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Abstract: The Convolutional Neural Network (CNN) model is one of the most effective
models for load forecasting with hyperparameters which can be used not only to determine
the CNN structure and but also to train the CNN model. This paper proposes a framework
for Grid Search hyperparameters of the CNN model. In a training process, the optimal
models will specify conditions that satisfy requirement for minimum of accuracy scores
of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean
Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate
the results along with all other ones. The results indicated that the optimal models have
accuracy scores near the minimum values. Load demand data of Queensland (Australia)
and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the
Grid Search framework.
Key words: load forecasting, Grid Search, Convolutional Neural Network

1. Introduction

Load forecasting plays an important role in the electricity system, including the generation,
transmission, distribution and retail of electricity. Depending on the period of prediction time,
load forecast problems can be divided into 4 groups: very short-term, short-term, medium-
term and long-term load forecasting [1–4]. Recently, many techniques and methodologies have
been applied to forecast electricity load. These forecasting techniques are mainly classified into
two classes: artificial intelligence methods (Support Vector Machine, Artificial Neural Networks,
etc.) and statistical methods (Multiple Regression, Exponential Smoothing, ARIMA and Seasonal
ARIMA, etc.) [5, 6]. Recent developments in artificial neural networks, especially Deep Learn-
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ing (DL) neural networks, have been becoming one of the most active technologies in load
forecasting. DL contains different models: Long Short-Term Memory Networks, Deep Belief
Networks, Deep Boltzmann Machine, Convolutional Neural Network (CNN), etc. [7–9]. Among
them, the CNN is a neural network using convolution operation to extract features in at least
one of their layers. The architecture of the CNN consists of convolution, pooling and fully
connected layers. Several hyperparameters of the CNN structure and CNN training are also used
such as the number of convolutional filters, size of the kernel, pooling layer, batch size/training
epochs, optimization algorithm, etc. that strongly influence the quality of the CNN model. In this
regard, finding out good hyperparameters is an important procedure when using the CNN model
for load forecasting. There have been numerous works devoted to optimizing the configuration
hyperparameters of the CNN network including the number of filters, kernel size [10,11] as well
as the number of epochs, batch size, optimizers [12,13]. In the present paper, the CNNGrid Search
methodology is proposed with the consideration of not only hyperparameters that determine the
network structure and training, but also the pre-processing input data as the number of input and
differencing data. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam)
were analyzed through training and testing processes to verify the accuracy and reliability of the
Grid Search framework. The number of accuracy scores such as RootMean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) were also used. In
the training process, the optimal models with certain hyperparameters were obtained to meet the
minimum requirement of the accuracy scores. In the testing process, these optimal models will be
compared to all other ones to evaluate the Grid Search model. The experiments were implemented
using the Keras library with TensorFlow as the backend in the Python environment with Google
Colab, a free GPU on the cloud for running large-scale machine learning projects [14–18].

This paper is organized as follows. In Section 2, a brief introduction to CNN modelling along
with proposing the Grid Search of 1D CNN methodology is presented. In Section 3, we focus on
experiments and analysis of the obtained results. The conclusions are given in Section 4.

2. Research method

2.1. CNN for time series forecasting
Deep learning techniques have attracted a lot of attention in machine learning issues such

as classification, clustering and regression. The CNN is known as one type of Deep Learning
networks. As shown in Figure 1, the CNN architecture consists of convolutional, pooling and
fully connected layers. In the convolutional layer, the input data is convolved with a number of
filters and the feature map is created. The main function of the pooling layer is to reduce the
resolution of feature maps in order to aggregate the input features. Finally, fully connected layers
process output of the convolutional layers [10–13,19, 20].

