
1Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 69(2), 2021, Article number: e136728
DOI: 10.24425/bpasts.2021.136728

*e-mail: m.mazurkiewicz@issi.uz.zgora.pl

Manuscript submitted 2020-06-30, revised 2020-12-01, initially accepted
for publication 2020-12-11, published in April 2021

CONTROL AND INFORMATICS

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. Very often, a digital system includes sequential blocks which can be represented using a model of the finite state machine (FSM).
It is very important to improve such FSM characteristics as the number of used logic elements, operating frequency and consumed energy. The
paper proposes a novel technology-dependant design method targeting LUT-based Mealy FSMs. It belongs to the group of structural decom-
position methods. The method is based on encoding the product terms of Boolean functions representing the FSM circuit. To diminish the
number of LUTs, a partition of the set of internal states is constructed. It leads to three-level logic circuits of Mealy FSMs. Each function from
the first level requires only a single LUT to be implemented. The method of constructing the partition with the minimum amount of classes is
proposed. There is given an example of FSM synthesis with the proposed method. The experiments with standard benchmarks were conducted.
They show that the proposed method can improve such FSM characteristics as the number of used LUTs. This improvement is accompanied by
a decrease in performance. A positive side effect of the proposed method is a reduction in power consumption compared with FSMs obtained
with other design methods.

Key words: FPGA; LUT; Mealy FSM; synthesis; structural decomposition; product terms; partition.

Improving LUT count of FPGA-based sequential blocks

Alexander BARKALOV 1, 2, Larysa TITARENKO 1, 3, Małgorzata MAZURKIEWICZ 1 ,
and Kazimierz KRZYWICKI 4

1 University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
2 Vasyl’ Stus Dohetsk National University, 21, 600-richya str., Vinytsia, 21021, Ukraine

3 Kharkiv National University of Radio Electronics, Nauky avenye, 14, 6166, Kharkiv, Ukraine
4 The Jacob of Paradies University, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland

1.	 Introduction

Different sequential blocks are essential parts of modern digital
systems [1‒3]. Very often, the model of Mealy finite state machine
(FSM) [4, 5] is used to specify sequential blocks. For example,
FSM specify: 1) the complex hyper-tangent and exponential func-
tions and other complex functions [6]; 2) the hardware-software
interfaces of embedded systems [7]; 3) the blocks of integral sto-
chastic computing [8]; 4) the activation functions for deep neural
networks [9, 10]; 5) different stages of cascaded digital process-
ing systems [11, 12]; 6) the control units of computers and other
complex digital systems [5, 13‒19]. Based on the popularity of
FSMs, we also use this model in our current research.

Nowadays, field-programmable gate arrays (FPGA) [20‒22]
are very popular in digital systems design [14]. FPGA chips
are used either as standalone chips [23‒25] or as parts of sys-
tems-on-chips (SoC) [26, 27]. Modern SoCs are so powerful
that they can implement complex digital systems. In this case,
FPGAs are often used to implement hardware-software inter-
faces [28] and different accelerators [29]. Based on this analy-
sis, we selected FPGAs as the basis for implementing circuits
of sequential blocks.

To implement an FSM circuit, it is enough only two com-
ponents of FPGA fabric [30]. These components are logic ele-
ments and a matrix of programmable interconnections [20‒22].

A logic element includes a look-up table (LUT) element having
SL inputs, a programmable flip-flop and multiplexers. A LUT
can implement an arbitrary Boolean function having not more
than SL arguments. The presence of flip-flops allows imple-
menting sequential circuits.

An FSM circuit has three important characteristics [13, 14]:
1) a chip area occupied by an FSM circuit; 2) the performance
and 3) the consumed power. For FPGA-based FSMs, these char-
acteristics depend strongly on the number of LUTs in the circuit.
In addition, the performance depends on the numbers of logic
levels in the circuit. In turn, the consumed power is largely
dependent on the total length of interconnections [24, 25].

The most crucial step in the FPGA-based design flow is
a step of technology mapping [31, 32]. During this step, an
FSM circuit is converted into a network of logic elements. To
improve the FSM circuits characteristics, different methods of
structural decomposition [33] can be used.

The main goal of this paper is to present a method of tech-
nology mapping those targets LUT-based Mealy FSMs. The
method is based on the encoding of terms of Boolean functions
representing an FSM logic circuit. The proposed method targets
FPGA chips by Xilinx [22].

Section 2 presents the theoretical background of Mealy
FSMs and peculiarities of FPGAs. Section 3 discusses the
state-of-the-art in FPGA-based technology mapping. Section 4
describes the main idea of proposed method. The synthesis
example is shown in Section 5. Section 6 is devoted to con-
structing a required partition for the set of terms. Section 7
gives results of experiments conducted on standard benchmarks
[34]. A brief conclusion ends the paper.

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4941-3979
http://orcid.org/0000-0001-9558-3322
http://orcid.org/0000-0001-5487-5468
http://orcid.org/0000-0002-1088-5784

2

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

2. Background of Mealy FSM and FPGAs

A Mealy FSM can be represented using a lot of approaches. It
could be state transition graphs [35], and – inversion graphs [36,
37], binary decision diagrams [16,32,38], just to name a few of
them. To explain our approach, we choose state transition tables
(STT) [35]. An STT has H rows corresponding to transitions
between internal states am ∈ A, where A = {a1, . . . ,aM} is a set
of states. The transitions are determined by inputs xl ∈X , where
X = {x1, . . . ,xL} is a set of inputs. During transitions 〈am,as〉
some outputs yn ∈ Y are generated where Y = {y1, . . .yN} is a
set of outputs. So, an STT determines three sets (X ,Y,A) and
two functions: the transition function and output function [35].
We discuss only FSMs having the explicit initial state a1 ∈ A. It
means that FSM operation begins from the state a1 ∈ A.

Consider an STT (Table 1) representing some Mealy FSM
S1. The following sets can be derived from Table 1: A =
{a1, . . . ,a6}, X = {x1, . . . ,x5}, Y = {y1, . . . ,y8}. So, there is
M = 6, L = 5, and N = 8.

Table 1
STT of Mealy FSM S1

am as Xh Yh h

a1
a2 x1 y1y2y4 1
a3 x̄1 y3y4y8 2

a2

a3 x3 y1 3
a5 x̄3x4 y5 4
a6 x̄3x̄4 y6 5

a3

a4 x1x2 y2 6
a5 x1x̄2 y8 7
a5 x̄1 y3 8

a4

a2 x1x2 y6 9
a3 x1x̄2 y5y8 10
a5 x̄1x3 y2 11
a6 x̄1x̄3 y1y4 12

a5

a6 x4 y6 13
a4 x̄4x5 y7 14
a1 x̄4x̄5 − 15

a6
a2 x3 y3y5y8 16
a1 x̄3 y4 17

To design an FSM circuit, it is necessary to encode the states
am ∈ A by binary codes K(am). There are R bits in these codes.
We discuss a case when

R = �log2 M�. (1)

This step is a state assignment [35]. Its outcome significantly
affects all characteristics of FSM circuits [5, 13, 14].

The states are encoded using state variables from the set
T = {T1, . . . ,TR}. State codes are kept in a state register (RG).
As a rule, D flip-flops are used in FPGA-based design [14].
To change the content of RG, input memory functions (IMF)
Dr ∈ Φ are used, where Φ = {D1, . . . ,DR}.

The FSM logic circuit is represented by the following sys-
tems of Boolean functions (SBF):

Φ = Φ(T,X); (2)
Y = Y (T,X). (3)

There is M = 6 for FSM S1. Using (1) gives R = 3. In turn, it
gives sets T = {T1,T2,T3} and Φ = {D1,D2,D3}.

To find SBFs (2)–(3), it is necessary to transform the initial
STT into a direct structure table (DST). It has the following
columns [12, 39]: am is a current state; K(am) is a code of the
state am ∈ A; as is a state of transition; K(as) is a code of the
state as ∈ A; Xh is an input signal causing the transition 〈am,as〉
and equal to a conjunction of some inputs xl ∈ X (or their com-
plements); Yh is a collection of outputs yn ∈Y generated during
the transition 〈am,as〉; Φh is a set of IMF equal to 1 to replace
the code K(am) by the code K(as) into RG; h is a number of
transition (h ∈ {1, . . . ,H}).

Each function from (2)–(3) is represented as a sum-of-
products (SOP) [35]. Each SOP includes up to H product terms
Fh ∈ F = {F1, . . . ,FH}. A product term Fh corresponds to the
h− th row of a DST [5]:

Fh = AmXh. (4)

In (4), Am is a conjunction of state variables (or their comple-
ments) corresponding to the code K(am) of the state from the
column am of DST for the row h (h ∈ {1, . . . ,H}).

This background information facilitates making the follow-
ing conclusion. The main feature of Mealy FSMs is a direct
dependence of functions yn ∈Y and Dr ∈ Φ on variables xl ∈ X
and Tr ∈ T . At the same time, the SOP of any function (2)–(3)
can include up to L+R arguments.

Modern FPGA chips include a lot of LUTs [20–22]. For
example, the device 7VH870T of Virtex-7 by Xilinx includes
547000 LUTs with SL = 6 [40]. Each LUT could be connected
with the input of a programmable flip-flop. This connection pro-
duces a logic element (Fig. 1).

1 fC fL

Start
ClockLUT

... TTD
C
Reset

y0

MX

fR
SL

Fig. 1. Structural diagram of LUT-based logic element

A LUT can implement an arbitrary Boolean function having
no more than SL arguments. The output of LUT (fc) is con-
nected with input D of the flip-flop. Using a multiplexer MX
allows by-passing the flip-flop. So, the output fL of a logic
element could be either combinational (yo = 0) or registered
(yo = 1). Flip-flops are used to implement a distributed reg-
ister. Its operation is controlled by pulses Start and Clock. If
Start = 1, then fR = 0. So, the pulse Start loads the code with
all zeros into RG [5]. The pulse Clock allows changing the RG
content.

2 Bull. Pol. Ac.: Tech. 69(2) 2021

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

3

Improving LUT count of FPGA-based sequential blocks

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

Improving LUT count of FPGA-based sequential blocks

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 2. Here the symbol LUTer determines a circuit imple-
mented with logic elements shown in Fig. 1.

YT

X

LUTerΦStart
Clock

LUTerY

Fig. 2. Structural diagram of Mealy FSM U1

In FSM U1, the LUTerΦ implements the system (2), the
LUTerY implements the system (3). The register RG is dis-
tributed among the logic elements of LUTerΦ. It explains the
presence of pulses Start and Clock as inputs of LUTerΦ.

If any function fi ∈ Φ∪Y is implemented by a single LUT,
then there is only a single level of logic in both LUTerΦ and
LUTerY . Moreover, there are only R+N LUTs in the circuit
of U1. It is the best possible situation [39]. Obviously, such a
circuit is characterised by a maximum operating frequency and
minimum power consumption. But it is possible only if the fol-
lowing condition takes place:

NA(fi)≤ SL. (5)

In (5), the symbol NA(fi) stands for the number of arguments
in a function fi(i ∈ {1, . . . ,R+N}).

If condition (5) is violated, then different approaches are used
to improve the characteristics of FSM circuit. Some of them are
analysed in Section 3.

3. State-of-the-art

The main stage of VLSI-based logic synthesis is technology
mapping [31, 32, 41]. This stage’s outcome affects significantly
the characteristics of FSM circuits [14]. During this stage, the
specifics of used logic elements should be taken into account
[13, 14]. For LUT-based circuits, the main specific is a rather
small number of LUT inputs (SL ≤ 6) [14, 24]. The functional
decomposition (FD) is a key issue of LUT-based logic synthesis
[42–44]. Different academic tools supporting FD are discussed,
for example, in [32].

