In this investigation, the effective mechanical, coupling and dielectric properties of Macro-fiber-composites (MFCs) consisting of piezo-rod-element constituents are determined using representative volume element method combined with finite element analysis. Experiments are conducted on piezo-bar-element MFCs to understand the applicability of the proposed approach which would later be extended to composites with modified geometric pattern. The longitudinal strains with respect to static deflections of beam and forced displacements under varying electrical loads are measured for the MFCs, and compared with the numerical simulations. Based on the good agreement from the result comparisons of piezo-bar-element MFCs, the effective material properties of piezo-rod-element MFCs are numerically determined based on the RVE approach.

Keywords: Macro-fiber Composite, Finite-Element Model, Piezoelectric Composite, ANSYS, RVE Method

1. Introduction

Macro-Fiber-Composites (MFC), Active-Fiber-Composite (AFC), Piezoceramic alloys and Shape-Memory Alloy (SMA) are used for variety of applications including vibration and shape control, energy harvesting, aircraft deicing, and flight control. Piezoelectric material has several stages of development, from piezoelectric ceramic to Piezoelectric-fiber Composite (PFC) by Smart Material Corp and AFC by MIT to MFC by NASA Langley Research Center in 1999, for its electro-mechanical coupling, blocking force and response time. Piezoceramic is a particular substance which could apply an external stress voltage and conversely, creates stress [1]. It is a commonly used material for actuator, energy harvesting and sensor technology, and due to its quick response time, wide bandwidth, and ability to develop large forces. Piezoelectric materials are patched to versatile light-weight structures, thereby offering intrinsic sensing and actuating capabilities for intelligent structures [2]. The piezoelectric in AFCs have circular cross section fibers which have embedded with epoxy resins and contact with the flatted grid electrodes and composite structure associated with the alignment of PZT fibers [3].

The MFCs are flexible in order to be in compliance with curved, bend and torsion surfaces easily. The actuation force in MFC is larger than a PZT, since the effect of \(d_{33} \) mode dominates as actuation and the effect of \(d_{31} \) mode as elongator. In \(d_{31} \) type MFC, applied voltages are mutually perpendicular to PZT fiber direction and as a result, the transverse strain is obtained due to coupling of \(d_{31} \) constant. Similarly, \(d_{33} \) type MFC has fiber orientation along longitudinal direction in alignment with the macroscopic polling direction, and the longitudinal strain is obtained through \(d_{33} \) constant [4]. Various studies have been performed for MFC constituent properties using analytical and numerical approaches. The advantage of MFC remains in its high flexibility, high actuating force and increased strain output. Therefore, it is commonly used in sensing and actuating structures. The probability of determining identical, homogeneous properties of the constituent properties have been studied and an easy analytical mixing rules are extracted according to the Uniform-Field Method (UFM) [5].

Many researchers focused on determination of effective material properties and electromechanical coupling constant of MFC based on experimental and numerical probes due the difficulties on homogeneous response of MFC with smart structure. Yang Kuang [6] developed a PZT transducer model to evaluate properties of MFCs by experimental and numerical power-output method for energy harvester. Zhong Zhe Dong [7] described that the constitutive relations of bonded plate with MFC transducers
and developed MFC transducers to derive the direct effect of coupling as equivalent forces to the reverse effect of piezoelectric under electrical boundary conditions for energy harvesting and vibration suppression. Latalski [8] developed MFC transducers and studied for detecting delamination and crack propagation and structural-health monitoring with operating conditions like restraining of vibration. Khazaee [9] developed an FE Model for PZT beams and improved flexibility by modifying geometrical and material properties and analyzed to expand natural and modal frequency and output electric power by changing the fibers rotation, cross-section area in substrate and the layer of active piezoelectric in macro scales. Brett Williams [10] designed intelligent structures of elastic MFC actuator to predict the nonlinear characteristics and effect of poisson ratio under boundary conditions of closed loop circuit by applied electric field using traditional method. Guimarães [11] proposed to design smart structures with MFCs using FEM and compared to validate hard piezoelectric ceramics displacement findings and controlled clamped beam for 1st Mode of Vibration.

Jose [12] discussed about kirchoff classical plate theory based on which developed was FE model based on this they developed FE Model for controlling of active thin laminated structures. The dynamic instability of nonlinear model of cross ply laminate cantilever plates with MFC using Zig-Zag theory was developed and expanded for novelty by Hao [13]. Zhang [14] developed smart structures for arbitrary fiber reinforcement angles using linear piezoelectric constitutive equations. Panda [15] presented FE model of simply supported smart functionally graded (FG) plates with thermal environment. They specified nonlinear thermo-electro-mechanical coupled finite element model based on the first order shear deformation theory and the Von Karman type geometric nonlinearity.

