

)
cosθ −�iθ

(
2a1 −

b1

r3

)
sinθ

= B0�iz +�ir
2b1

r3 cosθ +�iθ
b1

r3 sinθ
︸ ︷︷ ︸

field of dipole

, (32)

and has the same form as that for the far field of single magnetic
dipole [9, 19] with dipole moment equal to

meff = 4πb1/µ0 , (33)
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thus, the force acting on dipole in gradient field is given by the
formula as follows [18]

FDz =−1
2

Re(meffC∗
1) . (34)

Eqs. (29) and (34) give the same results for an isotropic ball (if
the magnetic field is dominant).

The forces evaluated by methods: a) Maxwell Fz (general-
ized), b) co-energy FCz, c) Lorentz FLz including material force
FNz and d) equivalent dipol method (isotropic ball) are equal to
each other

Fz = FCz = FLz +FNz = FDz , (35)

if the Poynting force density

�fP = ∂
(
�D×�B

)
/∂ t , (36)

vanishes [1, 2, 9, 11]. Nevertheless, the Poynting force FPz is
calculated for checking the forces balance

FPz =−2εFLz/γT . (37)

It should be additionally pointed out that contrary to the two
methods a) and b), the third method c) bases on applying the
physical force components, i.e. the Lorentz force density acting
inside the ball and material forces acting upon the ball surface
(at the boundary of the ball). Fig. 3 presents exemplary electro-
magnetic force distribution.

Fig. 3. Lorentz (antiparallel to g axis) and material (normal to ball
surface) forces for para- and ferro-magnetics

The electromagnetic forces are calculated by means of
Maxwell stress tensor (generalized) and the Lorentz force (in-
cluding material forces) methods. Exemplary curves are shown
in Figs. 4 and 5, where the complete sets of data are given in
brackets.

Fig. 4. Levitation force for conductive and magnetically isotropic ball
evaluated by Maxwell stress tensor (points); Lorentz force (line) and
material force (dash-dot line); ∆F = 0 vs. frequency f (R = 1.5 mm;
γ = 35 MS·m−1; s = iω; ε = ε0; µrr = 0.9µ0; µθθ = 0.9µ0; B0 =
0.5 T; C1 = 10 T·m−1; C2 = 3 ·103 T·m−2; C3 = 5 ·105 T·m−3; N = 4)

Fig. 5. Levitation force for conductive and magnetically anisotropic
ball evaluated by Maxwell stress tensor (points); Lorentz force (line)
and material force (dash-dot line); ∆F �= 0 (line nearest to the abscissa)
vs. frequency f (R = 1.5 mm; γ = 35 MS·m−1; s = iω; ε = ε0; µrr =
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C3 = 5 ·105 T·m−3; N = 4)

The fulfillment of power balance confirms the accuracy of
the evaluated analytical solution field. The power balance can
be written in the following form

SP = π
π∫

0

{
Eϕ H∗

θ
}

R2 sinθ dθ = Pγ +2(sEµ + s∗Eε), (38)

where power losses

Pγ = π
π∫

0

R∫

0

γ
∣∣Eϕ

∣∣2 r2 sinθ drdθ , (39)

magnetic field energy Eµ

Eµ =
π
2

π∫

0

R∫

0

{
νrr|Br|2 +νθθ |Bθ |2

}
r2 sinθ drdθ , (40)
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thus, the force acting on dipole in gradient field is given by the
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2

Re(meffC∗
1) . (34)
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)
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cluding material forces) methods. Exemplary curves are shown
in Figs. 4 and 5, where the complete sets of data are given in
brackets.
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and electric field energy Eε

Eε =
π
2

π∫

0

R∫

0

ε
∣∣Eϕ

∣∣2 r2 sinθ drdθ . (41)

Exemplary, the power balances are presented in Fig. 6 (dia-
magnetic ball) and Fig. 7 (paramagnetic ball).

