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Effect of Impurity Reduction on Mechanical Properties of Fe29.5Ti70.5 Alloy Prepared  
by Pretreated Ti Scraps

Ferrotitanium can be produced as a method of recycling Ti scraps. The eutectic composition of ferrotitanium, Fe29.5Ti70.5, can be 
obtained as a nanocrystalline phase due to relatively low melting point. Fe29.5Ti70.5 in which FeTi and β-Ti form a lamellar structure 
have high strength but low strain. To improve this, impurities were removed through hydrogen plasma arc melting (HPAM) and 
annealed. HPAM can remove substitutional/interstitial solid solutions. As a result, from 6733 ppm to 4573 ppm of initial impuri-
ties were removed by HPAM process. In addition, the strain was improved by spheroidizing and coarsening the lamellar structure 
through annealing. The effect of impurities removed through HPAM on the Young’s modulus, yield strength, and strain was observed.
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1. Introduction

The production of ferrotitanium is one of the approaches 
to recycle Ti scraps. When ferrotitanium is used as a structural 
agent, it is an alloy near the composition of the eutectic and 
forms a fine lamellar structure owing to its relatively low melting 
point. It has a high strength and excellent abrasion characteris-
tics compared to those of coarse-grained materials. However, 
ultrafine eutectic alloys have limited strains at room tempera-
ture, which hinders their industrial applications as structural  
materials [1,2].

Ti scraps contain impurities. The impurities have an un-
intended effect on the final product [3,4]. The impurities in Ti 
scraps can act as substitutional or interstitial solid solutions in the 
final product. The impurities contaminated by deterioration or 
contained in the scraps can be removed through hydrogen plasma 
arc melting (HPAM). Pure titanium, titanium-based alloys, and 
high-value added pure metals can be purified through HPAM 
by adding hydrogen to the argon-plasma-generating gas [5,6]. 
It is one of the methods for an efficient removal of impurities 
forming a substitutional/interstitial solid solution through the 
high temperature and reactivity with hydrogen.

In this study, the effect of impurities in the Fe29.5Ti70.5 alloy 
prepared using Ti scraps was investigated. The Ti scraps were 
pretreated by washing with an ultrasonic cleaner in an alkaline 

degreasing solution and drying. The pretreated scraps were 
prepared into Fe29.5Ti70.5 ingots with Fe sources and refined for 
different times. The refined ingots were annealed at 1000°C 
for 5 hrs. After annealing, the effects of the impurities on the 
mechanical properties were evaluated through compression test.

2. Experimental 

Ti scraps were washed through ultrasonic cleaning in a 
10 g/L tetra-sodium pyrophosphate (TSPP) solution. The washed 
scraps were dried at 300°C for 30 minutes to complete the pre-
treatment. The base alloy was prepared through tilt casting in 
argon atmosphere using pretreated Ti scraps and Fe source. 30 g 
of the prepared base alloy was placed on a water-cooled copper 
mold, and the chamber was exhausted to 5.5 × 10–3 torr, and then 
ultra-high purity argon (99.9999%) and hydrogen (99.999%) 
were filled to atmospheric pressure at a rate of 12.5 L/min. The 
hydrogen content of the plasma gas was injected at 20 vol%, 
discharged at 8 kW, and melted for 5, 10, 15 minutes to prepared 
a button-type ingot. For uniform refining, the button-type ingot 
was turned upside down to repeat the previous melting. Then, 
ingots with a total melting time of 10, 20, 30 minutes were pre-
pared. After HPAM was completed, the internal hydrogen was 
removed by PAM for 1 minute. The prepared ingots were an-
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nealed in a vacuum atmosphere at 1000°C for 5 hours to improve 
the microstructure, followed by furnace cooling.

In characterizations, XRD was performed on an X-ray 
diffractometer (Shimadzu, XRD-6100) in the step scan mode 
using Cu-Ka X-rays with a step size = 0.01° and 3-second count 
time per step over 30°-80° 2-theta. The substitutional impurity 
concentrations were determined using glow discharge mass 
spectrometry (GDMS, MSI, GD90). The oxygen, nitrogen, and 
carbon analyses (Eltra CS-2000, ON-900) were performed to 
determine the concentration of gas impurities. And, a cylindrical 
specimen having a diameter of 3 mm and height of 6 mm was 
prepared to evaluate the mechanical properties. The cylindri-
cal specimen was subjected to a compression test at a speed of 
1 mm/min using a universal testing machine (MTDI, UT-100). 
To understand the deformation behavior of the prepared alloy, 
a fracture surface of the specimen was analyzed using field-
emission scanning electron microscopy (FE-SEM) and energy-
dispersive spectroscopy (EDS) (Hitachi, SU-70).

