
1Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 69(3), 2021, Article number: e136752
DOI: 10.24425/bpasts.2021.136752

they are an effective, modern educational tool [13], e.g., in 
medicine [14]. Cooperation allows to learn teamwork, and this 
is often not possible without the additional presence of artifi-
cial players with decision making skills. The main difficulty in 
cooperative games is created by a complex, multi-stage round 
structure, which contains several unpredictable random events. 
Cooperative games make it also possible to play solo, which 
was analysed in this research.

An interesting approach for MCTS application in collect-
ible card games has been presented in 2019 using the “Hearth-
stone” game [15]. Authors identified huge size of the action 
space. Several precautions had been taken to reduce number 
of allowed moves. Using Action filtering and Obliged Actions 
are examples of successful domain-specific knowledge incor-
poration.

This article is directly based on authors conference work 
[16]. The algorithm has been extended by adding more expert 
knowledge into the standard MCTS implementation. This 
allowed to perform a new analysis for games with high com-
plexity level. We have demonstrated that the relative effec-
tiveness of the mixed strategy proposed in [16] rises as the 
difficulty of the problem increases.

2.	 The Lord of the Rings: The Card Game

“The Lord of the Rings: The Card Game”, often abbreviated 
as LoTR, is a complicated cooperative card game with several 
decision-making stages. The following section is devoted to 
the presentation of its basic rules. It is necessary to understand 
before we will discuss construction of the game simulator, and 
searching for the optimal strategy for the AI player.

2.1. Living Card Game. From the Poker to the “Magic: the 
Gathering”, card games belong to a group of games charac-
terized by hidden information and a high degree of random-
ness. Hidden information means that the player does not have 
a complete view of the game, opposing cards and cards in the 

1.	 Introduction

“The Lord of the Rings: The Card Game” is one of the most 
popular card games. Since its launch in 2011 by Fantasy Flight 
Games, it has gained great popularity, as evidenced by more 
than 100 official expansions, dozens of internet blogs and mil-
lions of fans around the world. The uniqueness and enormous 
success of this game is due to its cooperative nature and the fact 
that it can be also played by only one person. By default, the 
core set of cards supports up to 2 players, but with an additional 
core sets the game can be played by 3 or 4 players. The players 
have to fight against the deck of cards representing the forces 
of Sauron, which are obstacles to overcome. To the best of the 
authors’ knowledge, the game has not yet received a AI player 
able to win at a level comparable to human experts.

The Monte-Carlo tree search (MCTS) is a stochastic algo-
rithm, which proved its unique power in 2016 by beating human 
master in Go game. It was the last moment when human play-
ers had a chance to compete with AI players. Since that time 
there is growing number of applications of MCTS in various 
games [1‒3]. The MCTS as a general purpose heuristic deci-
sion algorithm has also many applications outside the world of 
games. These include combinatorial optimization, scheduling 
tasks, sample-based planning, and procedural content gener-
ation [1, 4]. More recently, domain of usage is expanding to 
material design [5], network optimisation [6], multi-robot active 
perception [7], cryptography [8] and others [9, 10].

In this paper MCTS algorithm is successfully used in the 
cooperative card game, what could be treated as a novelty com-
paring to the studies [11, 12] of classical competitive games 
such as Magic: The Gathering.

This is especially important nowadays when cooperative 
games gain new applications. They have demonstrated that 

*e-mail: bartosz.sawicki@pw.edu.pl

Manuscript submitted 2020-10-28, revised 2021-01-14, initially accepted  
for publication 2021-01-17, published in June 2021

SPECIAL SECTION

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular 
card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of ran-
domness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with 
MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of 
the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.

Key words: Computational Intelligence; Monte-Carlo Tree Search; LoTR.

Optimisation of  MCTS player for The Lord of the Rings:  
The Card Game

Konrad GODLEWSKI and Bartosz SAWICKI*
Warsaw University of  Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland

mailto:bartosz.sawicki@pw.edu.pl
http://creativecommons.org/licenses/by/4.0/


2

B. Sawicki and K. Godlewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

deck are unknown. At certain moments of the game he has to 
draw a card – then there is a random factor with dynamically 
changing probabilities of drawing a certain card, depending 
on the previous state of the game. In the wide world of card 
games, in addition to the classic variants based on a 52-element 
stack, there are also systems with a much larger number of 
cards, where the player has the option of “deckbuilding” – he 
makes his own stack from all available cards. The cards have 
statistics such as hit points, attack/defence and mini-scripts that 
have a specific effect in the game. These types of card games 
can be divided into Living Card Games (LCG), in which the 
player expands his deck by purchasing expansions with strictly 
def ined cards and scenarios, and Collectible Card Games 
(CCG), in which the purchased packs contain random cards, 
which gives a certain unpredictability to the whole “deckbuild-
ing” process.