Fig. 6. Power losses evaluated by Joule volume integral (line) and
Poynting vector surface integral (points) for levitating ball vs. fre-
quency f (R = 2 mm; γ = 56 MS·m−1; ε = ε0, µrr = 0.95µ0; µθθ =
0.95µ0; B0 = 0.7 T; C1 = 10 T·m−1; C2 = 0; C3 = 5 · 105 T·m−3;

N = 4)

Fig. 7. Power losses evaluated by Joule volume integral (line) and
Poynting vector surface integral (points) for levitating ball vs. fre-
quency f (R = 2 mm; γ = 10 MS·m−1; s = iω; ε = ε0; µrr = 2µ0;
µθθ = 3µ0; B0 = 0.7 T; C1 = 10 T·m−1; C2 = 0; C3 = 5 ·105 T·m−3;

N = 4)

5. High frequency asymptotic formulas
for Lorentz force and power losses

For high frequency, so that Re{ΓR}� 1, e.g. Re{ΓR}> 20 for
the Lorentz force and power losses can be presented by asymp-
totic formulas. The asymptotic formulas can be derived while
using the approximation valid for any order ν

Iν(z) = exp(z)/
√

2πz . (42)

The Lorentz force asymptotic approximation for high fre-
quency results directly from (29). The integrals over θ of
summands including items of Eϕ B∗

r , i.e. Si(θ), dsSk(θ) and
cos(θ) · sin(θ) for i,k = 1, . . ., N = 4 lead to values grouped
in the following matrix as follows

kBr =




0 16/15 0 0
−16/15 0 64/35 0

0 −64/35 0 256/63
0 0 −256/63 0


 . (43)

The asymmetry of coefficients (43) results in zero value of the
sum of all these integrals summand. However, the integrals over
θ of summands including items of Eϕ B∗

θ , i.e. Si(θ), Sk(θ) and
cos(θ) · sin(θ) for i,k = 1, . . ., N = 4 lead to the values grouped
in the following matrix as follows

kBθ = k = [ki,k] =




0 8/15 0 0
8/15 0 64/105 0

0 64/105 0 64/63
0 0 64/63 0


 . (44)

The symmetry of coefficients (44) leads to asymptotic formula
as follows

FLmax =−Re

{
N

∑
n=1

πγs(2n+1)(2n+3)
µ−2

θθ relαΓ
kn,n+1anan+1R2n+1

}
.

(45)
It should be pointed out that nonzero coefficients kn,n+1 con-

firm that Lorentz force is derived only by two fields components
(1) of the closest indices (n and n+1).

Figs. 8 and 9 show that forces increase vs. frequency and
converge monotonically for Re{ΓR} � 1. The Lorentz force
asymptotic value is given by (45). Moreover, forces calculated
by both Maxwell stress tensor and Lorentz methods (includ-
ing material force) lead to the same results (Figs. 8 and 9) as
is stated by (35). It should be pointed out that the levitation

Fig. 8. Levitation force for conductive and magnetically isotropic ball
evaluated by Maxwell stress tensor (points) and Lorentz force (line)
including material force (dash-dot line near the abscissa); ∆F = 0
vs. frequency f (R = 3 mm; γ = 30 MS·m−1; s = iω; ε = 1.05ε0;
µrr = µθθ = 0.9µ0; B0 = 0.75 T; C1 = 10 T·m−1; C2 = 0; C3 =

4 ·105 T·m−3; N = 4)
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force reaches a certain maximal value. Hence, balls of limited
mass can levitate in given excitation field only. The calcula-
tions of the forces have been brought out to the conclusions
that Lorentz force is oriented vertically upwards when B0C1 > 0
(Fig. 1, N = 2). This inequality results from (45), too.