3. Results and discussion

Figure 1, shows XRD patterns to evaluate the phase changes 
with the refining time (after HPAM of the Fe29.5Ti70.5 alloy) the 
main diffraction peaks of the alloys correspond to the body-
centered cubic (BCC) β-Ti, a B2 FeTi intermetallic compound. 
Notably, no change in the peak was observed with the increase in 
HPAM time. Therefore, the removal of impurities by the refining 
did not have a significant effect on the phase; only the internal 
impurities were removed. However, in the sample of ingot (Just 
Annealed, HPAM 10 min), a small peak was observed around 
42°, which is probably Ti4Fe2O0.4. It appears to have reacted 
with oxygen in the initial incomplete chamber. As a result, it 
was then removed as the HPAM time increased.

 Pi = ri
0Ni Pi

0	 (1)

Where ri
0, Ni , and Pi

0 are the activity coefficients, moral frac-
tions, and pure vapor pressures, respectively. The vapor pressures 
of various element have been reported [7]. The impurities can be 
easily removed as most of them have higher pure vapor pressures 
than that of the matrix Fe or Ti. The vapor pressure increases with 
the temperature, which facilitates the removal. When hydrogen 
was added to the argon plasma gas, the surface temperature 
increased by 300-400 K as hydrogen has a higher thermal con-
ductivity than that of argon. The dissociated hydrogen can act 
as a carrier for the removal by reacting with metallic vapor [8].

 xM(vap) + yH = Mx Hy(g) ↑	 (2)

Interstitial elements such as oxygen, nitrogen, and carbon 
can also be removed by refining. These elements can be removed 
by combining with elements with higher affinities than that of 
Ti to form a compound [9].

xM(in molten metal) + 	
 + yO(in molten metal) = MxOy(g)↑	 (3)

O(in molten metal) + 	
 + H(from plasma gas) = HxO (g)↑	 (4)

C(in molten metal) + 	
 + zO(in molten metal) = COz (g)↑	

It can be assumed that the metallic/nonmetallic impuri-
ties were substitutional solid-solution-forming impurities 
with elements excluding H, C, N, and O, which are interstitial 
solid-solution-forming impurities. Figure 2 shows the change 
in concentration of impurities with the refining time. The con-
tent of impurities decreased with the increase in refining time. 
The impurities concentration of the initial ingot was 6733 ppm 
(substitutional impurities: 1704, interstitial solid-solution: 
5029 ppm). After that, as the HPAM time increased, the im-
purities concentration was decreased. Finally, in the ingot by 
HPAM 30 min, the impurities concentration was decreased 
to 4573 ppm (substitutional impurities: 820, interstitial solid-
solution: 3753 ppm).

 
 

 

 

 

 

 

Fig. 1. XRD analyses of the Fe29.5Ti70.5 ingots refined for different 
times (10, 20, and 30 min)
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Fig. 2. Changes in concentration of impurities in the Fe29.5Ti70.5 ingot 
forming interstitial or substitutional solid solution as a function of the 
refining time
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SEM images of the 30-min HPAM ingot are shown in Fig. 3. 
to evaluate the phase and composition changes of the micro-
structure upon the spheroidizing annealing. Figures 3(a)-3(e) 
confirm the lamellar structure of the ingot before the annealing. 
The interlayer spacing was on the nanometer scale. We expect 
that the high energy accumulated inside acted as a driving force 
during the heat treatment. Images after the annealing are shown 
in Figs. 3(f)-3(j). Coarse and spherical grain boundaries were 
observed. The matrix was β-Ti with a large Ti fraction, while the 
precipitation was FeTi. The FeTi has a simple cubic structure, 
whereas the β-Ti has a BCC structure, so that oxygen is more 
likely to penetrate the spaces between the lattices and thus has 
a higher solubility. Accordingly, more oxygen was observed 
in the β-Ti phase than in the FeTi phase (abundant red color).