The most famous CCG game is undoubtedly “Magic: The 
Gathering”, which was released in 1992 [17]. Players use their 
decks to duel with each other, to get 20 points means to win. 
LCG games such as “Star Wars”, “Game of Thrones” and 
finally “Lord of The Rings” (LoTR) have enjoyed increasing 
popularity since the 2000s based on movies or series. Cooper-
ation is a unique feature of LoTR, where players (from 1 to 4) 
work together to defeat all opponents and pass the scenario.

2.2. Rules of the game. In LoTR, the player’s task is to com-
plete the scenario, consisting of three quest cards. Each quest 
card has a specific number of progress points that must be 
obtained to complete a given stage of the scenario. The player 
receives progress points by playing cards from his hand and 
then assigning them to the expedition. Opponents drawn ran-
domly from encounter deck hinder the progress of the expedi-
tion, additionally, in the defensive phase they attack the player, 
dealing damage to hero and ally cards. In addition to opponents, 
heroes and allies, there are other types of cards in the game: 
places, events, and items. Places are destination cards, where 
the player can travel to; events can be drawn from encounter 
deck, they affect the player in a negative way; items are kind 
of attachments to heroes, giving them buffs.

As seen in Fig. 1, each character in the game has statistics 
such as hitpoints, attack, defense and if as a result of the fight 
hitpoints it falls below zero, then the card is discarded from 
the game. If the player loses all three heroes, the game ends. 
The statistics of willpower and threat are responsible for the 
progress of the expedition (quest resolution), if the difference 
between willpower characters assigned to the expedition and 
threat of opponents and places is greater than zero, then the 
player places progress points on the current scenario quest card. 
When all three quest cards are completed, the game is deemed 
a win. If the difference is less than zero, the player increases 
his threat level by this amount, exceeding the threat level over 
50 means losing the game.

Every hero card has resource pool, which is increased by 
one token every round, this process occurs at the Resource 
stage.

The characters are grouped in four “spheres”: Spirit, Tactics, 
Lore and Leadership. Symbol of the “sphere” is depicted on the 

left-bottom corner of the card. Eowyn Hero, as seen in Fig. 1 
belongs to Spirit sphere, which is indicated by blue star symbol.

Each card, in addition to statistics, also has game text – spe-
cial skills invoked during the game. Player controlled characters 
get buffs, whereas enemies or events cast negative effects.

2.3. Round structure. Before starting the game, all decks: 
player deck and encounter deck are shuffled. The player sets his 
initial threat level, which is the sum of the appropriate parame-
ters of all three heroes, then draws six cards into his hand from 
the player’s deck.

A diagram of one round of the game is shown in Fig. 2. 
There are 13 stages divided into 7 round phases. Six of these 
stages are a simple implementation of the described game rules 
(marked in black), two of them contain unpredictable random 
actions (violet), while the other five are stages (red) in which 
the player must decide. To create AI agent, it is important to 
understand each individual decision stage [18].

In the Resource stage, one token is added to resource pool 
for each hero. Afterwards, the player draws one card from his 
deck.

In the Planning stage/phase, the player plays cards from his 
hand paying tokens from resource pool of the heroes. You can 
only pay for a card from a “sphere”, which hero belongs to, for 
example hero Eowyn belongs to the Spirit sphere.

The Commit Characters stage is based on assigning heroes 
and previously played cards for the trip through tapping (rotat-
ing the card 90 degrees). Only the willpower card parameter is 
relevant in this phase, the player determines its sum. Then the 
top card is taken from encounter deck and it goes to staging 
area. The sum of threat cards in this zone determines the level 
of adversity, which is subtracted from the sum of willpower. At 

Fig. 1. Example of Hero Card: Eowyn, where 9 is Threat Cost, 4 is 
Willpower Strength, Attack and Defence Strength both equal 1



3

Optimisation of MCTS player for The Lord of the Rings: The Card Game

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

this stage of the game randomness plays a big role, the player 
must allocate their cards without knowing what will fall out of 
encounter deck.