If condition (5) is violated for some function fi ∈ Φ∪Y , then
this function is broken down into smaller and smaller compo-
nents. This is equivalent to adding new functions forming set
Ψ. The process is terminated when each function representing
a part of FSM circuit meets the condition (5). As a result, the
FSM circuit has many levels of logic. So, the circuits of both
LUTerΦ and LUTerY are multi-level [43]. Obviously, multi-
level circuits have lower performance and a more complex sys-
tem of interconnections than their single-level counterparts.

To improve the characteristics of FSM circuits, it is necessary
to reduce the number of arguments in SOPs (2)–(3). It could be
done due to the proper state assignment [5,35]. During this step,
the specifics of logic elements should be taken into account [13,
14, 45–47].

One of the most popular state assignment methods is JEDI
which is distributed with the system SIS [48]. We think that
a similar method is used in ABC system by Berkeley [37]. Mod-
ern industrial packages use a lot of different state assignment
approaches. For example, the following methods are used in
design tools XST and Vivado by Xilinx [49,50]: one-hot; com-
pact; automatic; Gray codes; Johnson codes; speed encoding.

So, there are a lot of state assignment methods. It is really dif-
ficult to say which is the best for a particular FSM. To choose
the best method, a designer should take into account the pecu-
liarities of the following issues: 1) logic elements used; 2) an
FSM model; 3) an FSM behaviour [33].

Methods of structural decomposition (SD) are based on the
elimination of direct dependency of functions fi ∈ Φ∪Y on in-
puts xl ∈ X [33]. These new functions depend on xl ∈ X and
Tr ∈ T . Each system of new functions determines a separate
block LUTer having its own unique inputs and outputs. The
functions fi ∈ Ψ are arguments of functions yn ∈Y and Dr ∈ Φ.
As a rule, the following relation takes place: |Ψ| � N +R. Due
to this, the total number of LUTs in LUTers implementing func-
tions fi ∈ Ψ is significantly less than in blocks LUTerY and
LUTerΦ of FSM U1.

The SD leads to reducing the number of arguments in SOPs
of functions yn ∈ Y and Dr ∈ Φ as compared to functions (2)–
(3). In turn, it reduces the number of LUTs in LUTerY and
LUTreΦ (as compared to U1). If condition (5) is violated for
some functions fi ∈ Φ∪Y ∪Ψ, the methods of FD should be
used for executing the technology mapping.

The methods of SD belong to the group of methods lead-
ing to multilevel FSM circuits [33]. The thorough analysis of
SD-based multilevel FSM circuits can be found in [33]. There
are the following methods of SD: the replacement of FSM in-
puts; the encoding of collections of outputs; the transformation
of objects (states or collections of outputs); the two-fold state
assignment. The number of arguments in SBFs representing
SD-based circuits can be reduced using various known meth-
ods of states assignment. Due to the increase in the number of
logic levels, SD-based circuits might be slower than equivalent
FSM circuits based on functional decomposition. But, as a rule,
SD-based circuits include fewer LUTs and consume less power
compared with equivalent FD-based circuits [33, 39].

In this article, we discuss one of the methods of SD. It is the
method of product terms encoding (PTE) [33]. Further, when
we are talking about product terms, we mean conjunctions (4)
included into SBFs (2)–(3). The original approach [33] is the
following.

Let terms (4) form a set F = {F1, . . . ,FH}. Let us encode each
term Fh ∈ F by a binary code K(Fh) having RH bits:

RH =
⌈

log2 H
⌉
. (6)

Let us use the elements of set Z = {z1, . . . ,zRH} for the PTE.
Let us find the following systems:

Z = Z(T,X); (7)
Φ = Φ(Z); (8)
Y = Y (Z). (9)

Bull. Pol. Ac.: Tech. 69(2) 2021 3

4

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

It leads to Mealy FSM U2 (Fig. 3). In FSM U2, the LUTerZ
implements the SBF (7), the LUTerΦY the systems (8)–(9).
The pulses Start and Clock are connected with flip-flops of LEs
implementing functions Dr ∈ Φ.

Y

T
X

LUTerZ

Start
Clock

LUTerΦY
Z

Fig. 3. Structural diagram of Mealy FSM U2

In [51], it is proposed to implement SBF (7) using embedded
memory blocks. In this case, the LUTerZ is replaced by a block
EMBerZ including one or more EMBs. To optimize the circuit
of LUTerΦY , the set of terms is divided by classes. It allows
improving area and power consumption as compared with LUT-
based FSM U2 [51]. But this approach can be used only if not
all available EMBs are used for implementing various blocks
of a digital system including a particular FSM. Also, there is no
sense in using EMBs if the value of L+R exceeds the maximum
possible number of EMB address inputs. So, LUT-based design
methods are more versatile than EMB-based methods. Due to
this, in this article, we propose a LUT-based method of FSM
design.

If RH � L+R, then the number of LUTs in LUTerΦY is sig-
nificantly less than their total number in the equivalent FSM U1.
The same is true for the number of logic levels. But functions
(7) could be rather complex. It leads to a multi-level circuit of
LUTerZ. In this article, we propose an approach for reducing
hardware in LUTerZ.

The proposed method uses the idea of two-fold state assign-
ment [33, 39]. But the methods [33, 39] have one serious draw-
back. Namely, each state am ∈ A should have two codes. One
of them determines each state as an element of the set A. The
second code is necessary to determine a state as an element of
some class of a partition of the set. This determines the need to
use a special code converter consuming some LUTs and inter-
connections. In our article, we propose a method that allows the
elimination of this code converter.

4. The main idea of the proposed method

Let a Mealy FSM be represented by an STT having H rows. Let
us use LUTs with SL inputs to implement FSM circuit. Let us
encode the terms Fh ∈ F by binary codes K(Fh) having RH bits.
Let us form systems (7)–(9). Let condition (5) be violated for
functions (7). In this case, we propose the following approach.

Let us find a partition ΠA = {A1, . . . ,AK} of the set A such
that the following condition takes place:

Rk +Lk ≤ SL (k ∈ {1, . . . ,K}). (10)

In (10), Rk is the number of state variables encoding the states
am ∈ Ak, Lk is the number of inputs xl ∈ Xk determining transi-
tions from am ∈ Ak.

Let us use Rk state variables Tr ∈ T to encode the states am ∈Ak:

Rk = �log2(|Ak|+1)� (k ∈ {1, . . . ,K}). (11)

Now, sets T and Φ have RT elements, where

RT = R1 +R2 + · · ·+RK . (12)

Each state am ∈ A uniquely defines the terms Fh ∈ F corre-
sponding to transitions 〈am,as〉. So, the partition ΠA uniquely
determines a partition ΠF = { F1, . . . ,FK} of the set F . Each
class Fk ∈ ΠF includes terms determined by the class Ak ∈ ΠA.

Let us encode the terms Fh ∈F in a way minimizing the num-
bers of arguments in SBFs (8)–(9). It can be done using, for
example, the methods from [52].

Each class Ak ∈ΠA determines sets Xk ⊆X and Zk ⊆ Z. A set
Xk ⊆ X includes inputs determining transitions from am ∈ Ak.
A set Zk ⊆ Z includes additional variables zr ∈ Z equal to 1 for
codes K(Fh), where Fh ∈ F .

Based on this preliminary information, we propose the struc-
tural diagram of Mealy FSM U3 (Fig. 4).

X1

Start
Clock

LUTer1 LUTerK. . .

LUTerZ

LUTerY LUTerΦ

T1 XK TK

Z1 ZK

Z

Y

Fig. 4. Structural diagram of Mealy FSM U3

In FSM U3, the block LUTerk implements functions

Zk = Zk(T k,Xk). (13)

In (13), the symbol T k stands for a set T k ⊆ T such that vari-
ables Tr ∈ T k are used to encode states am ∈ Ak.

The block LUTerZ generates functions zr ∈ Z. They are just
disjunctions of functions zk

r ∈ Zk:

zr =
K∨

k=1

zk
r (r ∈ {1, . . . ,RH}). (14)

The LUTerΦ implements SBF (8), the LUTerY SBF (9).
In each cycle of operation, only a single LUTerk is “active”.

It means that there are zk
r = 1 only for this block. There are

only zeros on outputs of other blocks LUTerk. These blocks
are “idle”. We use the following relation showing that a block
in idle:

Tr ∈ T k → Tr = 0. (15)

The relation (15) explains the presence of 1 in (11). The anal-
ysis of FSM U3 shows the following specifics. Firstly, the circuit

4 Bull. Pol. Ac.: Tech. 69(2) 2021

5

Improving LUT count of FPGA-based sequential blocks

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

Improving LUT count of FPGA-based sequential blocks

has exactly three levels of logic blocks. Secondly, each level of
U3 has unique input and output variables. For example, the in-
puts xl ∈ X and state variables Tr ∈ T enter only the blocks from
the first level. It leads to an FSM circuit with a regular system
of interconnections.

Let the symbol Ui(S j) mean that an FSM Ui is synthesized
starting from STT for Mealy FSM S j. In this article, we pro-
pose a design method for Mealy FSM U3(S j). It includes the
following steps:
1. Finding the partition ΠA that satisfies to (10).
2. Executing the state assignment for each class Ak ∈ ΠA.
3. Executing the encoding of terms Fh ∈ F .
4. Constructing tables for blocks LUTer1 - LUTerK.
5. Constructing SBFs (13)–(14).
6. Finding SBFs (8)–(9).
7. Implementing FSM circuit with LUTs having SL inputs.

Let us discuss an example of synthesis for Mealy FSM
U3(S1). We use LUTs with SL = 5 in the example.

5. Example of synthesis

Step 1 is very important. It largely determines the number of
LUTs in a resulting circuit. We discuss this step in Section 6.
In Section 5, let us just use a partition ΠA = {A1,A2} with the
classes A1 = {a1,a3,a4} and A2 = {a2,a5,a6}.

Using STT (Table 1) and the partition ΠA gives the following
sets: X1 = {x1,x2,x3} and X2 = {x3,x4,x5}. Using (11) and (12)
gives R1 = R2 = 2, RT = 4, T = {T1, . . . ,T4}. Let T 1 = {T1,T2}
and T 2 = {T3,T4}. Because R1 = R2 = 2 and L1 = L2 = 3, the
condition (10) takes place if SL = 5.

Let us encode the states am ∈ A in the flowing way: K(a1) =
K(a2) = 01, K(a3) = K(a5) = 10 and K(a4) = K(a6) = 11. We
use (15) to show that a state am does not belong to a set Ak ∈ΠA.
If T1 = T2 = 0, then am /∈ A1; if T3 = T4 = 0, then am /∈ A2.

Let us form a DST of FSM S1. Let us use the state codes from
the previous step. It leads to Table 2.

Let us encode the terms Fh ∈ F in a manner minimizing the
numbers of arguments NA(fi), where fi ∈ Φ∪Y . To do it, we
can use methods from [52].

Using Table 2, we can derive the following SBFs:

D1 = F2 ∨F3 ∨F6 ∨F10 ∨F14;

D2 = F6 ∨F14 ∨F15 ∨F17;

D3 = F4 ∨F7 ∨F8 ∨F11 ∨F12 ∨F13;

D4 = F1 ∨F5 ∨F9 ∨F12 ∨F13 ∨F16 .

(16)

y1 = F1 ∨F3 ∨F12;

y2 = F1 ∨F6 ∨F11;

y3 = F2 ∨F8 ∨F16;

y4 = F1 ∨F2 ∨F12 ∨F17;

y5 = F4 ∨F10 ∨F16;

y6 = F5 ∨F9 ∨F13;

y7 = F14;

y8 = F2 ∨F7 ∨F10 ∨F16 .