Fig. 9. Levitation force for conductive and magnetically anisotropic
ball evaluated by Maxwell stress tensor (points) and Lorentz force
(line) including material force (dash-dot line below the abscissa);
∆F �= 0 (line nearest to the abscissa) vs. frequency f (R = 3 mm; γ =
10 MS·m−1; s = iω; ε = 1.05ε0; µrr = 3µ0; µθθ = 2µ0; B0 = 0.75 T;

C1 = 10 T·m−1; C2 = 0; C3 = 4 ·105 T·m−3; N = 4)

The power losses asymptotic formula can be derived directly
from volume integral (39). The integrals over θ of summands
including items of |Eϕ |2, i.e. Si(θ), Sk(θ) and sin(θ) for i,k =
1, . . ., N = 4 lead to values as shown in the following matrix

p = [pik] =




4/3 0 0 0
0 16/15 0 0
0 0 32/31 0
0 0 0 128/45


 , (46)

where only diagonal coefficients pn,n = pn are of nonzero val-
ues. Hence, the power losses by means of volume integral (39)
after putting (21) and (42) are equal to

Pγlimit = π |s|2 γµ2
θθ rel

1− e−2αR

2α|Γ|2
N

∑
n=1

(2n+1)2 pna2
n . (47)

Power losses can be evaluated based on surface integral of
the Poynting vector over ball surface (38) as follows

Pγlimit S = πµ2
θθ relRe{s/(µθθ Γ)}

N

∑
n=1

(2n+1)2 pna2
n . (48)

Both relations (47) and (48) are equivalent because for
Re{ΓR} > 20 is satisfied exp(−2αR)→ 0. In Figs. 10 and 11
the ratios of power losses to asymptotic approximation formu-
las (47) and (48) vs. field frequency are presented.

Fig. 11 pointed out graphically that power losses are propor-
tional to the square root of field frequency

Pγlimit/
√

f ≈ const, (49)

at a high frequency. This asymptotic property (49) results math-
ematically from both Eqs. (47) and (48).

Fig. 10. Ratios of power losses Pγ both Joule losses (line) and Poynt-
ing vector surface integral (points) to asymptotic relation (48) for lev-
itating ball vs. frequency f (R = 3 mm; γ = 10 MS·m−1; s = iω;
ε = 1.05ε0; µrr = 3µ0; µθθ = 2µ0; B0 = 0.75 T; C1 = 10 T·m−1;

C2 = 0; C3 = 4 ·105 T·m−3; N = 4)

Fig. 11. Ratio of power losses Pγ both Joule losses (line) and Poynting
vector surface integral (points) to frequency square root sqrt( f ) vs. fre-
quency f (R = 3 mm; γ = 10 MS·m−1; s = iω; ε = 1.05ε0; µrr = 3µ0;
µθθ = 2µ0; B0 = 0.75 T; C1 = 10 T·m−1; C2 = 0; C3 = 4 ·105 T·m−3;

N = 4)

6. Forces acting on conductive, dielectric,
and magnetic ball

Let us assume the field is stronger upside the ball. For para-
magnetic and ferromagnetic balls (i.e. µrr > µ0, µθθ > µ0)
the whole material force acts downwards. The whole Lorentz
force acts upwards (Fig. 12). The relation between these two
forces depends strongly on the ball conductivity and frequency
as shown in Figs. 13 and 14.

Both the whole Lorentz and material forces always act along
z axis. Figs. 13 and 14 present the counteraction of the Lorentz
and material forces for para- and ferromagnetics. The total
force, i.e. the sum of Lorentz and material forces (equivalently
given by Maxwell stress tensor generalized method) could be
either positive (levitation is possible), negative, or equal to zero.
On the contrary, for a diamagnetic ball both the Lorentz and ma-
terial forces always coincide with each other and act towards the
axis z.
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the whole material force acts downwards. The whole Lorentz
force acts upwards (Fig. 12). The relation between these two
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Both the whole Lorentz and material forces always act along
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Fig. 12. Lorentz and material forces densities for para- and ferromag-
netic ball

Fig. 13. Levitation force for conductive and magnetically anisotropic
ball evaluated by Maxwell stress tensor (points); Lorentz force (line);
material force (dash-dot line) vs. frequency f (R = 3 mm; γ =
1 MS·m−1; s = iω; ε = ε0; µrr = µθθ = 2µ0; B0 = 1 T; C1 =

20 T·m−1; C2 = 0; C3 = 5 ·105 T·m−3; N = 4)

Fig. 14. Levitation force for conductive and magnetically isotropic ball
evaluated by Maxwell stress tensor (points); Lorentz force (line); mate-
rial force (dash-dot line) vs. conductivity γ (R= 1.5 mm; f = 500 kHz;
s = iω; ε = ε0; µrr = µθθ = 2µ0; B0 = 1 T; C1 = 20 T·m−1; C2 = 0;

C3 = 5 ·105 T·m−3; N = 4)

For impulse fields (Fig. 2) forces are either positive or neg-
ative or vanish, that means they may lead to levitation only for
certain cases as shown in Figs. 15–17. These figures confirm
that impulse levitation is not of practical interest.