Usually, in regression and time series forecasting problems, a large amount of data is stored
in the form of time series: stock indices, weather measurements, electricity load, etc. Time series
is a sequence of values that depend on time and can be defined by Equation (1), where N is the
number of observation values.

x(t) = {x(t1), x(t2), . . . , x(tN )} . (1)
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Fig. 1. The architecture of CNN

One of the important tasks in time series processing is predicting future values using past
values of time series as described in Equation (2), note that i represents the number of lag
observation used as input.

x(tN ) = f (x(tN−1), x(tN−2), x(tN−i)). (2)

To perform the time series forecasting, a one-dimensional CNN (1D CNN) is applied.
A 1D CNN is a CNN model that has a convolutional hidden layer operating over a 1D se-
quence. A typical 1D CNN model with input, one convolutional layer, one pooling layer and one
fully connected layer is shown in Figure 2(a) [21–23]. Deep Learning libraries such as PyTorch,
Keras, and TensorFlow can support well for a 1D, 2D, and 3D CNN [24]. In the paper, we used
Keras, Python to implement a 1D CNN for time series prediction. The definition of the typical
1D CNN including one convolutional layer, one pooling layer and one flatten in Keras is given in
Figure 2(b) as below:

x1

x2

xi

Input Convolution layer

Pooling layer

Fully connected
 layer

Output

(a)

Pseudocode of 1D CNN in Keras, Python
Model=Sequential()
model.add(Conv1D(filters =...,
kernel_size= ..., input_shape=(..., 1)))
model.add(MaxPooling1D(pool_size = ....)

model.add(Flatten())
model.add(Dense(1))
model.compile(loss=′...′, optimizer=....)

(b)

Fig. 2. The definition of typical 1D CNN: architecture (a); pseudocode (b)

2.2. The hyperparameters of 1D CNN

There are many factors that could influence the quality of the 1D CNN. Input parameters
are such ones that define the data (features of input data, differencing of input data, etc.), or
parameters of the CNN configuration (number of layers, filters, pooling, fully connected layers,
etc.), as well as parameters in the training process (such as optimization algorithms, batch, epoch,
etc. [10–14]. In our study, we focus on the following hyperparameters:
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Number of input (i)
The number of input (i) units is pre-specified by the available data that represents the number

of lag observations used as input data and defined as the dimension of input features as well.
Because of the seasonality of load times series, the number of input (i) units can be chosen as the
multiples of the period of time series. For instance, with the period of hourly time series of 24,
the period of weekly time series is 7, the period of yearly time series is 12, and so on.

Differencing data (d)
The CNN can handle raw data with little pre-processing such as differencing the input data.

The differencing of time series data can be the first differencing or the seasonal differencing as
shown in Equation 3, where d is the seasonal period of time series data:

dy(y) = y(t) − y(t − 1),

dy(y) = y(t) − y(t − d).
(3)

Number of filters (f )
The first required CNN parameter is the number of filters that the convolutional layer will

learn. In a CNN, a convolution filter slides over all the elements of the input taking convolution
operation to extract features of the input. Commonly, the number of filters is of 32, 64, 128, etc.

Size of kernel (k)
The kernel size (k) specifies width and height of the convolution window. The kernel size

must be an odd integer with the typical values of (3, 3), (5, 5), (7, 7), etc.
Number of batch (b)
The batch size is the number of samples that will be propagated through the network to

update weight values. Advantages of using a batch are related to requiring less memory as well
as improving the training speed of networks after each propagation.

Number of epoch (e)
The number of epochs is the number of times that the learning algorithm will work through

all training datasets. An epoch is comprised of one or more batches.
Optimization algorithms (o)
The optimization algorithm is used to iteratively update network weights based on training

data. Some of optimization algorithms include SGD (Stochastic Gradient Descent), RMSProp
(Root Mean Square Propagation), Adagrad (Adaptive Gradient Algorithm), Adadelta, Adam,
Adamax and Nadam.