(17)

Table 2
DST of Mealy FSM S1

am K(am) as K(as) Xh Yh Φh h

a1 01
a2 0001 x1 y1y2y4 D4 1

a3 1000 x̄1 y3y4y8 D1 2

a2 01

a3 1000 x3 y1 D1 3

a5 0010 x̄3x4 y5 D3 4

a6 0011 x̄3x̄4 y6 D3D4 5

a3 10

a4 1100 x1x2 y2 D1D2 6

a5 0010 x1x̄2 y8 D3 7

a5 0010 x̄1 y3 D_3 8

a4 11

a2 0001 x1x2 y6 D4 9

a3 1000 x1x̄2 y5y8 D1 10

a5 0010 x̄1x3 y2 D3 11

a6 0011 x̄1x̄3 y1y4 D3D4 12

a5 10

a6 0011 x4 y6 D3D4 13

a4 1100 x̄4x5 y7 D1D2 14

a1 0100 x̄4x̄5 − D2 15

a6 11
a2 0001 x3 y3y5y8 D4 16

a1 0100 x̄3 y4 D2 17

There is H = 17 for S1. Using (6) gives RH = 5 and Z =
{z1, . . . ,z5}. Using methods [52] gives the codes K(Fh) shown
in Fig. 5.

F1 F12 F17 F2

F8*F3*

001000 010011

00

01

z1z2z3
z4z5

F7 * F5 *

F9F14

111110 100101

F11 F15 * *
F16**F6

11

10

F4 * F13 *

***F10

Fig. 5. Codes of product terms for FSM S1

Using (16) and codes (Fig. 5) leads to SBF having NA(fi)= 5
for fi ∈Φ. But the system (17) is transformed into the following
system:

y1 = z̄1z̄2z̄4;

y2 = z̄2z̄3;

y3 = z̄1z2z̄3;

y4 = z̄1z̄4z̄5;

y5 = z2z̄3z4;

y6 = z1z̄2;

y7 = z2z̄3z̄5;

y8 = z2z2z3.

(18)

There are 22 literals in SBF (18). In the general case, it
should be N ·RH = 40 literals in this system. Each literal is equal

Bull. Pol. Ac.: Tech. 69(2) 2021 5

Improving LUT count of FPGA-based sequential blocks

has exactly three levels of logic blocks. Secondly, each level of
U3 has unique input and output variables. For example, the in-
puts xl ∈ X and state variables Tr ∈ T enter only the blocks from
the first level. It leads to an FSM circuit with a regular system
of interconnections.

Let the symbol Ui(S j) mean that an FSM Ui is synthesized
starting from STT for Mealy FSM S j. In this article, we pro-
pose a design method for Mealy FSM U3(S j). It includes the
following steps:
1. Finding the partition ΠA that satisfies to (10).
2. Executing the state assignment for each class Ak ∈ ΠA.
3. Executing the encoding of terms Fh ∈ F .
4. Constructing tables for blocks LUTer1 - LUTerK.
5. Constructing SBFs (13)–(14).
6. Finding SBFs (8)–(9).
7. Implementing FSM circuit with LUTs having SL inputs.

Let us discuss an example of synthesis for Mealy FSM
U3(S1). We use LUTs with SL = 5 in the example.

5. Example of synthesis

Step 1 is very important. It largely determines the number of
LUTs in a resulting circuit. We discuss this step in Section 6.
In Section 5, let us just use a partition ΠA = {A1,A2} with the
classes A1 = {a1,a3,a4} and A2 = {a2,a5,a6}.

Using STT (Table 1) and the partition ΠA gives the following
sets: X1 = {x1,x2,x3} and X2 = {x3,x4,x5}. Using (11) and (12)
gives R1 = R2 = 2, RT = 4, T = {T1, . . . ,T4}. Let T 1 = {T1,T2}
and T 2 = {T3,T4}. Because R1 = R2 = 2 and L1 = L2 = 3, the
condition (10) takes place if SL = 5.

Let us encode the states am ∈ A in the flowing way: K(a1) =
K(a2) = 01, K(a3) = K(a5) = 10 and K(a4) = K(a6) = 11. We
use (15) to show that a state am does not belong to a set Ak ∈ΠA.
If T1 = T2 = 0, then am /∈ A1; if T3 = T4 = 0, then am /∈ A2.

Let us form a DST of FSM S1. Let us use the state codes from
the previous step. It leads to Table 2.

Let us encode the terms Fh ∈ F in a manner minimizing the
numbers of arguments NA(fi), where fi ∈ Φ∪Y . To do it, we
can use methods from [52].

Using Table 2, we can derive the following SBFs:

D1 = F2 ∨F3 ∨F6 ∨F10 ∨F14;

D2 = F6 ∨F14 ∨F15 ∨F17;

D3 = F4 ∨F7 ∨F8 ∨F11 ∨F12 ∨F13;

D4 = F1 ∨F5 ∨F9 ∨F12 ∨F13 ∨F16 .

(16)

y1 = F1 ∨F3 ∨F12;

y2 = F1 ∨F6 ∨F11;

y3 = F2 ∨F8 ∨F16;

y4 = F1 ∨F2 ∨F12 ∨F17;

y5 = F4 ∨F10 ∨F16;

y6 = F5 ∨F9 ∨F13;

y7 = F14;

y8 = F2 ∨F7 ∨F10 ∨F16 .

(17)

Table 2
DST of Mealy FSM S1

am K(am) as K(as) Xh Yh Φh h

a1 01
a2 0001 x1 y1y2y4 D4 1

a3 1000 x̄1 y3y4y8 D1 2

a2 01

a3 1000 x3 y1 D1 3

a5 0010 x̄3x4 y5 D3 4

a6 0011 x̄3x̄4 y6 D3D4 5

a3 10

a4 1100 x1x2 y2 D1D2 6

a5 0010 x1x̄2 y8 D3 7

a5 0010 x̄1 y3 D_3 8

a4 11

a2 0001 x1x2 y6 D4 9

a3 1000 x1x̄2 y5y8 D1 10

a5 0010 x̄1x3 y2 D3 11

a6 0011 x̄1x̄3 y1y4 D3D4 12

a5 10

a6 0011 x4 y6 D3D4 13

a4 1100 x̄4x5 y7 D1D2 14

a1 0100 x̄4x̄5 − D2 15

a6 11
a2 0001 x3 y3y5y8 D4 16

a1 0100 x̄3 y4 D2 17

There is H = 17 for S1. Using (6) gives RH = 5 and Z =
{z1, . . . ,z5}. Using methods [52] gives the codes K(Fh) shown
in Fig. 5.

F1 F12 F17 F2

F8*F3*

001000 010011

00

01

z1z2z3
z4z5

F7 * F5 *

F9F14

111110 100101

F11 F15 * *
F16**F6

11

10

F4 * F13 *

***F10

Fig. 5. Codes of product terms for FSM S1

Using (16) and codes (Fig. 5) leads to SBF having NA(fi)= 5
for fi ∈Φ. But the system (17) is transformed into the following
system:

y1 = z̄1z̄2z̄4;

y2 = z̄2z̄3;

y3 = z̄1z2z̄3;

y4 = z̄1z̄4z̄5;

y5 = z2z̄3z4;

y6 = z1z̄2;

y7 = z2z̄3z̄5;

y8 = z2z2z3.

(18)

There are 22 literals in SBF (18). In the general case, it
should be N ·RH = 40 literals in this system. Each literal is equal

Bull. Pol. Ac.: Tech. 69(2) 2021 5

Improving LUT count of FPGA-based sequential blocks

has exactly three levels of logic blocks. Secondly, each level of
U3 has unique input and output variables. For example, the in-
puts xl ∈ X and state variables Tr ∈ T enter only the blocks from
the first level. It leads to an FSM circuit with a regular system
of interconnections.

Let the symbol Ui(S j) mean that an FSM Ui is synthesized
starting from STT for Mealy FSM S j. In this article, we pro-
pose a design method for Mealy FSM U3(S j). It includes the
following steps:
1. Finding the partition ΠA that satisfies to (10).
2. Executing the state assignment for each class Ak ∈ ΠA.
3. Executing the encoding of terms Fh ∈ F .
4. Constructing tables for blocks LUTer1 - LUTerK.
5. Constructing SBFs (13)–(14).
6. Finding SBFs (8)–(9).
7. Implementing FSM circuit with LUTs having SL inputs.

Let us discuss an example of synthesis for Mealy FSM
U3(S1). We use LUTs with SL = 5 in the example.

5. Example of synthesis

Step 1 is very important. It largely determines the number of
LUTs in a resulting circuit. We discuss this step in Section 6.
In Section 5, let us just use a partition ΠA = {A1,A2} with the
classes A1 = {a1,a3,a4} and A2 = {a2,a5,a6}.

Using STT (Table 1) and the partition ΠA gives the following
sets: X1 = {x1,x2,x3} and X2 = {x3,x4,x5}. Using (11) and (12)
gives R1 = R2 = 2, RT = 4, T = {T1, . . . ,T4}. Let T 1 = {T1,T2}
and T 2 = {T3,T4}. Because R1 = R2 = 2 and L1 = L2 = 3, the
condition (10) takes place if SL = 5.

Let us encode the states am ∈ A in the flowing way: K(a1) =
K(a2) = 01, K(a3) = K(a5) = 10 and K(a4) = K(a6) = 11. We
use (15) to show that a state am does not belong to a set Ak ∈ΠA.
If T1 = T2 = 0, then am /∈ A1; if T3 = T4 = 0, then am /∈ A2.

Let us form a DST of FSM S1. Let us use the state codes from
the previous step. It leads to Table 2.

Let us encode the terms Fh ∈ F in a manner minimizing the
numbers of arguments NA(fi), where fi ∈ Φ∪Y . To do it, we
can use methods from [52].

Using Table 2, we can derive the following SBFs:

D1 = F2 ∨F3 ∨F6 ∨F10 ∨F14;

D2 = F6 ∨F14 ∨F15 ∨F17;

D3 = F4 ∨F7 ∨F8 ∨F11 ∨F12 ∨F13;

D4 = F1 ∨F5 ∨F9 ∨F12 ∨F13 ∨F16 .

(16)

y1 = F1 ∨F3 ∨F12;

y2 = F1 ∨F6 ∨F11;

y3 = F2 ∨F8 ∨F16;

y4 = F1 ∨F2 ∨F12 ∨F17;

y5 = F4 ∨F10 ∨F16;

y6 = F5 ∨F9 ∨F13;

y7 = F14;

y8 = F2 ∨F7 ∨F10 ∨F16 .

(17)

Table 2
DST of Mealy FSM S1

am K(am) as K(as) Xh Yh Φh h

a1 01
a2 0001 x1 y1y2y4 D4 1

a3 1000 x̄1 y3y4y8 D1 2

a2 01

a3 1000 x3 y1 D1 3

a5 0010 x̄3x4 y5 D3 4

a6 0011 x̄3x̄4 y6 D3D4 5

a3 10

a4 1100 x1x2 y2 D1D2 6

a5 0010 x1x̄2 y8 D3 7

a5 0010 x̄1 y3 D_3 8

a4 11

a2 0001 x1x2 y6 D4 9

a3 1000 x1x̄2 y5y8 D1 10

a5 0010 x̄1x3 y2 D3 11

a6 0011 x̄1x̄3 y1y4 D3D4 12

a5 10

a6 0011 x4 y6 D3D4 13

a4 1100 x̄4x5 y7 D1D2 14

a1 0100 x̄4x̄5 − D2 15

a6 11
a2 0001 x3 y3y5y8 D4 16

a1 0100 x̄3 y4 D2 17

There is H = 17 for S1. Using (6) gives RH = 5 and Z =
{z1, . . . ,z5}. Using methods [52] gives the codes K(Fh) shown
in Fig. 5.