In Travel stage/phase, the player decides to go to a given 
place, then take the location card from staging area and place 
it on the current quest card. From this point, all progress points 
obtained in questing in future turns go to this location, until all 
quest points are filled. Then it is removed and the player can 
declare another card as his destination.

In the Encounter phase, engagement checks are performed: 
the player takes from the staging area all opponents who have 
less or equal engagement cost from the player’s threat level. 
Then they go to engagement area.

Next in Combat phase, the opponents from engagement area 
attack the player one after the other. He has the opportunity to 
Declare defenders or to take an unprotected attack. In the first 
case, he turns the untapped cards and resolves the fight: the 
value of defense of the defender minus attack of the attacker, if 
the difference is negative, the defender loses the corresponding 
hitpoints. An unprotected attack only goes to heroes, in this case 
their defense is omitted. If a player has any untapped cards, he 
can make strike back by Declare Attackers: select any opponent 
in engagement area and resolve the fight in a similar way.

Closing the turn (Refresh phase) is to remove all characters 
whose hitpoints have fallen below zero, untap cards and, finally, 
to increase the player’s threat level by one.

3.	 Game simulator

Before starting the research on the methods of computational 
intelligence in the LoTR game, it was required to create a com-
puter simulator of the game. The developed software enabled 
multiple, quick playing and experimenting with different agent 
configurations.

The class structure of the LoTR game simulator (Fig. 3) was 
designed with respect to object-oriented paradigm in Python 

Fig. 2. Round structure: random (violet), decision (red), ruled (black) 
stages

Fig. 3. Class diagram of the LoTR game simulator

Game

Player

Deck

Card

Ally

Regular Deck Quest Deck

Quest Land

Enemy

Hero

Creature

Player Creature

Board

+ turn: Int

+ turn: Int

+ name: String

+ name: String

+ cost: Int

+ scenario: String
+ points: Int

+ threat: Int
+ points: Int

+ engagement: Int
+ threat: Int

+ threat: Int
+ resourcePool: Int

+ attack: Int
+ defense: Int
+ hitpoints: Int

+ willpower: Int
+ sphere: String
+ tapped: Bool

+ totalProgress: Int

+ combinedThreat Int



4

B. Sawicki and K. Godlewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

programming language. The class Game includes the Player 
and the Board, which feature corresponding decks of cards. The 
inheritance of classes provides functionality separation making 
the code easy to extend and debug. Moreover, the game simula-
tor is hermetic from the AI agents point of view, therefore it is 
suitable for algorithm testing. Code of the simulator is available 
on the public Github repository1.

The main program creates a game root and sets it up accord-
ing to the difficulty level and playout budget. Each time deci-
sion is taken, the game root moves down from current state to 
new node. Once the node, which the root is being transferred 
to, turns out to be ending state, the main program returns game 
lose or win.

The difficulty level specifies what types of cards (enemies 
or location cards) will form part of the deck. Three levels of 
difficulty are provided: easy, medium and hard (see Table 1). 
At easy level, the encounter deck consists of player-friendly 
enemies: their stats like hit-points or attack-points are relative 
low, whereas medium and hard levels take full set of cards [19]. 
The key difference between these two is the scenario setup 
– within hard level before game starts certain cards are already 
added to staging area: Forest Spider and Old Forest Road. As 
shown in the experiments, it poses a huge challenge for both 
of the MCTS methods to struggle with.

Table 1 
Parameters to control game complexity level

Easy Medium Hard

Scenario setup no no yes

Number of cards 28 29 29

Number of card types 7 15 15

The playout budget determines how many times game start-
ing from a node should be rolled out to the end state. The end 
state can be considered as player’s win or lose according to the 
rules. The playout budget could be also considered as an exter-
nal constrain of the algorithm. In MCTS higher budget leads to 
longer time to decision and larger memory usage.