2.3. The 1D CNN methodology
Based on the 1DCNNstructure and hyperparameters, the framework of 1DCNNmethodology

is proposed in Figure 3. Firstly, the data ([y1, y2, . . . , yn−h , yn−h+1, yn−h+2,. . . , yn]) is split into
history data (y1, y2, . . . , yn−h) and validation data (yn−h+1, . . . , yn) using the split function,
the validation and history data have lengths of h and n-h, respectively. In the training stage, the
1D CNN model was obtained after the training process by history data and the combination of
hyperparameters cfg (i, d, f , k, e, b, o). In the prediction and evaluation stage, the accuracy scores
(RMSE, MAPE, MAE) between prediction and validation values are calculated. The formulas
for RMSE, MAPE and MAE are shown in Equation (4) [16, 26, 27]. The pseudocode of training
and prediction as well as the evaluation stage are shown in Figure 4.



Vol. 70 (2021) Grid search of Convolutional Neural Network model 29

Data: 
[y1, y2, …,yn-h, yn-h+1,  yn-h+2,…, yn]

Split

History data: 
[y1, y2, …,yn-h]

Validation Data: 
[yn-h+1,  yn-h+2,…, yn]

Training

Predict & 
Evaluation 

model

Accuracy scores :
RMSE, MAPE, MAE

Configuration cfg
(i, d, f, k, e, b, o)

Number of validation data 
h

Fig. 3. The framework of 1D CNN methodology

Pseudocode of training stage Pseudocode of predicting & evaluation stage

Input:
– History data [y1, y2, . . . , yn−h ]
– cfg: combination of tuning hyperparameters
(i, d, f , k, e, b, o)

Input:
– History data: [y1, y2, . . . , yn−h ]
– Validation data: [yn−h+1, yn−h+2, . . . , yn]
– model: model from training stage

1: Differencing data:

If d > 0 :
History data = History data − History data[d]

2: Transform data into supervised format

Transform History data into input X_train and output
Y train according to the number of input i

3: Define CNN model:

Model = Sequential( )
model.add(Conv1D(filters = f ,
kernel size = k, input_shape = (i, 1)))
model.add(MaxPooling1D(pool_size = 2))
model.add(Flatten( ))
model.add(Dense(1))
model.compile(loss = mse′, optimizer = o)

4: Training model

model.fit(X_train, Y_train, epochs = e,
batch size = b)

Output: model

1:
t = 1
Repeat

a: Difference history data and calculate offset

If d > 0 :
History data = History data − History data[d]
Offset = History data[d]

b: Obtain the input X_test, the length of X_test is the
number of input i.

X_test = History data [−i :]

c: Predict the first value and then add offset

ŷ1 = model.predict(X_test)
ŷ1 = ŷ1 + offset

d: Add actual observation to history for the next prediction
value

History data: [y1, y2, . . . , yn−h , yn−h+1]
t = t + 1

Until t = h

2: Calculate accuracy scores

Calculate the accuracy scores between validation val-
ues [yn−h+1, yn−h+2, . . . , yn] and prediction values
[ŷ1, ŷ2, . . . , ŷh ]

Output: RMSE, MAPE, MAE

(a) (b)

Fig. 4. The 1D CNN pseudocode: training stage (a); prediction and evaluation stage (b)
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(4)

2.4. The 1D CNN Grid Search methodology
Based on the tuning hyperparameters and framework of 1D CNN methodology as described

above, the Grid Search model of 1D CNN methodology was established as shown in Figure 5.

Training 
process

Testing 
process

Training data

Testing data

1D CNN 
methodology

1D CNN 
methodology

Configuration cfg
(i, d, f, k, e, b, o)
Number of 
validation data h

Number of 
validation data h

RMSEmin
MAPEmin
MAEmin

RMSE
MAPE
MAE

Evaluating

Configuration cfg
(i, d, f, k, e, b, o)

Fig. 5. The 1D CNN grid search methodology

The training and testing processes have the same combination of tuning hyperparameters cfg
and the same number of validation data h. For the training data, the optimal models satisfying
minimum accuracy scores (RMSEmin, MAPEmin, MAEmin) are obtained. In the testing process,
these optimal models will be compared to all other models according to their accuracy scores in
order to evaluate reliability of the Grid Search model of 1D CNN methodology.