Akash Pandey [16-18] derived a non-linear analysis of cumulative-damage theory to determine the stiffness of MFC by varying thermo-mechanical conditions for studying the fatigue life cycle behavior of MFC (d_{33} & d_{31} type) actuation and to find the angle of piezoelectric fiber. Acosta [19] estimated pyroelectric coefficients of thermal expansion using theoretical and experimental observations of MFCs. Tan [20] developed a nonlinear electro elastic model of MFC actuator and experimentally validated for resonant natural frequencies of the first mode under minimum and maximum voltage levels. The electro-elastic properties of MFCs were calculated by formulation of mixed rule combination for properties of the RVE. Jiao [21] demonstrated a new mechanism to increase both longitudinal and transverse strains with variation of peak value at voltage bias and less frequency response.

A wide range of research is carried out based on the variation of fiber angle & fiber orientation of MFC using finite element analysis but not on the piezo fiber structure of the ma-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of the Fiber bar</td>
<td>W_f</td>
<td>185</td>
<td>Height of the Copper</td>
<td>h_C</td>
<td>18</td>
<td>Length of the epoxy</td>
<td>L_E</td>
<td>380</td>
</tr>
<tr>
<td>Height of the Fiber bar</td>
<td>h_f</td>
<td>185</td>
<td>Length of the Copper</td>
<td>L_C</td>
<td>80</td>
<td>Width of the epoxy</td>
<td>W_E</td>
<td>28.35</td>
</tr>
<tr>
<td>Length of the Fiber bar</td>
<td>L_f</td>
<td>420</td>
<td>Height of the MFC</td>
<td>h_{MFC}</td>
<td>260</td>
<td>Height of the Kapton</td>
<td>h_k</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 1: Dimensions of RVE piezo fiber bar of MFC actuator (Manufacturer data)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of the Fiber rod</td>
<td>W_f</td>
<td>185</td>
<td>Height of the Copper</td>
<td>h_C</td>
<td>18</td>
<td>Length of the epoxy</td>
<td>L_E</td>
<td>380</td>
</tr>
<tr>
<td>Length of the Fiber rod</td>
<td>L_f</td>
<td>420</td>
<td>Length of the Copper</td>
<td>L_C</td>
<td>80</td>
<td>Width of the epoxy</td>
<td>W_E</td>
<td>28.35</td>
</tr>
<tr>
<td>Height of the Kapton</td>
<td>h_k</td>
<td>40</td>
<td>Height of the MFC</td>
<td>h_{MFC}</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Dimensions of RVE piezo fiber rod of MFC actuator (Data assumed and used)
terial. We propose a model to develop and simulate integrated monolithic thin layered piezo fiber rod type cylindrical element structure of d_{31} & d_{33} mode using RVE method. The MFC layer consists of monotonic piezo fiber material, copper electrodes and epoxy matrix as homogenized elastic materials like composite material arrangement as shown in Fig. 1(a) and Fig. 1(b). This model is validated for actuation of MFCs by comparing the effective electromechanical properties between piezo fiber bar (Fig. 1(c), Tab. 1) and piezo fiber rod (Fig. 1(d), Tab. 2) RVE after applying electric potential to the fiber. This comparison is not only determined by analytical method but also simulated method, and this will help to find strain output matched with mean error and induced strain energy at free conditions. The proposed models of piezo fiber rod are analyzed with the effective properties by taking into account the fiber-volume-fraction (FVF) of circular orientation form of the constituent and its location. Subsequently, the material properties obtained from the model are compared with the manufacturer data and found in good agreement.

2. Finite element model formulation

NASA developed MFCs with an active-piezoelectric composite that have an active layer, two electrodes of rectangular piezo fibers and copper rods bonded with epoxy resin matrix, two acrylic and kapton layers that characterizes the behavior of actuation/sensing respectively. The material properties of piezo fibers and non-piezo constituents given in Tab. 3 and Tab. 4, have more advantages as compared to the constituents of other piezo-composites used in smart structures. MFCs consist of two types depending upon the applied poling direction and electric field, namely P₁ type as longitudinal (d_{31} mode as elongator) and P₂ type as transverse (d_{33} mode as contractor), direction of PZT fiber phase.

