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Application of Artificial Neural Network to Predict the Tensile Properties  
of Dual-Phase Steels

An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloy-
ing elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear 
regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance 
calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required 
tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship 
between alloying elements, microstructural factors, and tensile properties in dual-phase steels.
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1. Introduction

Over the past few decades, weight reductions and high 
strength levels of vehicle body structures have been the subjects 
of much research in order to improve fuel efficiency and safety 
in the automobile and transportation industries [1-8]. These 
demands have led to the development of advanced high strength 
steels (AHSS) that provide a weight reduction of about 25% 
compared to other conventional steels. Dual-phase steels are one 
of the most widely used AHSS with the excellent combination 
of strength and formability. Unlike conventional low-carbon 
steels, the dual-phase steels show continuous yielding, low 
yield-to-tensile strength ratio, and high work-hardening rate 
because they have a unique microstructure consisting of hard 
martensite in soft ferrite matrix [9-16]. However, it is difficult 
to predict the tensile properties of dual-phase steels because 
the microstructure varies depending on alloying elements or 
process conditions.

On the other hand, artificial neural networks (ANN) have 
been applied to predict various natural and social phenomena 
because they have many advantages in solving the complexity 
between the dependent and independent parameters [17-23]. 
The ANN techniques with these advantages have been increas-
ingly used in materials science to design alloys and to predict 
mechanical properties. Recently, Reddy et al. [24] proposed an 
ANN model for predicting α and β phase volume fraction of 

titanium alloys by controlling the chemical composition and 
heat-treatment process. Jung et al. [25] also investigated the ef-
fects of phase volume fraction on the tensile properties of high 
strength bainitic steels by using an ANN model. Although some 
researchers have applied the ANN model to predicting tensile 
properties, few ANN studies have considered both alloying ele-
ments and microstructural factors as input parameters to predict 
tensile properties.

In the present study, we developed an ANN model to 
predict the tensile properties of dual-phase steels by simultane-
ously considering alloying elements and microstructural factors 
as input parameters. Based on the developed ANN model, 3D 
contour maps and an average index of the relative importance 
were calculated to estimate the effects of the input parameters 
quantitatively on the yield strength, tensile strength, and yield-
to-tensile ratio. 

2. Artificial neural network modeling 

For ANN and multiple linear regression modeling, experi-
mental data were sourced from the literature on dual-phase steels 
with equiaxed morphology [26-30]. From the datasets, alloying 
elements (C, Mn, Si) and microstructural factors (martensite 
volume fraction, ferrite grain size) comprised input parameters, 
while tensile properties such as yield strength, tensile strength, 

1	 Seoul National University of Science and Technology,  Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea 

*	 Corresponding author: bhwang@seoultech.ackr

https://orcid.org/0000-0002-0458-5806
https://orcid.org/0000-0003-2237-8517
https://orcid.org/0000-0001-6330-4747


720

and yield-to-tensile ratio were output parameters. The input and 
output parameters were normalized within the range of 0.1 to 
0.9 for this ANN model, using the relationship as below [20,21]:
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where xn is the normalized value of x; xmax and xmin are the 
maximum and minimum values of x, respectively, in all datasets. 
Once the best-trained network was found, all the transformed 
data were set back to their original values by the following 
equation [20,21]:
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In this study, the ANN model was established using a back-
propagation algorithm, and the sigmoid function was used as 
an activation function. The ANN model consisted of five neu-
rons in the input layer and three neurons in the output layer, as 
shown in Fig. 1. The ANN training model involved adjusting 
the weights associated with each connection between neurons 
until the calculated output for each input dataset was close to 
the corresponding experimental result. To determine the optimal 

architecture and ascertain the reliability of the ANN model, 
datasets were partitioned into training datasets and test datasets. 
The 67 available datasets were divided into 61 training datasets 
and 6 test datasets. The ranges of 67 input and output parameters 
are summarized in Table 1 [26-30].

The architecture of the ANN model included hidden layers 
and neurons, a momentum term, a learning rate, and the number 
of iterations. During the ANN training step, the optimum pa-
rameters for the network were determined based on the average 
training error in the output prediction (Etr) of the trained data; 
this is expressed which was given as [22]
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where N is the number of datasets, Ti is the targeted output, and 
Oi is the calculated output. As a result of ANN training after 
fixing 70 neurons and three hidden layers with minimum mean 
error values, the momentum term, learning rate, and iterations 
were optimized to 0.4, 0.6, and 70000, respectively.