F1 F12 F17 F2

F8*F3*

001000 010011

00

01

z1z2z3
z4z5

F7 * F5 *

F9F14

111110 100101

F11 F15 * *
F16**F6

11

10

F4 * F13 *

***F10

Fig. 5. Codes of product terms for FSM S1

Using (16) and codes (Fig. 5) leads to SBF having NA(fi)= 5
for fi ∈Φ. But the system (17) is transformed into the following
system:

y1 = z̄1z̄2z̄4;

y2 = z̄2z̄3;

y3 = z̄1z2z̄3;

y4 = z̄1z̄4z̄5;

y5 = z2z̄3z4;

y6 = z1z̄2;

y7 = z2z̄3z̄5;

y8 = z2z2z3.

(18)

There are 22 literals in SBF (18). In the general case, it
should be N ·RH = 40 literals in this system. Each literal is equal

Bull. Pol. Ac.: Tech. 69(2) 2021 5

6

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

to an interconnection between the blocks LUTerZ and LUTerY .
So, using [52] allows decreasing for the number of interconnec-
tions. In turn, it reduces the consumed power [24, 25].

A DST is a base for constructing tables for LUTer1 -
LUTerK. To form a table for LUTerk, it is necessary:
1. To eliminate subtables corresponding to transitions from

am /∈ Ak.
2. To replace the columns as, K(as), Yh and Φh by column

Zh. This column contains variables zr ∈ Z equal to 1 in
codes K(Fh).

In the discussed case, Table 3 represents the LUTer1, Table 4
the LUTer2. We use the same numbers in the column h of Ta-
bles 2–4.

Table 3
Table of LUTer1

am K(am) X1
h Z1

h h

a1 01
x1 – 1

x̄1 z1
2 2

a3 10

x1x2 z1
4 6

x1x̄2 z1
1z1

2 7

x̄1 z1
2z1

5 8

a4 11

x1x2 z1
1z1

3z1
5 9

x1x̄2 z1
1z1

2z1
4 10

x̄1x3 z1
4z1

5 11

x̄1x̄3 z1
3 12

Table 4
Table of LUTer2

am K(am) X2
h Z2

h h

a2 01

x3 z2
3z2

5 3

x̄3x4 z2
1z2

2z2
4z2

5 4

x̄3x̄4 z2
1z2

3 5

a5 10

x4 z2
1z2

3z2
4z2

5 13

x̄4x5 z2
1z2

2z2
3z2

5 14

x̄4x̄5 z2
3z2

4z2
5 15

a6 11
x3 z2

2z2
4 16

x̄3 z2
2z2

3 17

Using Tables 3 and 4, we can obtain SBF (13). For example
(after minimization), we can get the following:

z1
1 = T1T̄2x1x̄2 ∨T1T2x1;

z2
1 = T̄3T4x̄3 ∨T3T̄4x4 ∨ T̄3T4x5 .

(19)

The functions (19) are used as arguments of SBF (14). The
equations (14) are obtained in the trivial way:

z1 = z2
1 ∨ z2

1; . . .z5 = z1
5 ∨ z2

5 . (20)

The system Y (Z) is already found. It is the system (18). The
system Φ(Z) is constructed using the system (16) and the codes
K(Fh) from Karnaugh map (Fig. 5). Our analysis shows that
each function Dr ∈ Φ depends on 5 variables.

There are all variables zr ∈ Z in the columns Z1
h and Z2

h . It
means that there are 10 LUTs in the circuits

of LUTer1–LUTer2. Also, it means that there are RH = 5
LUTs in the circuit of LUTerZ. As follows from (18), there are
N = 8 LUTs in the circuit of LUTerY . At last, there are RT = 4
LUTs in the circuit of LUTerT .

The logic circuit of FSM U3(S1) is shown in Fig. 6. As fol-
lows from Fig. 6, there are 27 LUTs with SL = 5 in the circuit.
There are three levels of LUTs in the circuit. Also, the circuit
has a regular system of interconnections.

z1 z2 z3

x1

LUT1 LUT10. . .

T2

z1 z2

x2 x3x4x5T1 T4T3

1 5

. . .

z1 z5

z1
1 z2

1 z2
5z1

5

LUT11 LUT15

Start
Clock

Z

. . .

y1 y8

z1 z2

LUT16 LUT23

z4

. . .

T1

z1

LUT24

z5. . .
Start
Clock

T4

z1

LUT27

z5. . .

T

Fig. 6. Logic circuit of FSM U3(S1)

The last step of the design method assumes using standard in-
dustrial tools such as Vivado by Xilinx [50]. We do not discuss
this step for our example.

6. Constructing partition ΠA

We propose a simple sequential algorithm for finding the parti-
tion ΠA satisfying (10) and having the minimum possible num-
bers of blocks.

Let us characterize the state am ∈ A by two sets. A set X(am)
includes inputs determining transitions from state am ∈ A. A set
Z(am) includes variables zr ∈ Z equal to 1 in codes of terms
Fh ∈ F corresponding to transitions from state am ∈ A. If am ∈
Ak, then X(am)⊆ Xk and Z(am)⊆ Zk.

To find ΠA, we use two evaluations. The first of them de-
termines how many new elements will be added to Xk due to
including the state am into the class Ak. It is the following eval-
uation:

N(am,Xk) = |X(am)\Xk|. (21)

In (21), the symbol “\” stands for the subtraction of sets.
Let A∗ be a set of states which were not included into classes

A1, . . . ,Ak−1. Let X∗ be a set including inputs xl ∈ X from
sets X(am) where am ∈ A∗. The second evaluation, N(am,X∗),

6 Bull. Pol. Ac.: Tech. 69(2) 2021

Improving LUT count of FPGA-based sequential blocks

shows how many inputs are excluded from the further analysis
due to including am into Ak:

N(am,X∗) = |X(am)\∪
j

X(a j)|. (22)

In (22), there is the following relation: a j ∈ A∗\am.
There are two stages in generating a block Ak ∈ ΠA. At the

first stage, a base element (BE) of Ak is selected. A BE should
satisfy the following relation:

|X(am)|= max
j

|X(a j)|, a j ∈ A∗\{am}. (23)

If condition (23) takes place for states am and as, let us choose
a state am with m > s.

The second stage is a multistep one. During each step, the
next state is successively added to the block Ak. The process
is terminated when: 1) all states are distributed or 2) it is not
possible to add states into Ak due to violation of (10).

Let A∗ include all unallocated states am ∈ A. We use the fol-
lowing rule to add a state into Ak. Let us construct a set P(Ak)
including all states am ∈ A∗ whose including into Ak does not
violate the condition (10). Let us find a state am ∈ P(Ak) such as

N(am,Xk) = min
j

N(a j,Xk),a j ∈ P(Ak)\{am}. (24)

If the property (24) takes places for more than a single state,
then let us choose a state with the following property:

N(am,X∗) = max
j

N(a j,X∗),a j ∈ P(Ak)\{am}. (25)

If the property (25) is true for several states, then one of them
is included into Ak. Next, we should make P(Ak) empty.

The proposed design method may be used if |X(am)| < SL.
If there is |X(am)| ≥ SL, condition (10) is violated even for this
single state am ∈ A. In this case, other design methods should
be used. We do not discuss this situation in this article.

To better understand the method of constructing the partition
ΠA, we show the constructing process as a flowchart (Fig. 7).
So, we should check if the set of states contains a state am ∈ A
with |X(am)| ≥ SL. A loop consisting of blocks1-3 is used for
checking (Fig. 7). If |X(am)|< SL (output “No” of block1), then
the next state is selected (block2). Otherwise, the process is ter-
minated (output “Yes” of block1). If not all states are checked
yet (output “No” of block3), then the checking process is con-
tinued. The constructing process begins if all states are checked
(output “Yes” of block3). This part of the flowchart is clear from
the description of the method. The process is terminated, if all
states am ∈A are distributed among different classes of ΠA (out-
puts “Yes” of either block4 or block5).

Let us discuss an example of constructing the partition ΠA
for FSM U3(S1). The process is shown in Table 5.

We assume that SL = 5. As follows from (10), the following
relation should take place: Li +Ri = 5. It means that the fol-
lowing pairs 〈Li,Ri〉 are possible: 〈0,5〉 (the class Ak contains
up to 31 states with unconditional transitions), 〈0,4〉 (the class

Yes

i:=1

Yes

1

Start

A*:=A; m:=1

Selecting amÎA* with maximum
value of (23);
Ak:={am}; A*:=A*\{am}.

Constructing sets P(Ak) and Xk

m:=m+1

k:=1

k:=k+1

End i:=i+1

Constructing set A0 of states
asÎP(Ak) with minimum value of
N(as,Xk)

Selecting asÎA0 with maximum
value of N(as,X*);
A*:=A*\{as}; Ak:= Ak {as}

|X(am)|≥SL

P(Ak)=

A*=

A*=

m>M

No

Yes

No

No

2

3

Yes

4
No

No

5
Yes

Fig. 7. Flowchart of constructing partition ΠA

Table 5
Constructing partition ΠA

am |X(am)| BE1
I/II

BE2
I/2

1 2 1 2

a1 1 0/1 ⊕ – – – –

a2 2 2 2 ⊕ – –

a3 2 0/0 0 ⊕ – – –

a4 3 ⊕ – – – – –

a5 2 2 2 0/0 ⊕ –

a6 1 0/0 0 0/0 0

Ak a4 a1 a3 a2 a5 a6

Ak contains up to 15 states), 〈2,3〉, 〈3,2〉, 〈4,1〉 (the class Ak

contains a single state whose transitions depend on 4 inputs).
Let us explain the columns of Table 5.
The column am contains states of FSM. The column |X(am)|

contains the numbers of inputs xl ∈ X(am). The columns BEk
(k ∈ {1,2}) contain basic elements for step k. The symbol “I”
stands for N(am,Xk), the symbol “II” for N(am,X∗). The sign
“⊕” means that a state from the corresponding row is included
into Ak. The sign “−” means that the corresponding state is
eliminated from further consideration. There are states am ∈ Ak

in the row Ak. They are listed in the order of selection.

Bull. Pol. Ac.: Tech. 69(2) 2021 7

7

Improving LUT count of FPGA-based sequential blocks

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

Improving LUT count of FPGA-based sequential blocks

shows how many inputs are excluded from the further analysis
due to including am into Ak:

N(am,X∗) = |X(am)\∪
j

X(a j)|. (22)

In (22), there is the following relation: a j ∈ A∗\am.
There are two stages in generating a block Ak ∈ ΠA. At the

first stage, a base element (BE) of Ak is selected. A BE should
satisfy the following relation:

|X(am)|= max
j

|X(a j)|, a j ∈ A∗\{am}. (23)

If condition (23) takes place for states am and as, let us choose
a state am with m > s.

The second stage is a multistep one. During each step, the
next state is successively added to the block Ak. The process
is terminated when: 1) all states are distributed or 2) it is not
possible to add states into Ak due to violation of (10).

Let A∗ include all unallocated states am ∈ A. We use the fol-
lowing rule to add a state into Ak. Let us construct a set P(Ak)
including all states am ∈ A∗ whose including into Ak does not
violate the condition (10). Let us find a state am ∈ P(Ak) such as

N(am,Xk) = min
j

N(a j,Xk),a j ∈ P(Ak)\{am}. (24)

If the property (24) takes places for more than a single state,
then let us choose a state with the following property:

N(am,X∗) = max
j

N(a j,X∗),a j ∈ P(Ak)\{am}. (25)

If the property (25) is true for several states, then one of them
is included into Ak. Next, we should make P(Ak) empty.