FEM based numerical analysis were conducted to compare the geometric properties of composite constituents. Steiger [22,23] developed a FE model of unit-cell approach to determine 1-3 Piezocomposite properties on RVE. In the proposed work, the model is extended to investigate the cylindrical structure of piezo fiber rod element and compared with the previous cuboid structure of piezo fiber bar element highlighting the improvement in results.

RVE is an approach in a fiber composite of periodic AFC Structure, where formulations of FE-Model are made. The computational costs and time are significantly minimized by using unit cell method. The schematic representation of RVE of piezo fiber bar for MFCs is shown in Fig. 1(c). The number of active nodes is increased to predict the elastic constants, displacements in between symmetric surfaces and the strain along the direction of poling with shear and normal strains remaining zero along the opposite directions by applying periodic boundary-conditions (PBC). To ensure short circuit condition, the electric potential variation between the symmetrical surfaces is maintained at zero. The constitutive relationship and macroscopic values of induced stress-strain, dielectric permittivity, electric displacement and coupling coefficients are calculated using volume-average technique.

The constitutive relations of orthotropic MFC actuators are provided below. Therefore, the general form of effective elastic stiffness properties of MFC actuator [25] can be represented as,

$$\{S\} = [x^E]\{T\} + [d]\{E\} \quad (1)$$

where, $[x^E]$ refers to the elastic constants, $[d]$ to the piezoelectric constants, E to the electric field, and T the mechanical stress of MFC actuator.

$$\begin{align*}
\{S\} &= \begin{bmatrix}
S_{11} & S_{12} & S_{13} \\
S_{12} & S_{22} & S_{23} \\
S_{13} & S_{23} & S_{33}
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\end{align*}$$

\begin{align*}
\{S\} &= \begin{bmatrix}
S_{11} & S_{12} & S_{13} \\
S_{12} & S_{22} & S_{23} \\
S_{13} & S_{23} & S_{33}
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\end{align*}$$

$$\begin{align*}
\{T\} &= \begin{bmatrix}
T_1 \\
T_2 \\
T_3 \\
T_4 \\
T_5 \\
T_6
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
\end{align*}$$

$$\begin{align*}
\{T\} &= \begin{bmatrix}
T_1 \\
T_2 \\
T_3 \\
T_4 \\
T_5 \\
T_6
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
\end{align*}$$
2.1. Boundary conditions for RVE Macroscopic element

The specification of RVE surface boundary conditions are presented in Tab. 5, wherein, $x_0 = \frac{1}{2} \times l$, $y_0 = \frac{1}{2} (w_E + w_f)$, and $z_0 = \frac{1}{2} \times h_{MFC}$.

TABLE 5

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Parameters of Material</th>
<th>RV Element Surface</th>
<th>Direction of Testing Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>E_{11}</td>
<td>$x = \pm x_0$</td>
<td>$(\pm 1, 0, 0)$</td>
</tr>
<tr>
<td>2.</td>
<td>E_{12}</td>
<td>$y = \pm y_0$</td>
<td>$(0, \pm 1, 0)$</td>
</tr>
<tr>
<td>3.</td>
<td>E_{23}</td>
<td>$z = \pm z_0$</td>
<td>$(0, 0, \pm 1)$</td>
</tr>
<tr>
<td>4.</td>
<td>G_{12}</td>
<td>$x = \pm x_0$</td>
<td>$(0, \pm 1, 0)$</td>
</tr>
<tr>
<td>5.</td>
<td>G_{23}</td>
<td>$y = \pm y_0$</td>
<td>$(\pm 1, 0, 0)$</td>
</tr>
<tr>
<td>6.</td>
<td>G_{13}</td>
<td>$z = \pm z_0$</td>
<td>$(0, 0, \pm 1)$</td>
</tr>
</tbody>
</table>

2.2. Averaging of effective piezoelectric and elastic properties and its state quantities

Average stresses based on volume of element:

$$T_{ij} = \frac{1}{V} \int T_{ij} \, dv$$ \hspace{1cm} (3)

Average strains based on volume of element:

$$S_{ij} = \frac{1}{V} \int S_{ij} \, dv$$ \hspace{1cm} (4)

The effective Young’s moduli:

$$E_{ij} = \frac{T_{ij}}{S_{ii}}$$ \hspace{1cm} (5)

$$G_{ij} = \frac{T_{ij}}{2S_{ij}}$$ \hspace{1cm} (6)

$$\nu_{ij} = \frac{S_{ij}}{S_{ii}}$$ \hspace{1cm} (7)

$$d_{3i} = \frac{S_{ii}}{V_0} \cdot h_{MFC}$$ \hspace{1cm} (8)

where, V represents the volume of RVE, V_0 the applied voltage, d_{3i} the piezoelectric moduli, T_{ij} the average stresses in v, S_{ij} and S_{ii} the average strains in v, E_{ij} the effective Young’s moduli, G_{ij} the effective shear moduli, ν_{ij} the Poisson’s ratio of MFC actuator and can be calculated with respect to $i = 1, 2, 3, \ldots 6, \ j = 1, 2, 3, \ldots 6$ are number of interdigitate order of the element by symmetric layers of piezoelectric fiber with parallel electrode plates [26].