With the help of the developed model, we attempted to 
estimate the significance of each alloying element and micro-
structural factor on tensile properties using a method called the 

TABLE 1

The range of the input and output parameters for the ANN model [26-30]

Parameter Minimum Maximum Mean Standard deviation

Input

C content (wt.%) 0.03 0.23 0.13 0.06
Mn content (wt.%) 0.22 1.52 0.63 0.37
Si content (wt.%) 0.01 0.45 0.12 0.12

Martensite fraction (%) 2.60 95.00 32.03 18.56
Ferrite grain size (μm) 2.25 91.00 21.92 19.02

Output
Yield strength (MPa) 172.40 755.70 401.48 121.18

Tensile strength (MPa) 279.20 1089.70 729.61 230.83
Yield-to-tensile ratio 0.39 0.88 0.57 0.13

Fig. 1. Schematic model of the artificial neural network (ANN) architecture used to determine the tensile properties of dual-phase steels in this study



721

index of relative importance (IRI). The procedure to calculate 
the average index of the relative importance is given as follows. 
(a)	 The % band of ith input parameter =
	 = ((X1)Maximum – (X1)Minimum)/100;
(b)	 The 6% band of each input parameter was considered i.e., 

+3% and –3%;
(c)	 As a result, input parameter X1 has two row matrices 

[+3%X1 + X2 + X3 + ... X5] and [–3%X1 + X2 + X3 + ... X5]
(d)	W hen these two row matrices were passed through the ANN 

model, (Y1)+3%X1 and (Y1)–3%X1 were predicted.
(e)	 The difference, Δ(y1) = (Y1)+3%X1 – (Y1)–3%X1 was calculated.

The index of relative importance (IRI) of input parameter 
X1 was calculated from the formula:
 IRI = Δ(y1)/((y1)Maximum – (y1)Minimum)

3. Results and discussion

The performance of the ANN model was estimated by 
comparing the calculated values of the training data with the 

multiple linear regression results. As presented in Fig. 2(a-c), 
the tensile properties predicted by the ANN model had a high 
R2 value of about 0.99 for the yield strength, tensile strength, 
and yield-to-tensile ratio. In contrast, the results predicted by the 
multiple linear regression model showed relatively low accuracy. 

The ANN model was found to have a lower average per-
cent error for all output parameters than the multiple linear 
regression model. Fig. 3 exhibits that the values predicted by 
the ANN model were more consistent with the experimental 
datasets than those predicted by the multiple linear regression 
model. It can be said that the developed ANN model predicts 
the yield strength, tensile strength, and yield-to-tensile ratio with 
remarkable accuracy.

On the other hand, the developed ANN model was ap-
plied to analyze the effect of multiple input parameters on yield 
strength, tensile strength, and yield-to-tensile ratio. From the 
analysis results of the developed ANN model, 3D contour maps 
were produced in Fig. 4. The martensite fraction and the ferrite 
grain size were set as parameters, and the Z-axis was also set 
as each tensile property (yield strength, tensile strength, and 

Fig. 2. Predictions of the artificial neural network (ANN) model and the multiple linear regression (MLR) model: (a) yield strength, (b) tensile 
strength, (c) and yield-to-tensile ratio

Fig. 3. Comparison of experimental and predicted tensile properties with the prediction error (%) for six test samples of dual-phase steel: (a) yield 
strength, (b) tensile strength, and (c) yield-to-tensile ratio
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yield-to-tensile strength). The 3D contour maps demonstrated the 
influence of microstructural factors on the yield strength, tensile 
strength, and yield-to-tensile ratio in the dual-phase steel with 
a composition (C: 0.03, Mn: 0.02, Si: 0.01 wt.%). Fig. 4(a) shows 
variations in yield strength with different martensite fraction and 
ferrite grain size. The yield strength increased with a decrease 
in the ferrite grain size, and the martensite fraction had little ef-
fect on the yield strength. Unlike the yield strength, the tensile 
strength increased by the martensite fraction, and the ferrite grain 

size showed an unclear tendency (Fig. 4(b)). Meanwhile, the 
yield-to-tensile ratio showed that the low yield-to-tensile ratio 
areas widen as the yield strength decreased, or tensile strength 
increased (Fig. 4(c)). 

Fig. 5 exhibits the average index of the relative importance 
of the input parameters associated with the output parameters. 
The index was devised in the present study to compare the ef-
fects of the alloying elements and microstructural factors of input 
parameters quantitatively. For the average index of the relative 

Fig. 4. 3D contour maps showing the combined effect of the martensite fraction and ferrite grain size on (a) yield strength, (b) tensile strength, 
and (c) yield-to-tensile ratio (dataset 36)

Fig. 5. The average index of the relative importance of the input parameters on the (a) yield strength, (b) tensile strength, and (c) yield-to-tensile 
ratio for all datasets
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importance with reference to the yield and tensile strength 
(Fig. 5(a-b)), the martensite fraction had a positive influential 
factor, while the ferrite grain size had a negative influential fac-
tor. The other input parameters, i.e., the alloying elements, had 
insignificant influence. The yield-to-tensile ratio decreased at 
high tensile strength or low yield strength because it depends on 
both the martensite fraction and the ferrite grain size (Fig. 5(c)). 
From these results, it was found that microstructural factors had 
a greater impact on tensile properties than alloying elements. 

4. Conclusions

1.	 The ANN model developed with consideration of both 
alloying elements and microstructural factors presented 
higher reliability than the multiple linear regression model 
for predicting the tensile properties of dual-phase steels.

2.	 The 3D contour maps and the average index of the rela-
tive importance calculated by the developed ANN model 
explained the complex effects of alloying elements and 
microstructural factors on the tensile properties of dual-
phase steels.

3.	 The developed ANN model showed that martensite frac-
tions and ferrite grain size had a greater impact on tensile 
properties than alloying elements, and thus it is important 
to control the microstructure when designing the desired 
tensile properties of dual-phase steels.
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