The proposed design method may be used if |X(am)| < SL.
If there is |X(am)| ≥ SL, condition (10) is violated even for this
single state am ∈ A. In this case, other design methods should
be used. We do not discuss this situation in this article.

To better understand the method of constructing the partition
ΠA, we show the constructing process as a flowchart (Fig. 7).
So, we should check if the set of states contains a state am ∈ A
with |X(am)| ≥ SL. A loop consisting of blocks1-3 is used for
checking (Fig. 7). If |X(am)|< SL (output “No” of block1), then
the next state is selected (block2). Otherwise, the process is ter-
minated (output “Yes” of block1). If not all states are checked
yet (output “No” of block3), then the checking process is con-
tinued. The constructing process begins if all states are checked
(output “Yes” of block3). This part of the flowchart is clear from
the description of the method. The process is terminated, if all
states am ∈A are distributed among different classes of ΠA (out-
puts “Yes” of either block4 or block5).

Let us discuss an example of constructing the partition ΠA
for FSM U3(S1). The process is shown in Table 5.

We assume that SL = 5. As follows from (10), the following
relation should take place: Li +Ri = 5. It means that the fol-
lowing pairs 〈Li,Ri〉 are possible: 〈0,5〉 (the class Ak contains
up to 31 states with unconditional transitions), 〈0,4〉 (the class

Yes

i:=1

Yes

1

Start

A*:=A; m:=1

Selecting amÎA* with maximum
value of (23);
Ak:={am}; A*:=A*\{am}.

Constructing sets P(Ak) and Xk

m:=m+1

k:=1

k:=k+1

End i:=i+1

Constructing set A0 of states
asÎP(Ak) with minimum value of
N(as,Xk)

Selecting asÎA0 with maximum
value of N(as,X*);
A*:=A*\{as}; Ak:= Ak {as}

|X(am)|≥SL

P(Ak)=

A*=

A*=

m>M

No

Yes

No

No

2

3

Yes

4
No

No

5
Yes

Fig. 7. Flowchart of constructing partition ΠA

Table 5
Constructing partition ΠA

am |X(am)| BE1
I/II

BE2
I/2

1 2 1 2

a1 1 0/1 ⊕ – – – –

a2 2 2 2 ⊕ – –

a3 2 0/0 0 ⊕ – – –

a4 3 ⊕ – – – – –

a5 2 2 2 0/0 ⊕ –

a6 1 0/0 0 0/0 0

Ak a4 a1 a3 a2 a5 a6

Ak contains up to 15 states), 〈2,3〉, 〈3,2〉, 〈4,1〉 (the class Ak

contains a single state whose transitions depend on 4 inputs).
Let us explain the columns of Table 5.
The column am contains states of FSM. The column |X(am)|

contains the numbers of inputs xl ∈ X(am). The columns BEk
(k ∈ {1,2}) contain basic elements for step k. The symbol “I”
stands for N(am,Xk), the symbol “II” for N(am,X∗). The sign
“⊕” means that a state from the corresponding row is included
into Ak. The sign “−” means that the corresponding state is
eliminated from further consideration. There are states am ∈ Ak

in the row Ak. They are listed in the order of selection.

Bull. Pol. Ac.: Tech. 69(2) 2021 7

8

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

As follows from Table 5, there are M = 6 steps in the con-
structing ΠA. As a result, the following partition is constructed:
ΠA = {A1,A2} with A1 = {a1,a3,a4} and A2 = {a2,a5,a6}. So,
it is the same as we used in Section 5.

Using rules (24)–(25) allows reducing the number of the
same inputs xl ∈ X in different sets Xk ⊆ X . It leads to a de-
crease in the number of LUTs compared to when inputs are du-
plicated in different sets Xk ⊆ X . Also, it leads to regularization
of the system of interconnections.

7. Results of experiments

To compare the proposed method with some other known de-
sign methods, we need some standard benchmarks. As many
other researchers, we use the library [53]. There are 48 differ-
ent benchmarks in this library represented in KISS2 format. We
show the characteristics of these FSMs in Table 6.

The system Vivado [50] was used to implement FSM circuits
and estimate such their characteristics as the number of LUTs
in the circuit, the maximum operating frequency and consumed
power. The VHDL-based files should be created to connect
benchmarks and Vivado. To translate KISS2 files into VHDL,
we used the CAD system K2F [33]. The Active-HDL envi-
ronment was used for synthesis and simulation of benchmark
FSMs. To execute the technology mapping, placement and rout-
ing, we used the industrial package Vivado [50] by Xilinx. As a
target platform, we used the FPGA chip XC7VX690tffg1761-2
by Virtex 7. The configurable logic blocks of this chip include
LUTs with up to 6 inputs.

We took four different methods to compare with our ap-
proach. Two of them are methods used directly in Vivado
2019.1. They are the following methods: 1) Auto (when the
best encoding approach is chosen by the CAD system) and
2) One-hot (this approach is very popular in FSM design). We
used JEDI-based FSMs as a third approach. It is known that
JEDI [54] produces state codes optimizing the numbers of argu-
ments in SBFs representing FSM circuits. At last, we used the
system DEMAIN [55] to produce circuits for benchmark FSMs.
This system uses really good methods of functional decompo-
sition. Three tables represent the outcomes of experiments. We
found such characteristics as the number of LUTs (Table 7),
maximum operating frequency (Table 8) and power consump-
tion (Table 9). All design methods were based on the model U1
shown in Fig. 2.

We used the same organization for Tables 7–9. The columns
of each table include names of different methods. We name
these methods as Auto, One-hot, JEDI, DEMAIN and U3. The
rows of each table include the names of benchmarks. There are
two additional rows in each table. The results of the summation
of corresponding values are shown in the row “Total”. This row
includes the results of summation for numbers of LUTs (Ta-
ble 7), maximum operating frequency (Table 8) and power con-
sumption (Table 9). We took the summarized characteristics of
U3-based FSMs as 100%. The percentage of summarized char-
acteristics respectively to benchmarks based on U3 is shown in
the row “Percentage” of Tables 7–9.

Table 6
Characteristics of benchmarks

Benchmark L N H M R

bbara 4 2 60 10 4
bbsse 7 7 56 16 4
bbtas 2 2 24 6 3

bbcount 3 4 28 7 3
cse 7 7 91 16 4

dk14 3 5 56 7 3
dk15 3 5 32 4 2
dk16 2 3 108 27 5
dk17 2 3 32 8 3
dk27 1 2 14 7 3

dk512 1 3 30 15 4
donfile 2 1 96 24 5

ex1 9 19 138 20 5
ex2 2 2 72 19 5
ex3 2 2 36 10 4
ex4 6 9 21 14 4
ex5 2 2 32 9 4
ex6 5 8 34 8 3
ex7 2 2 36 10 4
keyb 7 7 170 19 5

kirkman 12 6 370 16 4
lion 2 1 11 4 2
lion9 2 1 25 9 4
mark1 5 16 22 15 4

mc 3 5 10 4 2
modulo12 1 1 24 12 4

opus 5 6 22 10 4
planet 7 19 115 48 6
planet1 7 19 115 48 6

pma 8 8 73 24 5
s1 8 6 107 20 5

s1488 8 19 251 48 6
s1494 8 19 250 48 6

s1a 8 6 107 20 5
s208 11 2 153 18 5
s27 4 1 34 6 3
s386 7 7 64 13 4

s8 4 1 20 5 3
sand 11 9 184 32 5

shifreg 1 1 16 8 3
sse 7 7 56 16 4
styr 9 10 166 30 5
tma 7 6 44 20 5
s420 19 2 137 18 5
s510 19 7 77 47 6
s820 18 19 232 25 5
s832 18 19 245 25 5

8 Bull. Pol. Ac.: Tech. 69(2) 2021

Improving LUT count of FPGA-based sequential blocks

Table 7
Experimental results (the number of LUTs)

Benchmark Auto One-Hot JEDI DEMAIN U3

bbara 17 17 10 9 12
bbsse 33 37 24 26 23
bbtas 5 5 5 5 6

beecount 19 19 14 16 13
cse 40 66 36 38 33

dk14 10 27 10 12 13
dk15 5 16 5 6 7
dk16 15 34 12 14 11
dk17 5 12 5 6 6
dk27 3 5 4 4 6
dk512 10 10 9 10 9
donfile 31 31 22 26 20

ex1 70 74 53 57 43
ex2 9 9 8 9 9
ex3 9 9 9 9 9
ex4 15 13 12 13 11
ex5 9 9 9 9 9
ex6 24 36 22 23 21
ex7 4 5 4 4 5
keyb 43 61 40 42 38

kirkman 42 58 39 41 36
lion 2 5 2 2 3
lion9 6 11 5 5 6
mark1 23 23 20 21 19

mc 4 7 4 5 5
modulo12 7 7 7 7 8

opus 28 28 22 26 24
planet 131 131 88 94 81

planet1 131 131 88 94 81
pma 94 94 86 91 79
s1 65 99 61 64 58

s1488 124 131 108 112 93
s1494 126 132 110 117 95

s1a 49 81 43 54 42
s208 12 31 10 11 10
s27 6 18 6 6 7

s386 26 39 22 25 19
s420 10 31 9 10 9
s510 48 48 32 39 30

s8 9 9 9 9 11
s820 88 82 68 76 59
s832 80 79 62 70 55
sand 132 132 114 121 102

shiftreg 2 6 2 2 5
sse 33 37 30 32 27
styr 93 120 81 88 74
tma 45 39 39 41 34

Total 1792 2104 1480 1601 1377
Percentage 130.10% 152.80% 107.50% 116.30% 100%

Table 8
Experimental results (the operating frequency, MHz)

Benchmark Auto One-Hot JEDI DEMAIN U3

bbara 193.39 193.39 212.21 198.46 153.52
bbsse 157.06 169.12 182.34 178.91 117.31
bbtas 204.16 204.16 206.12 208.32 164.28

beecount 166.61 166.61 187.32 184.21 126.98
cse 146.43 163.64 178.12 174.19 106.34

dk14 191.64 172.65 193.85 187.32 151.62
dk15 192.53 185.36 194.87 188.54 152.51
dk16 169.72 174.79 197.13 189.83 129.35
dk17 199.28 167 199.39 172.19 159.22
dk27 206.02 201.9 204.18 205.1 166.04

dk512 196.27 196.27 199.75 197.49 156.45
donfile 184.03 184 203.65 194.83 144.65

ex1 150.94 139.76 176.87 186.14 110.71
ex2 198.57 198.57 200.14 199.75 158.58
ex3 194.86 194.86 195.76 193.43 154.89
ex4 180.96 177.71 192.83 178.14 140.92
ex5 180.25 180.25 181.16 181.76 140.42
ex6 169.57 163.8 176.59 174.12 129.34
ex7 200.04 200.84 200.6 200.32 160.58
keyb 156.45 143.47 168.43 157.16 116.29

kirkman 141.38 154 156.68 143.76 101.06
lion 202.43 204 202.35 201.32 162.58

lion9 205.3 185.22 206.38 205.86 165.51
mark1 162.39 162.39 176.18 169.65 122.32

mc 196.66 195.47 196.87 192.53 156.12
modulo12 207 207 207.13 207.37 167.45

opus 166.2 166.2 178.32 168.79 126.27
planet 132.71 132.71 187.14 185.73 92.43

planet1 132.71 132.71 187.14 185.73 92.92
pma 146.18 146.18 169.83 153.57 106.53
s1 146.41 135.85 157.16 149.17 106.73

s1488 138.5 131.94 157.18 153.12 98.94
s1494 149.39 145.75 164.34 159.42 109.19

s1a 153.37 176.4 169.17 158.12 113.67
s208 174.34 176.46 178.76 172.87 134.42
s27 198.73 191.5 199.13 198.43 158.76

s386 168.15 173.46 179.15 169.21 128.2
s420 173.88 176.46 177.25 172.87 133.07
s510 177.65 177.65 198.32 183.18 97.39

s8 180.02 178.95 181.23 180.39 140.22
s820 152 153.16 176.58 166.29 112.18
s832 145.71 153.23 173.78 160.03 105.82
sand 115.97 115.97 126.82 120.63 75.18

shiftreg 262.67 263.57 276.26 276.14 222.95
sse 157.06 169.12 174.63 169.69 117.21
styr 137.61 129.92 145.64 138.83 97.07
tma 163.88 147.8 164.14 168.19 123.24