Due to the high complexity of the original game, several 
simplifications have been applied to the simulator. Event and 
item cards have not been implemented, because they are not 
essential for the whole gameplay. We also skipped special 
effects described on the game text. Huge variety of those effects 
makes them hard to serialize in the code. To have shorter games, 
the scenario has been limited to only one quest card, so the 
players needs to get a smaller number of progress points to win.

4.	 Agent players

The steps from Fig. 2 come sequentially one after the other 
and the options for action in a game node depend strictly on 

1 https://github.com/kondziug/LotR_simulator

the decision made before. In the Commitment stage, the player 
gives up characters for the quest, he can choose one or more 
Heroes or characters that have already been bought during the 
planning. Usually the player plays 1‒2 cards from his hand, so 
that he forms a subset of a group of 5 cards for the commit-
ment. The size of the subset depends on the current total threat 
of the cards in the stage area – one can be zero, other round 
3 for example. The number of enemies in the encounter area 
determines the number of declared defenders – if there are 3 
enemies, for example, the player must assign 3 out of 5 char-
acters, so this makes 10 subsets. In summary, the size of the 
action area varies according to past events.

There are five decision stages within round of the game: 
Planning, Commitment, Travel and finally Declaring Defender 
and Declare Attackers. The stages of Travel and Declaring 
Attackers are considered by players as a simple/obvious, so 
expert rules are all what was required. The other stages can 
be resolved in different ways. Decisions can be carried out 
by AI agents, or by a reduced rule-based player with a simple 
logic implemented (such as [12]). Finally, the analysis features 
four types of player agent: random, rule-based (hereafter called 
expert), simple-flat Monte-Carlo, and full MCTS methods.
●	 Agent 1. Random choice. Randomness has been constrained 

by the rules of the game. At Planning stage random selection 
of cards in hand is checked if it is possible to play according 
to the game rules. At Commit stage, agent draws a subset 
of characters in play, checks if every card is untapped and 
commits them to the quest. In Declare Defenders stage agent 
samples one character for every enemy in engagement area.

●	 Agent 2. Expert knowledge. The rules formulated before 
an experienced human player have been stored in the form 
of simple decision-making algorithms. Each decision stage 
of the game had a separate set of rules.

●	 Agent 3. Flat Monte Carlo. The idea behind flat Mon-
te-Carlo is to create only first layer of decision tree. The 
specified number of playouts are run for each child. Node 
with the highest number of wins is selected as a best choice.

●	 Agent 4. MCTS. Monte Carlo Tree Search is an algorithm 
for taking optimal decisions through sequentially built deci-
sion tree based on random sampling. MCTS consists of four 
steps repeated until a given playout budget is reached: 1) 
Selection, 2) Expansion, 3) Simulation, 4) Backpropagation.
The key distinction between Flat MC and MCTS is the 

depth of the tree (see Fig. 4). In Flat MC playouts are performed 
from every child node uniformly and the root proceeds to the 
node with the best winrate. Considering only nodes from the 
first level of inheritance result lacks Selection and Backprop-
agation phases.

In MCTS algorithm, the state tree is as deep, as limited by 
a time or memory constrains. The main difficulty in Selection 
is to maintain balance between the exploitation of deep variants 
of moves with high winrate and the exploration of moves with 
few simulations. We used classical approach based on function 
Upper Confidence Bound for Trees (UCT) [1]:

	 xj +  2ln n
nj

, � (1)

https://github.com/kondziug/LotR_simulator


5

Optimisation of MCTS player for The Lord of the Rings: The Card Game

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

where xj is the current winrate for node j, n – the number of 
playouts run from parent of node j, nj – the number of playouts 
run from node j. In the Selection phase, values of UCT function 
(Eq. (1)) is calculated for all nodes. The one with the highest 
value is selected.

In Expansion, new leaves are added to the selected node. It 
is clear that the actions under consideration must be in line with 
the rules of the game. For this purpose, independent validity 
functions have been implemented for each required decision. 
Additionally, the heuristic rules defined be the experienced 
human player allowed to significantly reduce the number of 
actions considered in the expansion step. However, it should 
be applied cautiously, since over-reduction of action space may 
constrain the effectiveness of the MCTS method.

In Planning stage, legal moves are determined by check-
ing that the player’s resources allow you to buy the card if 
you create the node; for Commitment stage all combinations 
of available characters are considered, if the total willpower of 
a given subset is greater than the total threat cards in staging 
area, then a node is created.