3. Experiment results and analysis

3.1. Data description and tuning hyperparameters
In order to enhance the reliability of experiment results, load demand data of Queensland

(Australia) and Ho Chi Minh City (Vietnam) were studied in our experiments. The Queensland
load demanddataset provides peak daily electricity demand inMWfrom2013.11.24 to 2014.05.31
[25], and theHoChiMinhCity load demand dataset – from 2018.06.25 to 2018.12.30 as presented
in Figure 6.

Setup values of the tuning hyperparameters for Queensland and Ho Chi Minh City load
demand data are also listed in Table 1. Because of weekly seasonality, there is a numeric value
of 7 assigned to the value of input i and the value of differencing d. Combining all tuning
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(a) (b)

Fig. 6. The experimental data: Queensland load demand data (a); Ho Chi Minh City load demand data (b)

hyperparameters gives 384 cases corresponding to 384 possible models of 1D CNNmethodology.
The values of the number of validation data h is 7 (one week).

Table 1. The values of tuning hyperparameters

Items Queensland Ho Chi Minh City

input i 7, 14 7, 14

differencing d 0, 7 0, 7

number of filters f 32, 64 32, 64

kernel size k 3, 5 3, 5

number of epochs e 100, 500 100, 1 000

number of batch b 1, 100 1, 150

types of optimizer o
“RMSprop”, “Adagrad”, “Adadelta”,

“Adam”, “Adamax”, “Nadam”
“RMSprop”, “Adagrad”, “Adadelta”,

“Adam”, “Adamax”, “Nadam”
Number of possible models 384 384

3.2. The results in case of Queensland load demand data
Table 2 shows the results of the training and testing processes. For the training process, the

optimal model was selected according the minimum values of accuracy scores RMSE,MAPE and
MAE. Obviously, we have the same optimal models in the case of RMSE andMAPE, and another
one in the case of MAE. For testing process, the column “Optimal” shows the accuracy scores for
the optimal model, and the columns “Min”, “Average” and “Max” – the minimum, the average
and the maximum values for all possible models that can be generated. Figures 7(a), 7(b) and
7(c) give the prediction and validation series of the optimal, minimum and maximum models for
the RMSE case in the testing process, respectively. Figure 8 indicates the distribution of accuracy
scores for the testing process. Figure 8(a) presents the box plot for the RMSE component with
the first column for the distribution of all possible models and the second column for the optimal
model. The same distributed data are plotted in Figure 8(b) and 8(c).
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Table 2. The results of training and testing process in case of Queensland load demand data

Accuracy Optimal models of training process Accuracy scores of testing process
scores (i, d, f, k, e, b, o) Optimal Min Average Max

RMSE (MW) [14, 7, 32, 3, 100, 100, “Adam”] 115.60 76.22 178.08 358.25

MAPE (%) [14, 7, 32, 3, 100, 100, “Adam”] 1.42 0.93 2.51 24.40

MAE (MW) [14, 7, 32, 5, 100, 100, “Adamax”] 80.05 60.79 155.44 330.94

(a) (b) (c)

Fig. 7. The prediction and validation series for testing process in the case of Queensland load demand data
for RMSE case: optimal model (a); minimum model (b); maximum model (c)

(a) (b) (c)

Fig. 8. The box plot of accuracy scores for testing process in the case of Queensland load demand data:
RMSE (a); MAPE (b); MAE (c)

3.3. The results in the case of Ho Chi Minh City load demand data
Table 3 shows the results of training and testing processes. Obviously, the minimum of RMSE,

MAPE andMAEgives the different optimalmodels in the training process. For the testing process,
the column “Optimal” shows the accuracy scores for the optimal model, and the columns “Min”,
“Average” and “Max” – the minimum, the average and the maximum values for all possible
models that can be generated.
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Table 3. The results of training and testing process in the case of Ho Chi Minh City load demand data