Total 8126.95 8173.06 8719.07 8103.27 6246.64
Percentage 130.10% 130.80% 139.60% 129.70% 100%

Bull. Pol. Ac.: Tech. 69(2) 2021 9

9

Improving LUT count of FPGA-based sequential blocks

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

Improving LUT count of FPGA-based sequential blocks

Table 7
Experimental results (the number of LUTs)

Benchmark Auto One-Hot JEDI DEMAIN U3

bbara 17 17 10 9 12
bbsse 33 37 24 26 23
bbtas 5 5 5 5 6

beecount 19 19 14 16 13
cse 40 66 36 38 33

dk14 10 27 10 12 13
dk15 5 16 5 6 7
dk16 15 34 12 14 11
dk17 5 12 5 6 6
dk27 3 5 4 4 6

dk512 10 10 9 10 9
donfile 31 31 22 26 20

ex1 70 74 53 57 43
ex2 9 9 8 9 9
ex3 9 9 9 9 9
ex4 15 13 12 13 11
ex5 9 9 9 9 9
ex6 24 36 22 23 21
ex7 4 5 4 4 5
keyb 43 61 40 42 38

kirkman 42 58 39 41 36
lion 2 5 2 2 3

lion9 6 11 5 5 6
mark1 23 23 20 21 19

mc 4 7 4 5 5
modulo12 7 7 7 7 8

opus 28 28 22 26 24
planet 131 131 88 94 81

planet1 131 131 88 94 81
pma 94 94 86 91 79
s1 65 99 61 64 58

s1488 124 131 108 112 93
s1494 126 132 110 117 95

s1a 49 81 43 54 42
s208 12 31 10 11 10
s27 6 18 6 6 7
s386 26 39 22 25 19
s420 10 31 9 10 9
s510 48 48 32 39 30
s8 9 9 9 9 11

s820 88 82 68 76 59
s832 80 79 62 70 55
sand 132 132 114 121 102

shiftreg 2 6 2 2 5
sse 33 37 30 32 27
styr 93 120 81 88 74
tma 45 39 39 41 34

Total 1792 2104 1480 1601 1377
Percentage 130.10% 152.80% 107.50% 116.30% 100%

Table 8
Experimental results (the operating frequency, MHz)

Benchmark Auto One-Hot JEDI DEMAIN U3

bbara 193.39 193.39 212.21 198.46 153.52
bbsse 157.06 169.12 182.34 178.91 117.31
bbtas 204.16 204.16 206.12 208.32 164.28

beecount 166.61 166.61 187.32 184.21 126.98
cse 146.43 163.64 178.12 174.19 106.34

dk14 191.64 172.65 193.85 187.32 151.62
dk15 192.53 185.36 194.87 188.54 152.51
dk16 169.72 174.79 197.13 189.83 129.35
dk17 199.28 167 199.39 172.19 159.22
dk27 206.02 201.9 204.18 205.1 166.04

dk512 196.27 196.27 199.75 197.49 156.45
donfile 184.03 184 203.65 194.83 144.65

ex1 150.94 139.76 176.87 186.14 110.71
ex2 198.57 198.57 200.14 199.75 158.58
ex3 194.86 194.86 195.76 193.43 154.89
ex4 180.96 177.71 192.83 178.14 140.92
ex5 180.25 180.25 181.16 181.76 140.42
ex6 169.57 163.8 176.59 174.12 129.34
ex7 200.04 200.84 200.6 200.32 160.58
keyb 156.45 143.47 168.43 157.16 116.29

kirkman 141.38 154 156.68 143.76 101.06
lion 202.43 204 202.35 201.32 162.58
lion9 205.3 185.22 206.38 205.86 165.51
mark1 162.39 162.39 176.18 169.65 122.32

mc 196.66 195.47 196.87 192.53 156.12
modulo12 207 207 207.13 207.37 167.45

opus 166.2 166.2 178.32 168.79 126.27
planet 132.71 132.71 187.14 185.73 92.43
planet1 132.71 132.71 187.14 185.73 92.92

pma 146.18 146.18 169.83 153.57 106.53
s1 146.41 135.85 157.16 149.17 106.73

s1488 138.5 131.94 157.18 153.12 98.94
s1494 149.39 145.75 164.34 159.42 109.19

s1a 153.37 176.4 169.17 158.12 113.67
s208 174.34 176.46 178.76 172.87 134.42
s27 198.73 191.5 199.13 198.43 158.76

s386 168.15 173.46 179.15 169.21 128.2
s420 173.88 176.46 177.25 172.87 133.07
s510 177.65 177.65 198.32 183.18 97.39

s8 180.02 178.95 181.23 180.39 140.22
s820 152 153.16 176.58 166.29 112.18
s832 145.71 153.23 173.78 160.03 105.82
sand 115.97 115.97 126.82 120.63 75.18

shiftreg 262.67 263.57 276.26 276.14 222.95
sse 157.06 169.12 174.63 169.69 117.21
styr 137.61 129.92 145.64 138.83 97.07
tma 163.88 147.8 164.14 168.19 123.24

Total 8126.95 8173.06 8719.07 8103.27 6246.64
Percentage 130.10% 130.80% 139.60% 129.70% 100%

Bull. Pol. Ac.: Tech. 69(2) 2021 9

10

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

Table 9
Experimental results (the consumed power, Watts)

Benchmark Auto One- Hot JEDI DEMAIN U3

bbara 0.569 0.569 0.488 0.482 0.599
bbsse 2.22 1.206 1.713 1.824 1.722
bbtas 0.533 0.533 0.533 0.533 0.682

beecount 1.631 1.631 1.021 1.236 1.035
cse 0.958 1.019 0.891 0.911 0.883

dk14 2.959 3.33 2.952 2.998 3.102
dk15 1.403 1.905 1.399 1.402 1.512
dk16 2.967 2.742 2. 512 2.715 2.535
dk17 1.901 1.935 1.891 1.938 2.007
dk27 1.168 0.854 1.158 1.161 1.272

dk512 1.496 1.496 1.345 1.498 1.365
donfile 0.709 0.709 0.603 0.638 0.678

ex1 4.102 2.968 2.342 2.416 2.028
ex2 0.368 0.386 0.342 0.365 0.467
ex3 0.391 0.391 0.391 0.394 0.474
ex4 1.562 1.241 1.187 1.198 1.223
ex5 0.387 0.387 0.385 0.383 0.426
ex6 2.269 3.85 2.242 2.258 2.275
ex7 0.992 1.181 0.994 0.996 1.098
keyb 1.093 1.071 1.075 1.082 1.096

kirkman 1.693 1.844 1.439 1.498 1.427
lion 0.542 0.629 0.547 0.544 0.649

lion9 0.733 0.97 0.728 0.73 0.884
mark1 1.445 1.445 1.227 1.301 1.287

mc 0.447 0.561 0.443 0.492 0.562
modulo12 0.559 0.559 0.563 0.532 0.648

opus 1.344 1.344 1.283 1.334 1.321
planet 4.122 4.122 2.456 3.002 2.428

planet1 4.122 4.122 2.456 3.002 2.338
pma 1.37 1.37 1.253 1.361 1.103
s1 2.685 3.13 2.518 2.612 2.448

s1488 3.982 4.096 3.548 3.629 2.183
s1494 3.079 3.178 2.982 3.011 2.758

s1a 1.322 2.01 1.208 1.602 1.185
s208 1.367 2.82 1.249 1.302 1.357
s27 0.756 1.95 0.765 0.769 0.864

s386 1.251 1.393 1.121 1.187 1.198
s420 1.337 2.82 1.286 1.334 1.392
s510 1.543 1.543 1.091 1.218 1.102
s8 0.736 0.805 0.732 0.734 0.982

s820 2.054 1.801 1.463 1.612 1.243
s832 2.096 2.087 1.828 1.512 1.332
sand 1.149 1.149 0.988 1.017 0.917

shiftreg 0.523 0.603 0.512 0.503 0.812
sse 1.22 1.296 1.089 1.193 1.107
styr 4.044 4.771 3.187 3.612 3.032
tma 1.589 1.314 1.321 1.427 1.218

Total 85.479 89.585 65.935 68.498 63.346
Percentage 134.90% 141.40% 104.10% 108.10% 100%

Analysis of Table 7 shows that the U3-based FSMs have bet-
ter LUT counts than their counterparts used in our experiments.
There is the following decrease: 1) 34% in relation to results
obtained for Auto-based FSMs; 2) 41.4% in relation to results
obtained using One-hot state assignment; 3) 4.1% in relation
to results obtained for JEDI-based FSMs and 4) 8.1% in rela-
tion to results obtained for DEMAIN-based FSMs. As a rule,
our approach gives better results for FSMs having more than 15
states. If M < 15, then the better results are produced by either
JEDI or DEMAIN.

Analysis of Table 8 shows that the U3-based FSMs have a
lower operating frequency as compared to circuits produced
by their counterparts used in our experiments. This can be ex-
plained by the fact that the circuits of U3-based FSMs have at
least three levels of logic. Because the library [53] includes
rather simple FSMs, other design methods can produce FSM
circuits with fewer logic levels. We think that for complex
FSMs, our method can give a gain in frequency, too. To test this
assumption, we have generated several FSMs having M = 200,
H = 2000, L = 30 and N = 50. For all these complex FSMs, we
have around 10% gain in operating frequency.

Our approach allows producing FSM circuits with a more
regular interconnected system. Interconnections are known to
be responsible for 60%–70% of power losses in FPGA-based
circuits [24]. Due to this, our approach gives a gain in power
consumption compared to other investigated methods. As fol-
lows from Table 9, our approach gives the following gain:
1) 30.1% in comparison with Auto; 2) 52.8% in comparison
with One-hot; 3) 7.5% in comparison with JEDI and 4) 16.3%
in comparison with DEMAIN.

So, our approach produces better results for rather complex
FSMs (for the number of LUTs and consumed power). Of
course, this conclusion is true only for the benchmarks [53]
and the device XC7VX690tffy1761-2. It is almost impossible
to make similar conclusion for the general case. Research [31]
shows that the value SL = 6 is optimal from the point of view
of the area/productivity/power tradeoff for LUTs. So, the pro-
posed approach can be successfully used both now and in the
near future.

8. Conclusions

If FPGA chips are used to implement digital systems, then the
circuits of sequential logic blocks can be implemented as net-
works of LUTs. Complex sequential blocks are represented by
systems of Boolean functions having a lot of arguments. But
a LUT has a very limited amount of inputs. This value cannot
be increased due to the violation of the balance of such charac-
teristics as the chip area occupied by a LUT, the performance
and consumed power. This contradiction leads to multi-level
circuits of complex sequential blocks. In turn, it leads to the ne-
cessity of using different methods of functional decomposition
to implement the circuits of digital systems.