In Declare Defenders stage, subsets of untapped cards are 
created with correspondence to the number of opponents in the 
engagement area. This heuristic strategy allows to avoid many 
obviously wrong actions.

In the third phase of MCTS (Simulation), playouts to the 
terminal state of the game are performed. We have implemented 
two playouts strategies: random and expert, which correspond 
to the agents 1 and 2 in terms of implementation.

During the Backpropagation phase (the last step of the 
MCTS round), statistics of the number of won playlists and 
the number of visits for all nodes up to root are updated. Then 

values of UCT functions has to be recalculated, and next Selec-
tion phase can start.

5.	 Numerical experiments

This section describes research aimed at finding optimal strat-
egy of artificial player supported by computational intelligence 
algorithms. To properly present statistical nature of the results, 
each simulation has been repeated 1000 times.

The simulations were run in parallel on host machine with 
12-cores Intel i9‒9920X processor and 128GB RAM. Spawn-
ing processes across the CPU had been executed with Python 
Multiprocessing Package. After pooling the results of the sim-
ulations, postprocessing was applied – for every experiment 
winrate with confidence interval was calculated. Binomial 
proportion confidence interval for 95% confidence level is 
described by the equation:

	 ± z p(1 ¡ p)

n
, � (2)

where z – 1.96 for 95% confidence level, p – winrate probabil-
ity ns/n, n – total number of trials, ns – number of wins.

To begin with, the impact of playout budget was under 
investigation. Figure 5 proves a significant advantage of MCTS 
(Agent 4) over Flat MC version (Agent 3). Only below 10 play-
out budget the performance of both agents appears to be compa-
rable. The second interesting observation is the influence of the 
expert playout strategy. It emerges gradually for Agent 4, while 
keeping its dominance about 10‒15 points since the beginning 

Fig. 4. Comparison of Flat Monte-Carlo, with Monte-Carlo Tree Search algorithms



6

B. Sawicki and K. Godlewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

in the case of Flat MC. The saturation seen on the Agent 4 
plots clearly suggests that increasing the playout budget over 
40 is redundant, therefore this value will be used in further 
considerations.

When it was noticed that playouts with expert knowledge 
have higher chances of winning, we raised a question about 
computational cost. Results of measured simulation time are 
presented in Fig. 6. For both types of agents (Flat MC and 
MCTS) playout strategy does not affect the simulation time. 
The average time is nearly the same, when you note standard 
deviation reaching over 70%. Another observation is that the 
Agent 4 is significantly more time consuming, however vola-
tility of simulation time is also greater.

These two experiments lead to the conclusion that the opti-
mal setup for the playout strategy is: 40 repetitions in budget 
and operation in expert mode. Under these circumstances, the 
methods achieve a sufficient winrate with acceptable simula-
tion time.

The next investigated problem was which type of agent was 
the most suitable for different decision stages. The winrates of 
agent’s combinations as seen in Table 2 imply that the optimal 
mixed strategy is to deploy Monte Carlo methods (Agent 3 
and 4) at Planning, whereas Questing and Defense on Expert 
(Agent 2). Such configuration of agents is able to win over 95% 
of games at medium complexity level. Other setup worth noting 
(winrate over 90%) are these, which utilize MCTS at Defense 
stage. One can note that expert agent has poor performance if 
used on the Planning stage, however this is not solid conclusion.

Table 2 
Winrate for combination of agents on three different decision stages 

(complexity level – medium, number of trials – 1000)