3. Experimental Setup

In this experiment, the cantilever beam of Aluminium plate unimorph patch with MFCs as Evaluation kit, whose dimensions are given in Tab. 6, were placed at x-distance ($x = 20$ mm) from the fixed end [27] as shown in Fig. 2. The mode of d_{33} (M8528-P1) and d_{31} (M8528-P2) Type MFCs were brought under pure electrical potential voltage maintained within ranges from -500 V to $+500$ V, and -60 V to $+60$ V to study the experimental actuation responses. A motor-generator combination was used to induce the cyclic sinusoidal waveform for a given input signal of voltage and frequency to high-voltage amplifier. The high voltage which was about ten times higher than the original voltage was generated and applied to the MFC. The observed data of beam displacement, transverse and longitudinal strains were measured by using Laser-Displacement-Sensor (LDS). All experimental output signals from the LDS were recorded and measured though analog input module and cDAQ (NI9223) card Kit using NI LabVIEW software. The entire experimental setup was fixed over the anti-vibrational table for absorbing the external and environmental vibrations. The photograph of experimental setup is presented in Fig. 3.

TABLE 6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (mm)</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of the MFC</td>
<td>W_{MFC}</td>
<td>28</td>
<td>Height of the MFC</td>
<td>H_{MFC}</td>
<td>0.3</td>
</tr>
<tr>
<td>Height of the Beam</td>
<td>H</td>
<td>0.3</td>
<td>Length of the Beam</td>
<td>L</td>
<td>300</td>
</tr>
</tbody>
</table>

Fig. 2. Schematic diagram of Aluminum cantilever beam unimorph patched with MFC

4. Result and discussions

The influence of geometric and material properties of MFC constituents on the effective material properties of MFC is analyzed numerically. It is learnt that only a few finite element models are available for homogenization of all active layers recorded in literature for d_{13} and d_{31} type MFCs.
4.1. Experimental result

An experimental corroboration is conducted to determine induced longitudinal strains on the beam with MFCs (d_{33} and d_{31} type) under various applied electric field as shown in Fig. 4 and Fig. 5. The observation data are used to estimate the volume fraction of electrode as non-active layer (copper and epoxy). Therefore, the proposed model is evaluated with the experimental observations in terms of effective material properties. Further, the structural analysis of cantilever beam with patched MFCs are carried-out with Kirchhoff plate theory and compared with FE model to calculate the variation of stress along beam thickness of 0.3 mm as shown in Fig. 6. Subsequently, the three invariants of principal stresses are analyzed based on the displacements of beam and the type of MFCs.

4.2. Numerical validation of active layer using RVE

A RVE integrated numerical FE model is analyzed for understanding the effective-coupling and piezoelectric constants for both types of MFCs using ANSYS with Piezo and MEMS module. Using Eq. 1 to 8, the material properties are calculated and fed into RVE to obtain the effective material properties for the FE model by applying electric field. In order to have a detailed study on the effective properties of fiber volume-fraction of PZT fiber (PZT 5A), the epoxy matrix along with fiber are considered as active layers. In the analysis of MFCs, the active layer (PZT fiber and epoxy) and electrode layers are connected parallel. The coupling constants are predicted by applying the PBC along the direction of displacement, while constraining the displacement in the other directions and maintaining the initial potential difference across the copper electrodes as zero.