The structural decomposition is a good alternative to the
functional decomposition. In the case of FSMs, these meth-
ods allow elimination of the direct dependence between inputs

10 Bull. Pol. Ac.: Tech. 69(2) 2021

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

Table 9
Experimental results (the consumed power, Watts)

Benchmark Auto One- Hot JEDI DEMAIN U3

bbara 0.569 0.569 0.488 0.482 0.599
bbsse 2.22 1.206 1.713 1.824 1.722
bbtas 0.533 0.533 0.533 0.533 0.682

beecount 1.631 1.631 1.021 1.236 1.035
cse 0.958 1.019 0.891 0.911 0.883

dk14 2.959 3.33 2.952 2.998 3.102
dk15 1.403 1.905 1.399 1.402 1.512
dk16 2.967 2.742 2. 512 2.715 2.535
dk17 1.901 1.935 1.891 1.938 2.007
dk27 1.168 0.854 1.158 1.161 1.272

dk512 1.496 1.496 1.345 1.498 1.365
donfile 0.709 0.709 0.603 0.638 0.678

ex1 4.102 2.968 2.342 2.416 2.028
ex2 0.368 0.386 0.342 0.365 0.467
ex3 0.391 0.391 0.391 0.394 0.474
ex4 1.562 1.241 1.187 1.198 1.223
ex5 0.387 0.387 0.385 0.383 0.426
ex6 2.269 3.85 2.242 2.258 2.275
ex7 0.992 1.181 0.994 0.996 1.098
keyb 1.093 1.071 1.075 1.082 1.096

kirkman 1.693 1.844 1.439 1.498 1.427
lion 0.542 0.629 0.547 0.544 0.649

lion9 0.733 0.97 0.728 0.73 0.884
mark1 1.445 1.445 1.227 1.301 1.287

mc 0.447 0.561 0.443 0.492 0.562
modulo12 0.559 0.559 0.563 0.532 0.648

opus 1.344 1.344 1.283 1.334 1.321
planet 4.122 4.122 2.456 3.002 2.428

planet1 4.122 4.122 2.456 3.002 2.338
pma 1.37 1.37 1.253 1.361 1.103
s1 2.685 3.13 2.518 2.612 2.448

s1488 3.982 4.096 3.548 3.629 2.183
s1494 3.079 3.178 2.982 3.011 2.758

s1a 1.322 2.01 1.208 1.602 1.185
s208 1.367 2.82 1.249 1.302 1.357
s27 0.756 1.95 0.765 0.769 0.864

s386 1.251 1.393 1.121 1.187 1.198
s420 1.337 2.82 1.286 1.334 1.392
s510 1.543 1.543 1.091 1.218 1.102
s8 0.736 0.805 0.732 0.734 0.982

s820 2.054 1.801 1.463 1.612 1.243
s832 2.096 2.087 1.828 1.512 1.332
sand 1.149 1.149 0.988 1.017 0.917

shiftreg 0.523 0.603 0.512 0.503 0.812
sse 1.22 1.296 1.089 1.193 1.107
styr 4.044 4.771 3.187 3.612 3.032
tma 1.589 1.314 1.321 1.427 1.218

Total 85.479 89.585 65.935 68.498 63.346
Percentage 134.90% 141.40% 104.10% 108.10% 100%

Analysis of Table 7 shows that the U3-based FSMs have bet-
ter LUT counts than their counterparts used in our experiments.
There is the following decrease: 1) 34% in relation to results
obtained for Auto-based FSMs; 2) 41.4% in relation to results
obtained using One-hot state assignment; 3) 4.1% in relation
to results obtained for JEDI-based FSMs and 4) 8.1% in rela-
tion to results obtained for DEMAIN-based FSMs. As a rule,
our approach gives better results for FSMs having more than 15
states. If M < 15, then the better results are produced by either
JEDI or DEMAIN.

Analysis of Table 8 shows that the U3-based FSMs have a
lower operating frequency as compared to circuits produced
by their counterparts used in our experiments. This can be ex-
plained by the fact that the circuits of U3-based FSMs have at
least three levels of logic. Because the library [53] includes
rather simple FSMs, other design methods can produce FSM
circuits with fewer logic levels. We think that for complex
FSMs, our method can give a gain in frequency, too. To test this
assumption, we have generated several FSMs having M = 200,
H = 2000, L = 30 and N = 50. For all these complex FSMs, we
have around 10% gain in operating frequency.

Our approach allows producing FSM circuits with a more
regular interconnected system. Interconnections are known to
be responsible for 60%–70% of power losses in FPGA-based
circuits [24]. Due to this, our approach gives a gain in power
consumption compared to other investigated methods. As fol-
lows from Table 9, our approach gives the following gain:
1) 30.1% in comparison with Auto; 2) 52.8% in comparison
with One-hot; 3) 7.5% in comparison with JEDI and 4) 16.3%
in comparison with DEMAIN.

So, our approach produces better results for rather complex
FSMs (for the number of LUTs and consumed power). Of
course, this conclusion is true only for the benchmarks [53]
and the device XC7VX690tffy1761-2. It is almost impossible
to make similar conclusion for the general case. Research [31]
shows that the value SL = 6 is optimal from the point of view
of the area/productivity/power tradeoff for LUTs. So, the pro-
posed approach can be successfully used both now and in the
near future.

8. Conclusions

If FPGA chips are used to implement digital systems, then the
circuits of sequential logic blocks can be implemented as net-
works of LUTs. Complex sequential blocks are represented by
systems of Boolean functions having a lot of arguments. But
a LUT has a very limited amount of inputs. This value cannot
be increased due to the violation of the balance of such charac-
teristics as the chip area occupied by a LUT, the performance
and consumed power. This contradiction leads to multi-level
circuits of complex sequential blocks. In turn, it leads to the ne-
cessity of using different methods of functional decomposition
to implement the circuits of digital systems.

The structural decomposition is a good alternative to the
functional decomposition. In the case of FSMs, these meth-
ods allow elimination of the direct dependence between inputs

10 Bull. Pol. Ac.: Tech. 69(2) 2021

A. Barkalov, L. Titarenko, M. Mazurkiewicz, K. Krzywicki

Table 9
Experimental results (the consumed power, Watts)

Benchmark Auto One- Hot JEDI DEMAIN U3

bbara 0.569 0.569 0.488 0.482 0.599
bbsse 2.22 1.206 1.713 1.824 1.722
bbtas 0.533 0.533 0.533 0.533 0.682

beecount 1.631 1.631 1.021 1.236 1.035
cse 0.958 1.019 0.891 0.911 0.883

dk14 2.959 3.33 2.952 2.998 3.102
dk15 1.403 1.905 1.399 1.402 1.512
dk16 2.967 2.742 2. 512 2.715 2.535
dk17 1.901 1.935 1.891 1.938 2.007
dk27 1.168 0.854 1.158 1.161 1.272

dk512 1.496 1.496 1.345 1.498 1.365
donfile 0.709 0.709 0.603 0.638 0.678

ex1 4.102 2.968 2.342 2.416 2.028
ex2 0.368 0.386 0.342 0.365 0.467
ex3 0.391 0.391 0.391 0.394 0.474
ex4 1.562 1.241 1.187 1.198 1.223
ex5 0.387 0.387 0.385 0.383 0.426
ex6 2.269 3.85 2.242 2.258 2.275
ex7 0.992 1.181 0.994 0.996 1.098
keyb 1.093 1.071 1.075 1.082 1.096

kirkman 1.693 1.844 1.439 1.498 1.427
lion 0.542 0.629 0.547 0.544 0.649
lion9 0.733 0.97 0.728 0.73 0.884
mark1 1.445 1.445 1.227 1.301 1.287

mc 0.447 0.561 0.443 0.492 0.562
modulo12 0.559 0.559 0.563 0.532 0.648

opus 1.344 1.344 1.283 1.334 1.321
planet 4.122 4.122 2.456 3.002 2.428
planet1 4.122 4.122 2.456 3.002 2.338

pma 1.37 1.37 1.253 1.361 1.103
s1 2.685 3.13 2.518 2.612 2.448

s1488 3.982 4.096 3.548 3.629 2.183
s1494 3.079 3.178 2.982 3.011 2.758

s1a 1.322 2.01 1.208 1.602 1.185
s208 1.367 2.82 1.249 1.302 1.357
s27 0.756 1.95 0.765 0.769 0.864

s386 1.251 1.393 1.121 1.187 1.198
s420 1.337 2.82 1.286 1.334 1.392
s510 1.543 1.543 1.091 1.218 1.102

s8 0.736 0.805 0.732 0.734 0.982
s820 2.054 1.801 1.463 1.612 1.243
s832 2.096 2.087 1.828 1.512 1.332
sand 1.149 1.149 0.988 1.017 0.917

shiftreg 0.523 0.603 0.512 0.503 0.812
sse 1.22 1.296 1.089 1.193 1.107
styr 4.044 4.771 3.187 3.612 3.032
tma 1.589 1.314 1.321 1.427 1.218

Total 85.479 89.585 65.935 68.498 63.346
Percentage 134.90% 141.40% 104.10% 108.10% 100%

Analysis of Table 7 shows that the U3-based FSMs have bet-
ter LUT counts than their counterparts used in our experiments.
There is the following decrease: 1) 34% in relation to results
obtained for Auto-based FSMs; 2) 41.4% in relation to results
obtained using One-hot state assignment; 3) 4.1% in relation
to results obtained for JEDI-based FSMs and 4) 8.1% in rela-
tion to results obtained for DEMAIN-based FSMs. As a rule,
our approach gives better results for FSMs having more than 15
states. If M < 15, then the better results are produced by either
JEDI or DEMAIN.

Analysis of Table 8 shows that the U3-based FSMs have a
lower operating frequency as compared to circuits produced
by their counterparts used in our experiments. This can be ex-
plained by the fact that the circuits of U3-based FSMs have at
least three levels of logic. Because the library [53] includes
rather simple FSMs, other design methods can produce FSM
circuits with fewer logic levels. We think that for complex
FSMs, our method can give a gain in frequency, too. To test this
assumption, we have generated several FSMs having M = 200,
H = 2000, L = 30 and N = 50. For all these complex FSMs, we
have around 10% gain in operating frequency.

Our approach allows producing FSM circuits with a more
regular interconnected system. Interconnections are known to
be responsible for 60%–70% of power losses in FPGA-based
circuits [24]. Due to this, our approach gives a gain in power
consumption compared to other investigated methods. As fol-
lows from Table 9, our approach gives the following gain:
1) 30.1% in comparison with Auto; 2) 52.8% in comparison
with One-hot; 3) 7.5% in comparison with JEDI and 4) 16.3%
in comparison with DEMAIN.

So, our approach produces better results for rather complex
FSMs (for the number of LUTs and consumed power). Of
course, this conclusion is true only for the benchmarks [53]
and the device XC7VX690tffy1761-2. It is almost impossible
to make similar conclusion for the general case. Research [31]
shows that the value SL = 6 is optimal from the point of view
of the area/productivity/power tradeoff for LUTs. So, the pro-
posed approach can be successfully used both now and in the
near future.

8. Conclusions

If FPGA chips are used to implement digital systems, then the
circuits of sequential logic blocks can be implemented as net-
works of LUTs. Complex sequential blocks are represented by
systems of Boolean functions having a lot of arguments. But
a LUT has a very limited amount of inputs. This value cannot
be increased due to the violation of the balance of such charac-
teristics as the chip area occupied by a LUT, the performance
and consumed power. This contradiction leads to multi-level
circuits of complex sequential blocks. In turn, it leads to the ne-
cessity of using different methods of functional decomposition
to implement the circuits of digital systems.

The structural decomposition is a good alternative to the
functional decomposition. In the case of FSMs, these meth-
ods allow elimination of the direct dependence between inputs

10 Bull. Pol. Ac.: Tech. 69(2) 2021

11

Improving LUT count of FPGA-based sequential blocks

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

	[11]	 N. Das and P.A. Priya, “FPGA Implementation of Reconfigurable
Finite State Machine with Input Multiplexing Architecture Us-
ing Hungarian Method”, Int. J. Reconfigurable Comput. 2018,
6831901 (2018).