Planning – Questing – Defense Winrate

agent3 – agent2 – agent2 98.1± 0.85

agent4 – agent2 – agent2 97.1± 1.04

agent4 – agent2 – agent4 96.4± 1.15

agent2 – agent2 – agent4 92.8± 1.60

agent3 – agent3 – agent2 82.5± 2.36

agent2 – agent3 – agent2 81.6± 2.40

agent4 – agent4 – agent4 80.2± 2.47

agent4 – agent4 – agent2 76.5± 2.63

agent2 – agent4 – agent4 67.6± 2.90

agent2 – agent4 – agent2 40.2± 3.04

agent3 – agent2 – agent3 39.5± 3.03

agent2 – agent2 – agent3 34.8± 2.95

agent2 – agent3 – agent3 24.3± 2.66

agent3 – agent3 – agent3 20.4± 2.50

Final verification of the developed artificial player had been 
done against the game with highest (hard on Table 1) complexity 
level and 10 000 game repetitions for more accurate evaluation. 
Four players using the same strategy at every decision stage 
(1‒1‒1, 2‒2‒2, 3‒3‒3, 4‒4‒4) and top three mixed strategies 
from Table 2 were compared. Results are presented in Fig. 7. 
It is clear that level ‘hard’ is a great challenge for every agent. 
Winrate of 0.4% proves that there is no reason for playing the 
game at the hard level using Random Agent. Moreover, the 
difference between Agents 3 and 4, shows that implementing 
MCTS algorithm with expert knowledge at Expansion stage is 
worth an effort. However, the major progress is observed for 
the mixed strategies. The undoubted winner was a player with 
a strategy agent4 – agent2 – agent4, who defeated all the others 
with almost double the lead.

It should be remembered that even at the ‘hard’ level, the 
simulated game contains simplifications. In future studies, it 

Fig. 5. Probability of winning (winrate) as a function of playout 
budget for different types of the playout strategies: ‘r’ – random, ‘e’ 
– expert. The size of statistical sample is 1000 games. Complexity 

level – medium

Fig. 6. Average simulation time for Agent 3 and Agent 4 for different 
types of playouts. Playout budget is set to 40 and complexity level 

to medium



7

Optimisation of MCTS player for The Lord of the Rings: The Card Game

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

is planned to validate developed methodology on the complete 
game simulator.

6.	 Conclusions

“The Lord of the Rings” is a popular multi-stage card game 
with a high degree of randomness, which poses a serious chal-
lenge to computational intelligence methods. Although there are 
studies on similar card games [2, 11, 20], the case of LoTR has 
not previously been analysed in detail in the scientific literature.

Developed AI agent based on the MCTS algorithms can 
achieve significantly higher winrate than an expert, rule-based 
player. The presented method makes a separate analysis of each 
of the decision-making stages in the game. Numerical exper-
iments have shown that different methods in different stages 
allow to increase the overall winning rate.

Another main conclusion is that the inclusion of expert 
knowledge significantly improves the results of the method. 
In the proposed solution, additional domain knowledge has been 
used to reduce the number of analyzed actions at the expan-
sion step of the MCTS, but also improve the efficiency of the 
playouts. This is especially important when the difficulty of 
the game increases.

The MCTS algorithm is known as a universal and powerful 
tool, but with high computational requirements. Measured time 
of simulations confirmed that implemented extensions do not 
deteriorate its performance.

Future efforts will be directed towards the development 
of the game simulator without any simplification, as well as 
the use of other methods of computational intelligence, such 
as reinforcement learning, to create agents comparable to the 
developed optimal MCTS player.

References
	 [1]	 C. Browne, “A survey of monte carlo tree search methods”, IEEE 

Trans. Comput. Intell. AI Games 4., 1–43 (2012).
	 [2]	 R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klon-

dike solitaire with Monte-Carlo planning”, Nineteenth Interna-
tional Conference on Automated Planning and Scheduling, 2009.

	 [3]	 M. Świechowski, T. Tajmajer, and A. Janusz, “Improving hearth-
stone ai by combining mcts and supervised learning algo rithms”, 
2018 IEEE Conference on Computational Intelligence and Games 
(CIG), 2018.

	 [4]	 J. Mańdziuk, “MCTS/UCT in Solving Real-Life Problems”, Ad-
vances in Data Analysis with Computational Intelligence Meth-
ods, 277‒292, Springer, Cham, 2018.

	 [5]	 S. Kajita, T. Kinjo, and T. Nishi, “Autonomous molecular design 
by Monte-Carlo tree search and rapid evaluations using molec-
ular dynamics simulations”, Commun. Phys. 3(1), 1‒11 (2020).

	 [6]	 S. Haeri and L. Trajković, “Virtual network embedding via 
Monte Carlo tree search”, IEEE Trans. Cybern. 48(2), 510‒521 
(2017).

	 [7]	 G. Best, O.M. Cliff, T. Patten, R.R. Mettu, and R. Fitch, “Decen-
tralised Monte Carlo tree search for active perception”, Algorith-
mic Foundations of Robotics XII, 864‒879, Springer, Cham, 2020.

Fig. 7. Final comparison of different AI players winrates for two game complexity levels (medium and hard, number of trials – 10000). First 4 
players use the same strategy for each decision stage, the others apply mixtures of strategies



8

B. Sawicki and K. Godlewski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136752

	 [8]	 D.A. Dhar, P. Morawiecki, and S. Wójtowicz. “Finding differ-
ential paths in arx ciphers through nested monte-carlo search”, 
AEU Int. J. Electron. Commun 64(2), 147‒150 (2018).

	 [9]	 K. Guzek and P. Napieralski, “Measurement of noise in the Mon-
te Carlo point sampling method”, Bull. Pol. Acad. Sci. Tech. Sci. 
59(1), 15‒19 (2011).

	[10]	 D. Tefelski, T. Piotrowski, A. Polański, J. Skubalski and V. Blide-
anu, “Monte-Carlo aided design of neutron shielding concretes”, 
Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 161‒171 (2013).

	[11]	 C.D. Ward and P.I. Cowling, “Monte Carlo search applied to 
card selection in Magic: The Gathering”, IEEE Symposium on 
Computational Intelligence and Games, 2009.

	[12]	 P.I. Cowling, C.D. Ward, and E.J. Powley, “Ensemble determin-
ization in monte carlo tree search for the imperfect information 
card game magic: The gathering”, IEEE Trans. Comput. Intell. 
AI Games 4(4), 241‒257 (2012).

	[13]	 S. Turkay, S. Adinolf, and D. Tirthali, “Collectible Card Games 
as Learning Tools”, Procedia – Soc. Behav. Sci. 46, 3701‒3705 
(2012), doi: 10.1016/j.sbspro.2012.06.130.

	[14]	 K. Bochennek, B. Wittekindt, S.-Y. Zimmermann, and T. Klinge-
biel, “More than mere games: a review of card and board games 
for medical education”, Med. Teach. 29(9), 941‒948 (2007), doi: 
10.1080/01421590701749813.

	[15]	 J.S.B. Choe and J. Kim, “Enhancing Monte Carlo Tree Search for 
Playing Hearthstone”, 2019 IEEE Conference on Games (CoG), 
London, United Kingdom, 2019, pp. 1‒7.

	[16]	 K. Godlewski and B. Sawicki, “MCTS Based Agents for Multi-
stage Single-Player Card Game”, 21st International Conference 
on Computational Problems of Electrical Engineering (CPEE), 
2020

	[17]	 “Magic: The Gathering”, [online] https://magic.wizards.com/en
	[18]	 E.J. Powley, P.I. Cowling, and D. Whitehouse. “Information 

capture and reuse strategies in Monte Carlo Tree Search, with 
applications to games of hidden information”, Artif. Intell. 217, 
92‒116 (2014).

	[19]	 Fantasy Flight Publishing, “Hall of Beorn”, technical documen-
tation, 2020 [Online] Available: http://hallofbeorn.com/LotR/
Scenarios/Passage-Through-Mirkwood

	[20]	 S. Zhang and M. Buro, “Improving hearthstone AI by learning 
high-level rollout policies and bucketing chance node events”, 
2017 IEEE Conference on Computational Intelligence and 
Games (CIG), New York, USA, 2017, pp. 309‒316.

	[21]	 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van Den Herik, 
“Parallel monte-carlo tree search”, International Conference on 
Computers and Games, Springer, Berlin, Heidelberg, 2008.

	[22]	 A. Fern and P. Lewis, “Ensemble monte-carlo planning: An em-
pirical study”, Twenty-First International Conference on Auto-
mated Planning and Scheduling, ICAPS 2011, Germany, 2011.

	[23]	 A. Santos, P. A. Santos, and F.S. Melo, “Monte Carlo tree search 
experiments in hearthstone,” 2017 IEEE Conference on Compu-
tational Intelligence and Games (CIG), New York, USA, 2017, 
pp. 272‒279.

https://doi.org/10.1016/j.sbspro.2012.06.130
https://doi.org/10.1080/01421590701749813
https://magic.wizards.com/en
http://hallofbeorn.com/LotR/Scenarios/Passage-Through-Mirkwood
http://hallofbeorn.com/LotR/Scenarios/Passage-Through-Mirkwood