TABLE 1

Room-temperature compression test results for the Fe29.5Ti70.5 
alloys: Young’s modulus E, yield stress σy, yield strain εy, ultimate 

compression stress σmax, and fracture strain εf

Melting time E (GPa) σy (MPa) εy (%) σmax (MPa) εf (%)
Pre-melting 39.5 1802 4.8 1923 6.5

10 min 36.6 1719 4.9 1910 8.3
20 min 32.8 1635 5.2 1894 9.6
30 min 30.7 1563 5.3 1877 11.2

Compression tests were performed to evaluate the me-
chanical properties. The compressed specimens consisted of the 
annealed Fe29.5Ti70.5 ingots in cylindrical shapes with diameters 
of 3 mm and heights of 6 mm. The result of room-temperature 
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Fig. 3. SEM images of the Fe29.5Ti70.5 ingots refined for 30 min by the HPAM (a) before and (b) after the annealing
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compressive test is shown in Table. 1. The three heat-treated com-
pressed specimens were equal except for their impurity concen-
trations determined by the refining time. The Young’s modulus 
of the nonannealed Fe29.5Ti70.5 alloy was approximately 95 GPa, 
whereas the Young’s modulus of the grain was reduced owing 
to the spheroidization and coarsening [10]. However, when the 
annealing was not performed, the strain was improved compared 
to that at the strain of 2% appropriately. Notably, not only the 
Young’s modulus, an intrinsic property of the material, but also 
the yield strength and strain were changed. Work hardening oc-
curred upon the specimen compression, owing to the hindered 
dislocation movement and generation in the crystal structure. 
The impurities were located at the grain boundaries or became 
interstitial or substitutional solid solutions, which hindered the 
dislocation movement through the lattice distortion. Therefore, 

as the content of solid-solution-forming impurities decreased, 
the Young’s modulus decreased from 36.6 to 30.7 GPa, the 
maximum yield stress decreased from 1910 to 1877 MPa, and 
the strain at fracture increased from 8.3 to 11.2.

Figure 4 shows the fracture surface of the specimen ob-
served by SEM and EDS after the room-temperature compres-
sion test to investigate the fracture and deformation behavior 
of the alloy. Figures 4(a), 4(c), and 4(e) show wide areas of 
the cleavage fracture surfaces in the brittle material. With the 
increase in refining time, the content of impurities decreased and 
the cleavage surface tended to become fine. Figures 4(b), 4(d), 
and 4(f) show EDS images of the fracture surfaces. Notably, 
no precipitates such as oxides or carbides were observed. The 
FeTi phase, which has a relatively high Fe content, appears red 
with a clear shape, compared to the β-Ti phase, which is mainly 

Fig. 4. SEM and EDS analyses of the fracture surfaces: (a)-(b) 10 min, (c)-(d) 20 min, and (e)-(f) 30 min HPAM, respectively
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green. Thus, the relatively mild FeTi exhibited a grain boundary 
fracture. In β-Ti, a fine band was formed, inclined by approxi-
mately 45° in the load direction. Owing to this deformation band, 
the deformation occurred within β-Ti during the compression, 
which then fractured.

4. Conclusions

After the annealing of the Fe29.5Ti70.5 alloy ingots refined 
for different times by HPAM, their microstructures, compres-
sive strengths, and fracture surfaces were analyzed. The content 
of impurities decreased with the increase in refining time. The 
impurities could form substitutional/interstitial solid solutions 
and affect the physical properties. The conclusions of this study 
can be summarized as follows.
(1)	 The contents of substitutional/interstitial solid-solution-

forming impurities were reduced by 51.90 and 25.37 %, 
respectively, after the 30-min refining.

(2)	 Spheroidization and coarsening were achieved through the 
spheroidizing annealing and the strain was improved.

(3)	 The substitutional/interstitial solid-solution-forming im-
purities influenced the compression test results. With the 
decrease in content of impurities, the Young’s modulus, 
yield stress, and ultimate compression stress decreased, 
while the strain increased.

(4)	 The analysis of fracture surface showed that the cleavage 
surface became finer with the decrease in content of impuri-
ties. The observed deformation band in β-Ti confirmed that 
the deformation and fracture occurred in β-Ti.
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