In d_{33} type, the estimate indicates a non-linear variation of the coupling constants and dielectric constants as fiber fraction length increases as shown in Fig. 9. Since the epoxy matrix is passive in nature to the applied electric field, a minimum number of dipoles are available in lower fractions of the fiber length, resulting in minimum piezoelectric constants. At greater volume-fractions, the fiber supremacy increases, resulting in increased coupling constants.
In d_{31} type, a non-linear variation of coupling constants (d_{31}, d_{32} and d_{33}) of the active layer is estimated. The estimate indicates variations of piezoelectric constants and dielectric permittivity as fiber volume fraction increases as seen in Fig. 12. At lower volume-fraction of piezo-fiber, as other phases are passive, only a minimal active material is available for overall response of MFC. Higher volume-fractions of piezo-fiber contribute to higher coupling constants, thereby, the MFC behavior changes accordingly. Fig. 15 shows the deflection of beam with

![Fig. 9. Variation of effective coupling constants and dielectric constants of active layer of d_{33} type MFC](image)

![Fig. 10. Electric displacement, induced stress and strain distributions for applied electrical charges in RVE (piezo-fiber-bar) of MFC (P2 Type) d_{31} mode](image)

![Fig. 11. Electric displacement, induced stress and strain distribution for applied electrical charges in RVE (piezo-fiber-rod) of MFC (P2 Type) d_{31} mode](image)

![Fig. 12. Variations of effective coupling constants and dielectric constants of active layer of d_{31} type MFC](image)

![Fig. 13. FE analysis for mechanical behavior of cantilever beam with unimorph d_{33} mode MFC in terms of deflection, stress and strain, for various materials under applied electric Field](image)

![Fig. 14. FE analysis for mechanical behavior of cantilever beam with unimorph d_{31} mode MFC in terms of deflection, stress and strain, for various materials under applied electric Field](image)

![Fig. 15. Deflection of cantilever beam bonded with MFCs (P1 and P2 Type) due to electrical Potential load](image)
Comparison of material properties of MFCs with Manufacturers datasheet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d_{33})</td>
<td>(d_{31})</td>
<td>(d_{31})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.4</td>
<td>30.33</td>
<td>30.41</td>
</tr>
<tr>
<td>1.</td>
<td>Young’s Modulus</td>
<td>(E_1)</td>
<td>GPa</td>
<td>15.2</td>
<td>15.857</td>
<td>14.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E_2)</td>
<td>GPa</td>
<td>15.2</td>
<td>15.857</td>
<td>14.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E_3)</td>
<td>GPa</td>
<td>9.12</td>
<td>9.37</td>
<td>8.63</td>
</tr>
<tr>
<td></td>
<td>Shear’s Modulus</td>
<td>(G_12)</td>
<td>GPa</td>
<td>5.79</td>
<td>5.515</td>
<td>4.32</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>(G_{23})</td>
<td>GPa</td>
<td>6.06</td>
<td>5.515</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(G_{13})</td>
<td>GPa</td>
<td>—</td>
<td>—</td>
<td>2.19</td>
</tr>
<tr>
<td>3.</td>
<td>Poisson’s ratio</td>
<td>(\nu_{12})</td>
<td></td>
<td>0.42</td>
<td>0.310</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\nu_{23})</td>
<td></td>
<td>0.31</td>
<td>0.160</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\nu_{13})</td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.327</td>
</tr>
</tbody>
</table>

Material Properties of Aluminium & Epoxy for cantilever beam [20]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Engineering Constants</th>
<th>Symbol</th>
<th>Unit</th>
<th>Aluminium</th>
<th>Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Young’s Modulus</td>
<td>(E)</td>
<td>GPa</td>
<td>69</td>
<td>3.3</td>
</tr>
<tr>
<td>2.</td>
<td>Poisson’s ratio</td>
<td>(\nu)</td>
<td></td>
<td>0.334</td>
<td>0.34</td>
</tr>
<tr>
<td>3.</td>
<td>Density</td>
<td>(\rho)</td>
<td>kg/m(^3)</td>
<td>2712</td>
<td>1300</td>
</tr>
</tbody>
</table>

5. Conclusions

In this work, a laminated thin-layered smart composite structure patched with \(d_{31}\) and \(d_{33}\) mode MFCs with piezo-bar-elements was considered as a cantilever beam, and their experimental responses on application of applied electric fields were observed. A representative volume element approach was used to determine the effective material properties of the MFCs, and provided as input to the finite element model of the composites. The responses obtained from the finite element analysis were compared with the experimental observations of piezo-bar-element MFCs in order to validate the developed approach. As the comparisons were found in good agreement, the approach was then extended to predict the mechanical, coupling and dielectric material properties of piezo-rod-element MFCs. It was observed from the numerical simulations, that the modified geometric pattern of piezo-fiber marginally improves the flexible behavior of the composites.

Acknowledgment

The authors acknowledge the funding support from AICTE, New Delhi under Research Proposal Scheme, for High-Voltage Amplifier Setup. The authors also acknowledge the experimental facility provided at Advanced Manufacturing Technology lab by Coimbatore Institute of Technology, Coimbatore, India.

REFERENCES