Fig. 15. Levitation force for conductive and nonmagnetic ball at im-
pulse field evaluated by Maxwell stress tensor (points); Lorentz force
(line); material force (dash-dot line) vs. time-constant inverse 1/T
(R = 5 mm; γ = 35 MS·m−1; f = 0; s =±1/T ; ε = ε0; µrr = µθθ =

µ0; B0 = 0.5 T; C1 = 5 T·m−1; C2 = 10 ·103 T·m−2; N = 3)

Fig. 16. Levitation force for conductive and magnetically isotropic ball
at impulse field evaluated by Maxwell stress tensor (points); Lorentz
force (line); material force (dash-dot line) vs. time-constant inverse
1/T (R = 5 mm; γ = 35 MS·m−1; f = 0; s = ±1/T ; ε = ε0; µrr =
µθθ = 0.9µ0; B0 = 0.5 T; C1 = 5 T·m−1; C2 = 10 ·103 T·m−2; N = 3)

Fig. 17. Levitation force for conductive and magnetically isotropic ball
at impulse field evaluated by Maxwell stress tensor (points); Lorentz
force (line); material force (dash-dot line) vs. time-constant inverse
1/T (R = 5 mm; γ = 5 · 10−3 S·m−1; f = 0; s = ±1/T ; ε = 100ε0;
µrr = µθθ = µ0, B0 = 0.5 T; C1 = 5 T·m−1; C2 = 10 · 103 T·m−2;

N = 3)
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7. Conclusions

The analytical solutions for electromagnetic field and forces
of levitation problems for conductive, dielectric, and magnetic
(anisotropic) ball have been presented. The ball is placed in ei-
ther AC or impulse magnetic field (Fig. 2). The magnetic flux
density is given in the form of polynomial (1) of N items.

The electromagnetic field distribution in a spherical coor-
dinate system is determined by the separation of variables
method. Provided analytical solutions satisfy Maxwell equa-
tions and boundary conditions for any ball parameters. The
electromagnetic power balance for the obtained analytical so-
lutions have been checked.

The electromagnetic forces (designed in order to ensure
levitation) are evaluated by means of three methods, i.e. the
Maxwell stress tensor (generalized [18]), co-energy and the
Lorentz (including material forces [23]). All methods always
give the same results (35).

Power losses are evaluated by means of the Joule power den-
sity and the Poynting vector.

The solutions derived are valid over a large frequency inter-
val and ball parameters such as conductivity, magnetic perme-
ability, radius, etc.

High frequency asymptotic formulas for the Lorentz force
(45) and power losses (47) and (48) are derived.

The presented analytical solutions can be treated as bench-
mark tests for numerical algorithms for similar problems.
Moreover, the proposed analytical solutions can be easily in-
volved in electromagnetic field hybrid algorithms.

The analyses presented have been carried out based on the
following:
• For para- and ferromagnetic ball both the Lorentz and ma-

terial forces are acting against one another (AC field).
• For diamagnetic ball both the Lorentz and material forces

always coincide (AC field).
• Total force can be positive for some conductivities, i.e. lev-

itation is possible (Fig. 14, AC field),
• The Lorentz force asymptotic function (45) does not depend

on frequency (Figs. 8 and 9, AC field),
• Power losses asymptotic function (49) depends on fre-

quency square root (Figs. 10 and 11, AC field),
• Levitation for impulse field (Fig. 2) is nowadays out of

practical interest due to either small or negative force value
(Figs. 15–17).
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