Accuracy Optimal models of training process Accuracy scores of testing process
scores (i, d, f, k, e, b, o) Optimal Min Average Max

RMSE (MW) [14, 7, 32, 5, 100, 150, “Adadelta”] 122.74 60.96 165.80 428.99

MAPE (%) [7, 0, 64, 3, 1000, 150, “RMSprop”] 3.46 1.53 4.25 47.59

MAE (MW) [14, 7, 32, 5, 100, 150, “Adadelta”] 103.72 51.52 126.97 286.51

Figures 9(a), 9(b) and 9(c) give the prediction and validation series of the optimal, minimum
and maximum models for the RMSE case in the testing process, respectively. Figure 10 indicates
the distribution of accuracy scores for the testing process. Figure 10(a) presents the box plot for
the RMSE component with the first column for the distribution of all possible models and the
second column for the optimal model. The same distributed data are plotted in Figures 10(b)
and 10(c).

(a) (b) (c)

Fig. 9. The prediction and validation series for testing process in the case Ho Chi Minh City load demand
data for RMSE case: optimal model (a); minimum model (b); maximum model (c)

(a) (b) (c)

Fig. 10. The box plot of accuracy scores for testing process in the case of Ho Chi Minh City load demand
data: RMSE (a); MAPE (b); MAE (c)
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3.4. Evaluation
As described above, the optimal models in the training process are determined by minimizing

the accuracy scores such as RMSE, MAPE and MAE. Analysis of the results listed in Table 2 and
Table 3 shows the existence of the optimal model that satisfies the minimum criteria for accuracy
scores of RMSE, MAPE, and MAE. In the case of Queensland load demand data, there is a single
model that satisfies all RMSE, MAPE and the other ones for MAE. In the case of Ho Chi Minh
City load demand data, three different optimization models were found to meet RMSE, MAPE
and MAE, respectively.

The optimal model obtained in the training process does not guarantee the best results in
the testing process. Let us analyze Table 2 in the case of Queensland load demand data. When
using the optimal model in the testing process, the accuracy scores of RMSE, MAPE and MAE
are 115.60 MW, 1.42% and 80.05 MW, respectively. Meanwhile, there are other models that
give better results with the minimum values of RMSE, MAPE, MAE of 76.22 MW, 0.93%,
60.79 MW, respectively. However, compared to the average values of all models (178.08 MW,
2.51%, 155.44 MW obtained respectively for RMSE, MAPE, MAE values) and to maximum
values of themodels of RMSE (358.25 MW),MAPE (24.40%),MAE (330.94 MW), the accuracy
scores of the optimal model are considerably low. In addition, analyzing the boxplot of accuracy
scores shown in Figure 8 makes it clear that the accuracy scores of the optimal models are close
to the minimum value of all other models. Moreover, the forecast values shown in Figure 7(a)
are very consistent with the validation values for the optimal model. Similar results were also
obtained for the Ho Chi Minh City load demand data case. These results clearly show that the
optimal model received during the training by applying 1D CNN Grid Search model will give
good values in the testing process. In this regard, it is promising for applying the Grid Search
model of 1D CNN methodology in any load demand times series.

4. Conclusions

Based on the 1D CNN structure and hyperparameters, a framework for the Grid Search model
of the 1D CNN method has been proposed. In the training process, minimum accuracy scores
of RMSE, MAPE, and MAE were applied to specify the optimal model. In the testing process,
accuracy scores were used to compare the optimal model with all other ones. Both Queensland
and Ho Chi Minh City load demand were used for the analysis. The results indicated the existence
of an optimal model that satisfies the minimum requirement for accuracy scores. During the
testing process, accuracy scores of the optimal model gave good values close to the minimum and
much lower than the average. The positive results obtained in this study show an effective way to
forecast load demand.
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