	[12]	 J. Glaser, M. Damm, J. Haase, and C. Grimm, “TR-FSM: Tran-
sition-Based Reconfigurable Finite State Machine”, ACM Trans.
Reconfigurable Technol. Syst. 4, 23:1‒23:14 (2011).

	[13]	 R. Czerwinski and D. Kania, Finite State Machine Logic Synthe-
sis for Complex Programmable Logic Devices, Springer, 2013.

	[14]	 V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthe-
sis and optimization of FPGA-based systems, Springer, 2014.

	[15]	 M. Kubica, D. Kania, and J. Kulisz, “A Technology Mapping
of FSMs Based on a Graph of Excitations and Outputs”, IEEE
Access 7, 16123‒16131 (2019).

	[16]	 A. Opara, M. Kubica, and D. Kania, “Methods of Improving
Time Efficiency of Decomposition Dedicated at FPGA Struc-
tures and Using BDD in the Process of Cyber-Physical Synthe-
sis”, IEEE Access 7, 20619‒20631 (2019).

	[17]	 M. Kubica and D. Kania, “Area-oriented technology mapping
for LUT-based logic blocks”, Int. J. Appl. Math. Comput. Sci.
27(1), 207‒222 (2017).

	[18]	 M. Kubica, A. Opara, and D. Kania, “Logic Synthesis for FP-
GAs Based on Cutting of BDD”, Microprocess. Microsyst. 52,
173‒187 (2017).

	[19]	 I. Skliarova, V. Sklyarov, and A. Sudnitson, Design of FPGAb-
ased circuits using Hierarchical Finite State Machines, Tallinn:
TUT Press, 2012.

	[20]	 Altera, [Online]. http://www.altera.com (accesed: May, 2020).
	[21]	 Atmel, [Online]. http://www.atmel.com (accesed: May, 2020).
	[22]	 Xilinx, [Online]. http://www.xilinx.com (accesed: May, 2020).
	[23]	 I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey

and Challenges”, Found. Trends Electron. Design Automat. 2(2),
135‒253 (2008).

	[24]	 I. Grout, Digital Systems Design with FPGAs and CPLDs, Else-
vier Science, 2011.

	[25]	 S. Kilts, Advanced FPGA Design: Architecture, Implementation,
and Optimization, Wiley-IEEE Press, 2007.

	[26]	 Intel, “Intel SoC FPGA Embedded Development Suite User
Guide”. [Online]. https://www.intel.com/content/www/us/en/
programmable/documentation/lro1402536290550.html (accesed:
May, 2020).

	[27]	 Xilinix, “Zynq UltraScale+MPSoC”. [Online]. https://www.xil-
inx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.
html#productTable (accesed: May, 2020).

	[28]	 G. Stringham, Hardware/firmware Interface Design: Best Prac-
tices for Improving Embedded Systems Development, Newnes,
2010.

	[29]	 I. Skliarova and V. Sklyarov, FPGA-BASED hardware acceler-
ators, Springer, 2019.

	[30]	 T. Łuba, M. Rawski, and Z. Jachna, “Functional Decomposition
as a universal method for logic synthesis of digital circuits”, in
Proceedings of IX International Conference MIXDES’02, 2002,
p. 285290.

	[31]	 A. Ling, D.P. Singh, and S.D. Brown, “FPGA technology map-
ping: a study of optimality”, in Proceedings 42nd Design Auto-
mation Conference (DAC05), 2005, pp. 427‒432.

	[32]	 M. Kubica and D. Kania, “Technology mapping oriented to
adaptive logic modules”, Bull. Pol. Acad. Sci. Tech. Sci. 67(5),
947‒956 (2019).

	[33]	 O. Barkalov, L. Titarenko, K. Mielcarek, and S. Chmielewski,
Logic Synthesis for FPGA-Based Control Units: Structural De-
composition in Logic Design, Springer, 2020.

ods allow elimination of the direct dependence between inputs
and outputs. Also, the structural decomposition allows obtaining
circuits with regular system of interconnections [33]. Due to it,
FSM circuits based on the methods of structural decomposition
can have fewer numbers of LUTs, a higher operating frequency
and lower power consumption then equivalent FSM circuits
designed with methods of functional decomposition.

A novel method of structural decomposition is proposed in
the current article. The method is aimed at LUT-based Mealy
FSMs. The essence of this method is the encoding of the prod-
uct terms corresponding to rows of direct structure table repre-
senting FSMs. The proposed method is technology depended
because it forms a partition of the set of terms based on amount
of inputs of LUTs.

To analyse the efficiency of the proposed method, we have
conducted experiments using standard benchmarks from the
library [53]. The experiments show that the proposed method
leads to reduction in both the number of LUTs and power con-
sumption in comparison with FSM circuits obtained by the
Xilinx CAD tool Vivado 2019.1, JEDI- and DEMAIN-based
FSMs. All methods chosen for comparison are based on func-
tional decomposition. But our approach produces slower cir-
cuits. But this disadvantage is reduced with the growth of the
complexity of sequential blocks.

Till now, our methods were aimed at FPGAs produced by
Xilinx. Next, we are going to apply the proposed approach
for FPGAs produced by other companies different from Xilinx
[20, 21]. Also, we will try to apply this method to optimize
sequential blocks based on counters.

References
	 [1]	 J. Baillieul and T. Samad, Encyclopedia of Systems and Control,

Springer, 2015.
	 [2]	 M. Arora, Embedded System Design, Introduction to SoC System

Architecture, Learning Bytes Publishing, 2016.
	 [3]	 V. Chakravarthi, A Practical Approach to VLSI System on Chip

(SoC) Design, A Comprehensive Guide, Springer, 2020.
	 [4]	 P. Minns and I. Elliot, FSM-based digital design using Verilog

HDL, John Wiley and Sons, 2008.
	 [5]	 S. Baranov, Logic and System Design of Digital Systems, Tallinn:

TUT Press, 2008.
	 [6]	 B.D. Brown and H.C. Card, “Stochastic neural computation.

I computational elements”, IEEE Trans. Comput. 50(9), 891‒905
(2001).

	 [7]	 O. Barkalov, L. Titarenko, and M. Mazurkiewicz, Foundations
of Embedded Systems, Springer, 2019.

	 [8]	 A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and
W.J. Gross, “VLSI Implementation of Deep Neural Network
Using Integral Stochastic Computing”, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 25(10), 26882699 (2017).

	 [9]	 P. Li, D.J. Lilja, W. Qian, M.D. Riedel, and K. Bazargan, “Logi-
cal computation on stochastic bit streams with linear finitestate
machines”, IEEE Trans. Comput. 63(6), 1474‒1486 (2014).

	[10]	 Y. Xie, S. Liao, B. Yuan, Y. Wang, and Z. Wang, “Fully-paral-
lel area-efficient deep neural network design using stochastic
computing”, IEEE Trans. Circuits Syst. II-Express Briefs 64(12),
1382‒1386 (2017).

http://www.altera.com/
http://www.atmel.com
http://www.xilinx.com/
https://www.intel.com/content/www/us/en/programmable/documentation/lro1402536290550.html
https://www.intel.com/content/www/us/en/programmable/documentation/lro1402536290550.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable

12

A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136728

	[34]	 S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide”, tech. rep., Microelectronic Center of North Carolina,
1991.

	[35]	 G.D. Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

	[36]	 E. Testa, L. Amaru, M. Soeken, A. Mishchenko, P. Vuillod,
J. Luo, C. Casares, P. Gaillardon, and G.D. Micheli, “Scalable
boolean methods in a modern synthesis flow”, in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 1643‒1648.

	[37]	 R. Brayton and A. Mishchenko, “ABC: An Academic Industri-
al-Strength Verification Tool”, in Computer Aided Verification,
pp. 24‒40 eds. T. Touili, B. Cook, and P. Jackson, Springer, 2010.

	[38]	 A. Opara, M. Kubica, and D. Kania, “Methods of Improving
Time Efficiency of Decomposition Dedicated at FPGA Struc-
tures and Using BDD in the Process of Cyber-Physical Synthe-
sis”, IEEE Access 7, 20619‒20631 (2019).

	[39]	 O. Barkalov, L. Titarenko, and K. Mielcarek, “Hardware reduc-
tion for LUT-based Mealy FSMs”, Int. J. Appl. Math. Comput.
Sci. 28(3), 595‒607 (2018).

	[40]	 Xilinix, “Virtex-7 family overview”. [Online]. https://www.xil-
inx.com/products/silicon-devices/fpga/virtex-7.html (accesed:
May, 2020).

	[41]	 A. Mishchenko, R.K. Brayton, J.H.R. Jiang, and S. Jang, “Scal-
able Don’t-Care-Based Logic Optimization and Resynthesis”,
ACM Trans. Reconfigurable Technol. Syst. 4(4), 34(1‒23)
(2011).

	[42]	 A. Mishchenko, S. Chatterjee, and R.K. Brayton, “Improve-ments
to Technology Mapping for LUT-based FPGAs”, IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 26(2), 240253 (2007).

	[43]	 C. Scholl, Functional Decomposition with Application to FPGA
Synthesis, Kluwer Academic Publishers, 2001.

	[44]	 L. Machado and J. Cortadella, “Support-Reducing Decompo-
sition for FPGA Mapping”, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 39(1), 213‒224 (2020).

	[45]	 R. Czerwinski, D. Kania, and J. Kulisz, “FSMs state encoding
targeting at logic level minimization”, Bull. Pol. Acad. Sci. Tech.
Sci. 54(4), 479‒487 (2006).

	[46]	 R. Czerwinski and D. Kania, “Synthesis method of high speed
finite state machines”, Bull. Pol. Acad. Sci. Tech. Sci. 58(4),
635‒644 (2010).

	[47]	 A. Opara and D. Kania, “Decomposition-based logic synthesis
for PAL-based CPLDs,” Int. J. Appl. Math. Comput. Sci. 20(2),
367‒384 (2010).

	[48]	 E. Sentowich, et al., “SIS: a system for sequential circuit synthe-
sis”, in Proc. of the Inter. Conf. of Computer Design (ICCD’92),
1992, p.328333.

	[49]	 Xilinx, “XST User Guide. V. 11.3”. [Online]. http://www.xil-
inx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
(accesed: May, 2020).

	[50]	 Vivado. [Online]. https://www.xilinx.com/products/design_tools/
vivado.html (accesed: May, 2020).

	[51]	 A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki,
“Encoding of terms in EMB-Based Mealy FSMs”, Appl. Sci.
10(8), 21 (2020).

	[52]	 S. Achasova, Synthesis algorithms for automata with PLAs, M:
Soviet radio, 1987.

	[53]	 LGSynth93, “International Workshop on logic synthesis bench-
mark suite (LGSynth93)”. [Online]. https://people.engr.ncsu.
edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar, 1993
(accesed: February, 2018).

	[54]	 B. Lin, “Synthesis of multiple-level logic from symbolic high-
level description languages”, in IFIP International Conference
on Very Large Scale Integration, 1989, pp. 187‒196).

	[55]	 M. Rawski, L. Jozwiak, M. Nowicka, and T. Łuba, “Nondisjoint
decomposition of boolean functions and its application in FP-
GA-oriented technology mapping”, in EUROMICRO 97. Pro-
ceedings of the 23rd EUROMICRO Conference: New Frontiers
of Information Technology (Cat. No.97TB100167), 1997, pp.
24‒30.

https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
https://www.xilinx.com/products/design_tools/vivado.html
https://www.xilinx.com/products/design_tools/vivado.html
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar

